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Space time reflexions, light quanta and heavy bosons

by H. Fréhlich
Department of Theoretical Physics, University of Liverpool

Summary. A new approach to space time reflexions leads to the introduction
of a new angular space in terms of which isobaric spin and related quantities find
a simple explanation. On the basis of this new treatment awave equation is presented
which contains as specific cases the Maxwell equations, and the wave equations
for m- and K-mesons. It also predicts the existence of a further particle with me-
chanical spin 1, with the same isobaric spin properties as K-mesons but with a
larger rest mass.

1. Introduction

During a number of years reflexions of various kinds—space, time,
charge—have been considered as very important for an understanding of
fundamental particles. I feel that the usual treatment of such reflexions
is open to serious criticism and I shall show that an appropriate change
leads to the introduction of a new angular space in terms of which
reflexions can be considered as special cases of continuous transfor-
mations. This new space offers an understanding of isobaric spin and
related quantities and possibly also of rest mass. The great concern which
W. PauL1 showed for the treatment of reflexions makes it appropriate to
discuss these new possibilities in the present memorial issue.

Consider first as a very simple example a two dimensional space with
a coordinate frame x, ¥ and an irregular triangle in it described by the
coordinates of three points (xy, ¥1), (%2, V), (%3, ¥5). A rotation replaces
these three by three different coordinate pairs (x;, y;). Such a trans-
formation can be interpreted in two different ways as is well known from
geometry: (i) the triangle has not been moved, but the frame has been
rotated; (ii) the frame remains the same but the triangle has been moved.
The first interpretation has no physical (geometric) meaning in terms of
the figure for a coordinate system is quite an arbitrary device. The second
interpretation, however, has a very definite physical meaning connected
with the displacement of the figure in space. To have a closer analogy
with field equations we replace the triangles by the three straight lines
forming it. They are described by three equations between y and x,
a,x + b, v+ ¢, = 0. Rotation of the coordinate frame by an angle »
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(first interpretation) corresponds to a replacement of (x,y) by (x',y'),
say, «=&"cosy —y'siny; y = x"siny+ y'cosy. The appropriate
motion of the triangle on the other hand corresponds to a replacement of
a;, b, by a, = a, cosy + b, siny; b, = — a, siny + b, cosy (second inter-
pretation). Carried out together the two transformations leave the form
of the equations invariant.

Consider now a reflexion in which each x coordinate is replaced by its
negative. According to the first interpretation we simply have replaced
the original frame by another one. Since a frame is an arbitrary device
such a change is, of course, always possible. The second, physical, inter-
pretation is, however, no longer possible in a simple manner unless we
extend the whole mode of description of the triangle. One such possibility
would be the introduction of ‘internal’ coordinates permitting the triangle
to be turned inside out (or rather its two dimensional analogue). Another
possibility arises, however, if we permit the triangle to leave the x — y
plane by rotating it around the y-axis. This requires the introduction of
a new dimension, an angle 6. The case § = 0 then would correspond to the
original triangle, and 6 = 180° to its mirror image. Invariance of the
above three equations under reflexion thus involves (i) replacement of
the coordinate frame (¥, y) by (— #, ) and (ii) rotation of the triangle
around the y axis by 180°, leading to the replacement of a, by — a,.

Interpretation of the angle 0 in terms of the x — y plane suggests a
formal connection with Pauli spin operators. The cases 6 =0 and
6 = 180° describing the original triangle and its reflected one would
correspond to the two opposite directions of the spin. § = 90° would then
be interpreted as an appropriate mixture of these two cases.

Following the above discussion I feel that point transformations other
than mere coordinate replacements should be considered as unphysical
and should be replaced by continuous transformations through intro-
duction of new angular coordinates (or of internal coordinates; this will
not be done here). To introduce such a new description consider a four-
vector field V, (space components V;, time component V}) in a Lorentz
frame x, (u =1, 2, 3, 4; %, = 1 %,) and introduce three operators I7,(£),
I =1, 2, 3 which depend on angles £2 in a way specified below. We then
replace the V, by

Vi, Vo) > (UL V, 1 11, V) (1.1)
and demand that
=1, M:=1, It=1, (1.2)
so that the length is given by
(ILV)2+ IV =V;—Ve=Vi4+V;. (1.3)
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Secondly we demand that the [J, are invariant under continuous Lorentz
transformations to that I7; is always connected with space, ¢ I1, with
time components. This is possible only if the relative velocity v entering
the transformation is also replaced by an operator

v—>Il,v ie ([I3v)2=1v2. (1.4)

A typical Lorentz transformation leading to relative motion in the
3-direction transforms V , into V. With the replacement (1.1), (1.4) and
the requirement on /7, and 77, then

(L— oL Vy=IL Vy — ILo(i I1) Vy =TT, (V; — v )

' (1.5)
(1 — o2V, = —IL,o I, V, + i1, V, =ill, (— v V; + V)

must hold. This is possible only if (cycl. means cyclic permutation of the
suffixes 1, 2, 3)

i, =101, ILILL,+1L,I,=0, cycl (1.6)

Thus, as a consequence of the consistency conditions expressed by
equations (1.5) the I7, must satisfy the Pauli anticommutation rules. One
might, at first sight, expect that /7, = 1 should satisfy consistency. This
trivial possibility was excluded by the replacement of the time component
Vo by i 11, Vi, which in view of I77 = 1 thus represents not an hermitean
but an antihermitean operator. There is no reason why such operators
should not be introduced provided that measurable quantities are
described in terms of hermitean operators. It will be discussed in § 6 that
this actually is the case. The introduction of the antihermitean operator
1 I1, has been postulated above with the purpose of obtaining a non
trivial extension of the previous description of four-vector fields. It
touches no doubt, however, on the very deep difference between space
and time components whenever questions of reflexion are concerned.

Conditions (1.6) are, of course, fulfilled by Pauli matrices a, (or @) (dots
and empty spaces represent zeros)

w=(Ye @) wmfl). 0o

The conditions (1.6) are also satisfied by other matrices obtained from
(1.7) by unitary transformations*). We therefore assume for the /7,

Iy =g, 8 (1.8)

where s is unitary. In its most general form, s and hence II; depend on
three real parameters which can be expressed in terms of Eulerian angles

=0,y ¢) by

*) More general transformations will not be considered.
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s5=1¢ e e® =g e e * (L.9)

0< (o <2n, 0<<O<nm
Eulerian angles are well known from the theory of spinning tops. They
are defined in terms of an orthogonal frame (the external frame) in
which the vector operator a has the three components a,. The Eulerian

angles then define three orthogonal unit vectors u, (the inner frame; u,
is denoted as figure axis) such that

I, = (au) (1.10)
In the external frame the u; have the following components,

u, = (cosf cosy cosp — siny sinp, cosf siny cosp + cosy sing,
— sinf cosg)

U, = (— cosl cosy sing — siny cosg, (1.11)
— cosf) siny sing + cosy cosg,  sinf sing)

u; = (sinflcosy, sinOsiny, cosf).

Each 77, can be considered as invariant under rotation of the external
frame, being the inner product of two vectors a and u,. Rotation then
implies an unitary transformation acting on the a followed by a rotation
of the w, i.e. an appropriate change of the angles ©2. This invariance of the
II, means that each replacement of £ by £,, say, can alternatively be
expressed in terms of an appropriate unitary transformation. Thus
unitary transformation by I7, which in view of I1, IT, IT, = — I1, leads
to space reflexion is equivalent to the replacement of £ = (0, ¥, ¢) by
Q,=(n—0,y—n7— ¢). For with (1.11) one finds I7,(£2,) = — I,(2);
H2(91) = Hz(g)-

To illustrate the new treatment we investigate the vector field I7; ¢, v,
¢ I1, pop of the momentum vector, where y(x,, £2) is a two component
function and p, = —40,. p can be classified in terms of Pauli spinors
&(I1), n(II) satisfying
IL & () = n(),  ILy(I) = &(ID) 5 1L &) = + i), }(1 12
I ql) = — §(I1) ;I E(D) = E(T),  Hyn() = — n(l).

From (1.8) and (1.7) therefore
EIT) = s &), nT) =s7nla), ](1 »
where £ (a) = ((l)) ,  nla) = ((1)) ‘
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Let now

.o, Q) = —— (E(T) + y(IT)) &5+
: L K (1.14)
p-(e @) = (UT) — D) €74

The two cases g, and y_ correspond thus to vector fields with space com-
ponents + K, y, and — K, y_ respectively. A similar separation of the
time component into a forward (+ K,) and backward (— K,) field is not
possible. In fact &(/1) + ¢ n(/I) which would diagonalise 7 /], has imagi-
nary eigenvalues which indicates that for a single vector field the decision
whether the time component runs forward or backward is not a meas-
urable quantity. The case of two vector fields is quite different, as will be
shown in the following (in particular § 6). Here a measurable quantity
exists which compares the direction of the time components of the two
fields. It measures whether for the two these directions are equal, or
opposite. .

Finally, we show that space reflexion represents now a special case of
the continuous unitary transformation by

t— Il
g ° = cos% + i 11, sing . (1.17)
It yields
. P . B
t— II, — i 1I, .
e? ILLe * =II cosd+ II;sind (1.18)
and
i 9 8
e® y,=cos -y, +sinoy.. (1.19)

Clearly ¢ = 180°, transforms //; into — /7, and hence reflects the space
component /7 p,.

In the following sections the ideas discussed here will be applied to the
wave equation of bosons. On some simple assumptions it will be seen that
from a single wave equation we obtain as special solutions the Maxwell
equations, the equations for n- and K-mesons together with the correct
isobaric spin assignments. We also predict existence of a particle with
mechanical spin 1, with equal isobaric spin properties as K-mesons, but
with larger rest mass.

Some of the following developments (§§ 2 and 3) have been presented
beforel) though in a less systematic form.

2. The Wave Equation of Bosons

Relativistic wave equations are based on the identity (x = rest mass,
units =1, c = 1)

ﬁnv”+x:pkvk—?0vo+x=0 (2.1)
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Here v, is the four-velocity which in contrast to classical physics. is
defined independently of the four-momentum p, in terms of certain
operators, namely

py=—1id, (2:2), v,=iB,. (2.3)

For bosons, following KEMMER?) the §, satisty the algebraic relations
BubyBp+B,8,8,=0uB,+0,8,- (2.4)

In contrast to KEMMER, however, the y will be defined more explicitely
in terms of two pairs of Pauli spins, g, 9;; 0}, 0% by

1 i 1 %
B = 3 (01 0% + 04 o3) » Bi= 2 (05 + 05) (2.5)

They are thus 16 x 16 matrices.

Our new treatment of four vectors requires the replacements (1.1) for
both v, and ,. The independent definition of these quantities requires
two sets of IT,(2)’s, say IT,() and IT;(") so that

pr =11 (Q) by, po—>1 11, () Py (2.6)
v = II (2) v, vy—>1IL (2) v,. (2.7

Furthermore, since the length of a four vector is defined by (1.3) the
product of two four vectors is given by

Puv,—> () (IT; v,) + (¢ I, po) (¢ IT, vg) = ]

, , . , (2.8)
=1L 11, pp vy — IL L, povg = I 11, py v + 1L 1T, Py v, ’

Making now the replacements (2.8), (2.2), (2.3), (2.5) in (2.1) leads to the
wave equation

B,d,+ M ¥=0 (2.9)

where

1 . -
Bk=?H1(Q)H1(Q) (01 01+ 0, 0%)

. 7 ¢ (2.10)
B,= ‘z—Hz () IT, (2') (0o + 92)

Here the rest mass » has also been replaced by a mass operator M which
will be discussed below. The B , are thus 64 X 64 matrices but such a
matrix representation will never be required. The adjoint equation to
(2.9) is given by

¥, B,d,—M=0 (2.11)
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where (¥ is the hermitean conjugate of ¥)

Y=Y+ R, (2.12)

and
Ri=—010,, Ry=—050,, Ry=—0;05 (2.13)

1.e.

R R:=R;, R=1, cyd (2.14)

It will be noticed that the wave equation depends on three pairs of
Pauli spins, (I1,, IT}), (o, 0r), (0% 0%). The solutions will be discussed in
terms of appropriate spin functions. For this purpose we introduce for
each pair Pauli spinors &, n; &', %’ similar to (1.12). In case of ambiguity
they will be denoted by &(a), £(I1) etc., if they refer to Pauli matrices

a, Il, etc. Three symmetrical spin pair functions X, and one antisym-
metric 2, can then be introduced by

1

Si—— =), D= —— (' + ),
/2 ( nni > 7z 0 055
g = VZ_ (&n" + n&’)
and .
2y = oy (&' — n&) - (2.16)

They are orthogonal and normalised. In case of ambiguity they are
denoted by 2 (a), 2'\(I1), 2 (o), X (0), if they refer to the pairs a, I1, g, o
respectively. They have been chosen such as to diagonalise the three R,
(2.13) or the corresponding /7, ¢, a quantities—as shown in table 1.

Table 1
Eigenvalues of R,

2y 2y Zy 2y
R, 1 - sl 1
R, il 1 =1 1
R, = = 1 1

It follows from the above that a total of 43 = 64 orthogonal normalised
spin functions exist. In a matrix representation each would be repre-
sented by a column matrix containing 63 zeros and a one, the latterin a
different place for each of the 64 functions. '

We consider now first the 16 functions X(p) 2(o) referring to the g and
0’s, 1.e. to the 8, alone. Under exchange of dashed and undashed oper-
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ators we find 10 symmetrical functions /', and six antisymmetric ones I',.
Of the latter 25(0) 2,(0) is of no interest because

B 25(0) Z4(0) =0 (2.17)
for all four §,. The remaining five antisymmetric functions are
Ly(k) = Zy(o) Zi(o) , k=1,2,3 l
(2.18)

T,4) = Zy(0) Zu(0) 1,(5) = Zy(0) Zy(o) |

The ten symmetric functions will be denoted as follows

I(E) =20 Zo),  TH) = e) Zo) )
L) = — Zyl0) Zlo),  T(d)) = Zulo) Zalo) |

The action of the f§, on these sixteen functions can be seen in a simple
way from 5 x 5 and 10 X 10 matrix representations denoted as f,(5)
and f3,(10) respectively. In the former I (8), f =1, 2... 5, are column
matrices with zero’s except with a one at the f — 74 row. This implies
that

(2.19)

(2.20)

For the symmetric case we may represent the [ (8), f =1, 2, ..., 10 by
column matrices with zeros except a one at the f§ — ¢4 row, where E,
stands for =1,2,3; H, for f=4,5,6; qb” for p=17,8,9,10. The
matrices obtained in this manner are identical with Kemmer’s 10 x 10
matrices (his equation (53)) provided all signs are reversed. They will not
be reproduced here.

A complete classification of the spin functions is obtained from the I,
and /', by multiplication with the four 2(/7). It will be seen that this
would lead to w-mesons and light quanta only. To obtain K-mesons as
well it is necessary to introduce further operators in (£2, ') space (denoted
as isospace). It is of course possible to introduce operators in this space
corresponding to angular momenta different from Pauli type of spin. At
present, however, it will be necessary to introduce a momentum I around
the figure axis only—though in future it may well be required to introduce
more general quantities. Let thus

fe=4§ 3= L, —II)=—iU1,U (2.21)
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which commutes with all I7,, IT,. Here

w=p—¢ e bw=~2w(b¢—c)¢) (2.22)
and
S, i Y, iteu—m) i+ ) 0T+ )
U=e? "¢ % '—¢? et ; (2.23)

Like the IT,, IT, the operator I is invariant under rotation of the external
frame.

In addition to the four functions X (I7) we shall require four symmetric
functions x,,

w,=cosw 2 (Il), wny=—sinw(ll), (2.24)
and four antisymmetric functions »_,
v, = —sinw X(IT), v,=coswXI). ' (2.25)

The symmetry refers to interchange of dashed and undashed operators
and coordinates so that X', and cosw are symmetric, 2, and sinw anti-
symmetric. It will be noted that

RPXI)=0, I =x, I*v,=v,. (2.26)

Wave functions ¥ can now be written as a sum over spin functions
each multiplied by a real space-time function. This reality condition will
be found to be of considerable importance. Furthermore we postulate
that only those spin functions which are antisymmetric under exchange
of all pairs of dashed and undashed operators should be used. This leads
to four types of wave functions ¥,, ¥, ¥,, ¥,. Here ¥, and ¥ are
based on X,(II) and X,(I]) respectively forming a m-singlet and triplet.
From the postulate of antisymmetry then, ¥,, depends on 2,(/1) I';, and
¥_on X (I1) I',, so that we can write

¥, ~ S(T)| 3] (I Bylsy) — TAH,) Hyls) +

(2.27)
+ I’ () o (x,u)) — 1’ ($4) ¢s (x,u)
and
3 5
¥, = 2 S T, (B) Py (v,) - (2.28)
=1 =1

where the space-time functions E,(x ) etc., @,4(x,) are assumed to be real.
Two further wave functions ¥, and ¥, can be formed from the %, and
v,, the former with the help of I',, and the latter with I,
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4 5
¥, = Zl Zl' #e Lo (B) Xop (2,) (2.29)
and e
4 10
P,=3" D v, T, (B) Vs (x,) (2.30)

8
again with real functions X 4(x,) and V4(x,). We note with (2.26)
Y —0, IPY =0, DIPY -¥., DY =¥, (231

Isobaric Spin and Charge Operators

The various spin operators permit formulation of conservation laws
from the wave equations (2.9) and (2.11). For this purpose let J, be an
operator independent of x, which commutes with the B, and with M.
Then

0, Jou=0 where J, ,=:¥] BY¥. (2.32)

We shall also demand that J, be symmetrical in all dashed and undashed
operators. A total of sixteen such J, operators exist which can be derived
from the (I, + II)) R,, the I(II, — IT)) R, or from their products. Since.
according to (2.31) eigenvalues I2 = 0 and I2 = 1 of I2 only are required
it is possible to derive these sixteen [, from three basic operators 4, (A)

1 ’ 1
Alszl(yﬂl—{»y'HI):?Rlal (no sum) (2.33)
where
1-12427 y 1=JE-2 1
bP=—"7rper » #7715

e ur=pt=1; p=p =1ifI=0; p=1I, [&34)

w=—Tifl?=1.

The R, (2.13) are required here so that 4, commutes with B ,. From 4,
we derive three operators Q,(Q) by

. y 1 ,
ZoﬂAxA, 1. €. Ql:?Rl(Hl—}—Hl):RlQl' (2.35)

Besides these six operators 4,, O, ten further ones are obtained for J,
namely six E,,, three A,,, and J, = 1. Here

1, , ,
Eg=4,A,+ A, Ay — by =g R, R, (Hkﬂl +H1Hk) ’ (2.36)
and
1
Akt:?(Ale_Asz‘*‘QlAk_QkAl)= l

1 ’ ) (2.37)
4 Ry R, (u—p') (111, _Hlnk) [
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Introduction of these ten operators J, (1, E,,, A, into expression (2.32)
for J,, leads after integration over spin variables to antisymmetric ex-
pressions in the real space-time functions entering ¥. These expressions
vanish if the space-time functions commute. These ten J, can, therefore,
be used to formulate the reality conditions in an invariant manner. They
are also expected to be of use for the formulation the commutation rules
between these real space time functions (cf. § 5).

The remaining six [, namely @, and 4, lead in a similar manner to
symmetric expressions and can therefore be used for the formulation of
the two main conservation laws, conservation of electric charge and of
the third component of isobaric spin. We note in this connection that Qg
for instance commutes with 4,4, but with none other of the six @, 4,.

From Q, and A4, we define two vector operators T and S by

1 R I, + II; I, — I3
Ti=5 Qi+ A) = (Tt + I754) (239)
and (use I® = I which holds for 12 = 0, 1)
_1 _ R I INL + 1N II, - I1;
Si=5 (Q—4) =11, (T - T578). (239)

These operators as well as Q satisfy the angular momentum relations
QxQ=:Q, TxT=:T, Sx8S=:18 (2.40)

(provided I%2 = 0, 1) though the generating operator A does not do so.
We shall interpret Q3 and T as the operators for electric charge and iso-
baric spin. § will be denoted as isospin shift because Q3 = T3 + S;. S;
was originally introduced by HEISENBERG?) together with isobaric spin;
2 S31s the so called strangeness. In connection with these interpretations
it will be remembered that the [T}, IT;, and I are invariant under rotations
of the external frame (in 2, £’ space) in a similar way in which the
angular momenta of a spinning top, referred to its axes of symmetry are
invariant under rotation. Since the first and second components, I7;, 17,
were connected with reflexions it seems natural to use the third one for
the definition of charge. This, however, is no compelling reason. It will be
shown in the discussion §6, that a modification of the mass operator
introduced below can be given such that the third components Q3 and T4
only are conserved (as well as 72).

Matrix representations of the J, are frequently useful. For this purpose
we note that the operators o, and ¢, introduced in (2.33) and (2.35) are
given by
JT, = I

= (4) =120

if 12 =1 (2.41)
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and

w=a, 3+ 1) =2 @) =q,3+ 1), =0 (242

Here «,(4) denotes a 4 X 4 matrix; «,(3 + 1) indicates a 4 X 4 matrix
which can be decomposed into a 3 x 3 and a 1 x 1 matrix. The actual
form of these matrices is obtained by representing the functions X (II)
(referring to 1?2 = 0) %, and v, (referring to I2 = 1) by four sets of column
matrices with zeros in every row except the ¢ — ¢ # which contains a 1.
We then find

| :
@ = ) ww=| ) wm=[ L) @

and
@ (3+1) = q:(4 b
=u@+) \—-/
. L (2.44)
0.4 | g4 i
=66+ \——) —aB+) \ZH)

The decomposition of «,(3 + 1) = ¢,(3 + 1) = ¢,(4) is indicated by rim-
ming.

It seems of interest to mention here that «,(4) and «,(3) = ¢,(3) are a
four and a three dimensional representation of an «-algebra, based on
three generating elements «, satisfying the same rules (2.4) as do the four
B, This algebra has a further three dimensional representation by
o,(37) = — ¢,(3), and a one dimensional one, «,(1) = (.).

Mass Operator. From Kemmer’s investigations it follows that the u(5)
connected with antisymmetric spin functions /', occurring in ¥, and ¥,
lead to particles with mechanical spin 0, while the §8,(10) connected with
I’ lead to spin 1 particles. An operator M can be designed such that its
eigenvalue differs for the four wave functions (2.27)-(2.30) while it
commutes with Q,, 75, 72, and I This does not completely determine
the forms of M. An ad hoc definition is, therefore, proposed which will be
seen to yield a correct mass ratio for - and K-mesons:

M = M(II)+ M(o, o) (2.45)
where (C and ¢ are numerical constants)

M(IT) = C (1 + I2)2 (T2 + I?) (2.46)
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and s 2 3 o, 4+ 65.\2
Mo, 0) =c¢ (_9_32_93_) ’;1’ (_k_zvfc) . (2.47)
We note that M(p, o) I', = 0.

The form of M () is such that in a simple manner it separates eigen-
values corresponding to different values of 72 and I2. M(p, o) will be
required to obtain the Maxwell equations. Clearly a number of other
possibilities for M do exist. A particular modification leading to con-
servation of the third components @y, T, only and not of Q,, Q,, T;, T,
would be obtained by multiplication of (2.45) by IT, IT;, cf. § 6.

3. Solutions

We shall now introduce the four wave functions (2.27)—(2.30) into the
wave equation (2.9) using M from (2.45)—(2.47). In each case a number of
wave equations for the real space time functions will be found after
multiplication with appropriate spin functions and integration over the
spin variables. The procedure can be simplified, however, by using
matrix representations appropriate for the spin functions involved in the
particular case.

Maxwell field ¥,. The wave function ¥, (2.27) is proportional to
24(II). Hence with (2.31), (2.46), (2.35) and (2.38)

I¥,=0, MID¥,=0, Q,¥,=0, T,%,=0 (3.1)
and with (2.47)
Mlg.o) I(E) =2¢T,E), Moo DH)=2eT(H), |
Migo) I, (4,) = 0. I

Thus, ¥,, has one I/-component describing an isobaric spin singlet, and
ten (o, o) components. Action of the #, on the I', may be represented in
terms of §,(10) and the ten resulting space time equations are identical
with the Maxwell equations in the form

grad g(x,) + 0y () + 2¢ E(x,) = 0, ]
curl ¢(x,) —2¢H(x,) =0, curl H(x,) -9 E (x,) =0, (3.3)
—div E (x,) = 0. J

The mass constant ¢ thus simply gives a measure for the vector potential
Bux,)-
n-Mesons, ¥,. For the wave function ¥, (2.28) depending on X (I])
clearly
I¥Y, =0, Mn¥Y,=2CY¥Y,, Mpo¥, =0. (3.4)
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It represents an isobaric spin triplet where using (2.35), (2.38) and (2.42)
Q=T,=R,q(3). (3.5)

Here g,(3) is the 3 x 3 rimmed sub matrix of ¢,(3 + 1) in (2.44), and this
matrix acts on the suffix / of the real space time functions @,4(x,). Since
¥, depends on the I, the §, according to (2.20) can be represented by
matrices f,(5) acting on the suffix § of @, ;. Action of the [T, IT; and IT, IT;
which enter the wave equation by (2.10) can be obtained from table 1. -
Thus if we introduce matrices ¢,,(4) = &,,(3 + 1) by

1 -1

— 1
en(4)=ey(3+1)= — 1‘ , Ega(4) = &gy 3+1)= -1 ,
1 E T/ | (3.6)

and if we understand by ¢,,(3) the rimmed 3 x 3 sub-matrices, then the
wave equation becomes after integration over spin variables
e11(3) Bi(5) O + £22(3) Ba(5) 04 —2C, D(x,) =0 (3.7)

©

where @(x,) represents the @,,(x,) with the &, acting on the three
suffixes / and the §,(5) on the five suffixes . From Kemmer’s investi-
gations it is known that the §,(5) described particles with zero mechanical
spin; equation (3.7) contains three such particles, with eigenvalues of
Q5 = T4 obtained by diagonalising ¢4(3) i.e. (1,0, — 1). Clearly (3.7)
describes m-mesons provided the constant C is chosen appropriately.

K-Mesons, ¥,. The wave function ¥, (2.29), depends on the four %,
so that with (2.31), (2.46) and (2.47)

Y =¥, MIH¥Y.=7CY¥,, Moo ¥.,=0. (3.8

It representents two isobaric spin doublets with (use (2.35), (2.38), (2.39),
(2.41) and (2.42)), :
1

T,¥,.=- R, (9,4 + a,(4)) ¥y,

QY. =R qgH¥ 2

K?

1 (3.9)
‘Sl ng = *27 Rl (Ql(4) - Otl(4)) gjk'

Since ¥, depends on the I, the #, can be represented by the #,(5) and
the wave equation becomes

£11(4) B(5) 0, + £22(4) Ba(5) 0, —7C, X =0 (3.10)



Vol. 33, 1960 Space Time Reflexions 817

where X represents the functions X, 4(x,) with the g,(4), «,(4), ¢,(4)
acting on the four suffixes o, and the $,(5) on the five suffixes 3. This
equation thus describes four particles with zero mechanical spin. They
have electric charge (1, 0, — 1, 0) and 3rd isobaric spin components (1/2,
— 1/2, — 1/2, 1/2) as is seen by diagonalising ¢4(4) and os(4) and using
(3.9). Equation (3.10) thus described K-mesons with mass 7 C. Its ratio
7:2 to the w-meson mass is in close agreement with the experimental
value 966:273 for charged K- and n-mesons.

v-Mesons, ¥,. This case based on the wave function ¥, (2.30), again
leads to two isobaric spin doublets with the same charge and isobaric
spin properties as K-mesons. The antisymmetry of the four »,, however,
entails the use of I', instead of I',, and hence of a description of the 8,
by f,(10). This wave function therefore describes particles with mechan-
ical spin 1, by

e(4) B.(10)d, + £50(4) B4(10) 0y — (7C +2¢v), V =0. (3.11)

Here 1 represents the functions V,,s(x,) with the g(4), ¢,(4) and «,(4)
acting on the four suffixes ¢ and the §,(10) acting on the ten suffixes f.
v 1s a diagonal 10 x 10 matrix acting on g with 1 in the first six, 0 in the
following four diagonal positions (cf. 3.2). Formation of the second or-
der (in 0,) equations shows that this particle has a mass

1

M,=(7C(7C+2¢)*. (3.12)

To derive this expression in a formal way from (3.11) it must be noticed .
that the §,(10) do not commute with the matrix », but as can be seen
from the matrix representation -

B,(10) » - v B,(10) = B,(10) . (3.13)

Thus, it has been shown that the wave equation (2.9) together with the
postulate of ‘spin’ antisymmetry leads to the Maxwell equations (3.3) and
to the wave equations (3.7) and (3.10) for - and K-mesons respectively,
together with the correct isobaric spin assignments. It also leads to a
p-meson which has unit mechanical spin, equal isobaric properties with
the K-mesons, but a different mass.

Energy Momentum Tensor. The B, entering wave equation (2.9)
satisfy the same algebraic rules (2.4) as do the §,. A symmetric energy
momentum tensor & v CAIL therefore, be derived in the same manner as
done by KEMMER provided it is observed that M is now an operator. Thus
generalising from Kemmer’s equation (19) we have (the commutator of

M(p, 0) and B, B, applied to ¥ vanishes)

0,=¥YM(B,B,+B,B)¥Y—5,PMY¥. (3.14)

52 HPA 33, 8 (1960)
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In particular, since I1,11; I1, IT; = — 11, IT;,
Ou=—VMILIL By B+ B fr) ¥ (3.15)
and using 2 B} — 1 = — R,, R} =1 and the definition (2.12) of 7,
O,=-—P+M¥. (3.16)

For each of the fields discussed above this leads to the well known ex-
pressions, e.g.

Oy = —2c(E? (x,) + H? (xﬂ)) (3.17)
for the Maxwell case,
3 5
Op=—2CQ" ) &} (x) (3.18)
i=18=1

for m-mesons, etc.

If we demand that the energy density — @,, be positive then both C
and ¢ must be positive. If furthermore C = ¢ then M, ~ 1100 electron
masses would follow.

4, Reflexions

In the discussion of § 1 we have demanded that reflexions other than
coordinate replacements should be expressed as continuous transfor-
mations. This led to the introduction of the I7,(2), IT;(£2') in the new
(2, £2') angular space (isospace). As a consequence through the factors
IT, IT{ and I1, IT, the wave equation (2.9) has four components for each
one in the previous treatments. This wave equation contains automati-
cally the reflected ones expressed by appropriate changes in the angles £
or £'. Thus, as can be seen from (1.11) and (1.10), replacement of
=0,y ¢ by Q=@ —0, y —x, ® — ¢) (leaving £’ unaltered) re-
places IT,(2) IT;(Q’) by IT,(2,) IT{(2") = — I1,(Q) IT(2') leaving I1, IT,
unaltered. It is therefore equivalent to replacing x, by — x;. Thus the
wave equation remains invariant if simultaneously we replace x, by — x,
and Q by Q; provided ¥(x,, £2) is also replaced by ¥Y(— x,, £,) and if
similar replacements are made in all definitions of charge, isobaric spin
and other operators. We remember that transformations of the angles
0,0 are equivalent to unitary transformations. The above case for
example, is equivalent to unitary transformation by I1, for IT,(I1, IT}) IT,
= — II, IT;. Similar transformations can be made in connection with
reflexion of x, or of all four x,. Transformations of this kind will be de-
noted as insignificant transformations. They demonstrate that the choice
of the original frame (x,, x,) is arbitrary. We might as well have chosen
(— %4, %). Quite a number of other arbitrary choices have been made, of
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course. One, for instance, is the choice of + ¢ in (1.1) which might have
been replaced by — ¢. The choice between these two is equivalent to the
choice of a right handed or a left handed /7, system. Another arbitrary
choice concerns the choice + 7 in the definition of Q in (2.35). Insignifi-
cant transformations can always be derived such as to put into evidence
that a certain choice of a coordinate frame may be replaced by another.

Significant Transformations. In contrast, significant transformations
make statements concerning different physical states. As an example we
consider charge conjugation. We consider the replacement 2 — (2, dis-
cussed above, or its equivalent, unitary transformation by 7/, and
supplement it by the unitary transformation by I7,, i.e. we are interested
in simultaneous replacements 2 - Q,, Q" > Q) or in the equivalent
unitary transformation by

Co=I I, = G2, (4.1)

Since both I7, and I1; are equivalent to replacing in the wave equation x,
by — x,, C, leaves the wave equation invariant, but it transforms ¥ into

P 2. 2.9)V=CY¥(x.8 8. (4.2)
If now we were to replace in all definitions the /7, I; by the transformed
ones, e.g. .+ IT
Qs —> Q3,=Cy Ry —3—2“*3— Cot=—0; (4.3)
then complete invariance would be obtained, e.g.
]M:ﬁQE‘.B‘u‘IJ:T_;Q:?cBﬂWC (44)

and the transformation would be an insignificant one. To obtain a
significant transformation we shall not transform the various definitions
(4.3), etc., but make use of the fact that together with a certain ¥(x ),
another wave function, ¥,(x,) also solves the same wave equation. This

¥, then leads to a different physical state, namely one in which all
electric charges are reser ved, because

P, Qs B, W, =¥ (C;30,C) B, ¥=—P(Q, B, VP (4.5)

The physical significance of C, is that to each wave function ¥ describing
certain types of particles another one ¥, is coordinated in which all
electric charges and currents are reversed.

Charge conjugation can be considered as a special case of a number of

continuous transformations like charge rotation
Co(®) = e e = ¢ (1 + Q2 (cos ¥ — 1) + 1 Qysin P) (4.6)

where 9 is a parameter; C, = C,(n). This transformation too leaves the
wave equation invariant; it rotates the vector operator Q by an angle
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around the Q, axis. In view of definition (2.35) of Q this transformation
involves not only the I7,, IT; but also R,, except when ¢ = 7. Another
continuous transformation which leaves the wave equation invariant and
contains C, as a special case is by

Dy(f) = "5 Dy(G) =i Cy. (4.7)

Internal Parity Reflexion. This reflexion can be defined as a significant
transformation which leaves the (mechanical) spin operator 1/2(c, + o)
invariant but reverses the energy flux 0, without affecting the charge.
Clearly unitary transformation by R, = — p, p; serves the purpose as may
be seen from (3.15) and (2.5). The transformation of the wave function

R, W=—g,0, ¥ (4.8)

affects the spin functions 2 (p) only in a manner shown in table 1. It is,
therefore, equivalent to multiplying the various space time functions
entering ¥ by + 1 or — 1. Table 2 shows this change of sign for the Max-
well and the w-meson functions obtained with the help of (2.27), (2.28),

(2.18) and (2.19).
Table 2

| B | B | b | b | B | o | @y

R,

- + ~ B - — -

The result is identical with the well known parity assignments.

The above definition of internal parity reflexion loses its significance
for particles without mechanical spin; yet a significance is usually at-
tached to the internal parity of say w-mesons though this exhibits itself
only when their interaction with nucleons is considered. I feel that one
should conclude from this that boson fields contain internal variables
which so far have not yet been recognised. In terms of these variables
internal parity reflexion should describe the turning inside-out of a bosons
as a continuous transformation. As a formal step in this direction we
might assume that the Pauli matrices g, o; and o, o; entering by (2.5)
the wave equation (2.9) have a physical meaning such that any represen-
tation can be chosen for them which is derived from (1.7) by unitary
transformations. As in the case of the I7,, IT; this involves angular spaces.
For the gy, 0}, the requirement is to some extent already satisfied by the
form of the wave equation, containing them as (¢ 0) and (o’ 0) only.
A simultaneous unitary transformation of ¢ and ¢’ then is equivalent to
a rotation of the ordinary x,-frame; the angular coordinates connected
with the o are thus the angles in ordinary space. For the g, p; however,
the requirement is not obviously satisfied because Lorentz transformations
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lead to a specific kind of unimodular transformation which do not include
our requirements. The simplest possible extension of the definition of the
o, which would permit internal parity reflexion could be obtained by
defining similar to (1.10),

0, = (alp)w,), g = (a'(o)w) (4.9)

where a(p), @’(p) are Pauli matrices of the form (1.7), and w, are three
orthogonal unit vectors defined in terms of certain Eulerian angles. For
our purpose we may choose in particular w, such that

02 =as(0) , 0, = ay(0) (4.10)
which implies that p, and g do not contain a,. We may then define

’t;?? 0: + 03 ]

Ry(9) = e =1+ (~92J;9‘°:)2 (cosd — 1) +

(4.11)
+ ¢ f@%ﬁ"’— sin I
so that
Ry = Ry(m) = — 0, Qz (4.12)
and
R, (32”_) - _}_,12‘-’,2&5_ 4 5_92,%’3’__ (4.13)

Transformation by R,($#) does not leave the wave equation invariant;
invariance is obtained, however, by a simultaneous rotation of the w),
around the w, axis. Rotation by 180° then becomes equivalent to a
replacement of 9, by — 0, in a manner similar to the example discussed
in § 1. The turning inside out process in the Maxwell case for instance
leaves H, and ¢, unaltered, while E, and ¢, are rotated such that for
9 =90° E, >¢,, ¢, > — E, and for & = 180°, E, > — E;, ¢, > — ¢,.
It would be desirable to go closer into this process than has been possible
by the present formal description.
Finally transformation by

9

) (02 ITs + o3 I1,) I’
P(’l?):-e"zg =1+(Q2H2+92H2)2 (Cosﬁ-—l)—I— l

. (4.14)

4 1,( 0 11, ‘; s 11, ) Sl

should be mentioned. It leaves the wave equation invariant, and for
# = 180° becomes

P(r) = — 050, 11,11, = R, C, (4.15)

1.e. combined charge and internal parity transformation.
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5. Reality Conditions and Quantisation

The space time functions entering the wave functions in (2.27)-(2.30)
were all assumed real. This statement is not invariant under unitary
transformations and it was mentioned in § 2 that an invariant formulation
1s possible in terms of vanishing currents,

V(x) Ju B, P(x) =0 (5.1)
where the J,, represents the ten operators (cf. (2.36, 2.37))
Ju=Ey, Ay, 1. (5.2)

In (5.1) integration over all spin variables is assumed to be carried out so
that these expressions depend on x, only. Conditions (5.1) remain valid if
¥ is multiplied by a phase factor exp(z # Q,) or exp(i @ 4,) because
transformation of any of the J,, by these terms (e.g. exp.(— ¢ 9 Q,) J,
exp(z ¥ Q,)) leads to a linear combinatiom of the ten J,,.

The quantisation of the space time functions contained in ¥ is closely
connected with the reality conditions. To demonstrate this we consider
first a wave function of a neutral spin zero particle,

Bi(5) 0 + Bu(3) 0y + %, w(x)=0. | (5.3)

Here y(x) has five real components y4(x) which satisty (use 2.20)

Opps + 2 =0, —10495+xy, =0,
(5.4)
Ox Y+ 104 9g + 295 =0.
Now if ;phf ) = pt(x) (1 — 243, then q) (%) B,(5) y(x) is conserved. From
(5.3) and (5.4) we then find
% (b () B,(5) w(x) +p(¥) ,(5) p(x) = |
— (0= 0,) (o) welx) — (o) 5(x") |

For classical fields this expression vanishes. When y,(x") and y,(x) do not
commute, however, then it vanishes only if x = x’. Conversely the con-
dition that the left hand side of (5.5) should vanish for x — x’ requires that
all y, be real apart from a common pl.ase factor.

Now quantization of a real field y4(x) requires (cf. PAuL1?) eqns. (32)
and (22))

Ps(x) ps(x) — ws(x) ps(x) = [s(x), ps(x)] =2 D (x — &', %) (5.6)

where D(x — x’, %) represents the universal D function for rest mass x.
Hence the condition

% (&) B,(5) p(x) + p(*) B,5) p() =i (0, — ) D (x— ', %) (5.7)

expresses the reality as well as the quantization condition.
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Complete quantisation of the wave function ¥ involves not only the
space time coordinates x, but also the new angular coordinates. At
present quantization of the space-time functions only will be con-
sidered, and consequently the four fields (2.27)—(2.30) will be treated
separately. Let ¥, (x) be one of these four fields (f = m, 7, %, ) and let
M, be the respective eigenvalue of the mass operator, defined as the
value entering the second order wave equation

OY¥Y,—M:¥,=0 (5.8)
e. (for f = m, (5.8) holds for E(x,) and H(x,) only)
M,=0, M,=2C, M,=7C, M,=(7C(71C+2¢)%. (5.9

We can then tentatively generalise (5.7) to

n 1 1
gjf(%)j (MB, + B, M) ]y ¥;(x) + Pp(x) > (MB, + (5.10)
+ B, M) [ Fi(x') =130 (0, — 6;) D(x—«, My).

Integration over all spin variables on the left hand side is assumed. It will
be remembered that J;, commutes with both M and B,. Also (cf. (2.46,
2.47)) M(II) commutes with B, but M (g, o) does not do so in the case of
particles with mechanical spin 1, as indicated in (3.13). The case £ =/ is
assumed to comprise for J,, not only the three operators £, but also the
unity operator 1. In a matrix representation, the three I, are given as
diagonal matrices (3.6). Together with 1 they can be combined into four
matrices containing zeros except for a single diagonal element each. For
spin O particles (f = 7 or K) the four (f = K) or three (f = =) conditions
arising from (5.10) with % = / are then identical with (5.7) for each of the
four (three) //-components, apart from signs. The remaining conditions
(5.10), & = [, show that different //-components commute.

The case of spin 1 particles will be illustrated on the Maxwell field ¥,,.
This field has a single I7-component X,(I1). All J,, conditions then either

give 0 = 0 (if £ = /) or they become identical with J,, = 1. Using (3.13)
thus

— ¢ (Pol) Bu{10) Wol) + Pulo) B,(10) W) =
~i(d,—9)D(x—x,0). ]
Inserting for ¥, from (2.27) yields fovji = 1,2, 3,
— ¢([EL(+), dha() %), ha(x")] — [Hy(x 9’53 l
%), da(¥)] + [Hy(x"), bo(x)] + [Hs(%), po(x)]) = {(5.12)
=40, —9,) D (x—x,0); cycl. l

(5.11)
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and for u =4

~ 0 3 (B, ule)) + [Exls), dul)]) = |

, (5.13)

—i(0,—0) D (x—«,0). l
Expressing E; and H;, by ¢, through the field equations (3.3) leads to four
conditions containing the ¢, and their derivatives only. They can be
fulfilled if

, 2 . ,
[¢y (x)’¢v (X)]:—?ZD(X—X,O) 6/111 (514)

with
0p=0if w=v; du=11i x=1,23; d,=—1. (5.15)

Further investigation will have to show whether (5.14) is the only con-
clusion that can be drawn from (5.13) and whether (5.10) requires modi-
fication.

6. Discussion

The developments described in this paper are based on a criticism of
the usual methods of dealing with reflexions. Arising from this it was
postulated that all reflexions except coordinate replacements should be
treated as continuous transformations. This required the replacements of
four-vectors by operators according to (1.1) and led to the introduction of
a new angular space (isospace). The application of these ideas to bosons
is based on the identity (2.1) and is dominated by a very important
difference between classical and quantum mechanics. In classical rela-
tivistic theory the momentum four-vector #, is connected to the velocity
four-vector v, through the rest mass » by ¢, =#v,; in quantum me-
chanics the two are defined independently (cf. (2.2), (2.3)). The quantum
mechanical definition of v . 18, of course, closely correlated with Schrédin-
gers Zitterbewegung which exists not only in the Dirac equation but also
for bosons (it is longitudinal for spin zero bosons). The independence of
definition of the p, and v, four-vectors has a profound influence on the
wave equation when the replacements (2.6), (2.7) are made, replacing
P v by ITLIT] py vy, and py vy by — (¢ I1,) (1 I1;) py vy For clearly the
IT,, IT; occur only as products /7, IT;. Now it was demonstrated in § 1 that
I1, p,. (or I1; v;) describes in terms of a space frame x, both, a vector field
Px (v,) and its reflected — p, (— v,). The operator IT, IT; $, v,, however,
measures by /1, I1; only whether both vector fields $, and v, refer to the
same sign + p, and - v, or — p, and — v, (we say they have equal
reflexion status) or whether they refer to opposite signs, -+ $, and — v,
or — p, and + v,. A distinction between the individual vector fields + $,
and — p,, or between + v, and — v, does thus not enter our boson wave
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equation. The quantity that enters is the distinction as to whether the
two have equal or unequal reflexion status. A corresponding result holds
for the time components p,, v,. It will be noticed in particular that
although (¢ IT,) and (s IT;) are anti-hermitean, their product is hermitean
and thus describes a measurable quantity. While a distinction between
the two temporal directions in a single four-vector field is not a meas-
urable quantity, in our theory, the distinction as to whether two four-
vector fields have equal or opposite temporal direction (temporal re-
flexion status) is measurable in terms of the operator — IT, IT;. 1t is of
interest to note in this connection that the four function X (1), (2.15),
(2.16) which simultaneously diagonalise both IT, I'T; and IT, Il; can be
expressed in terms of the functions

1

1
Com (D ), Eo= (D) = D), (61
which have been used in (1.14). For
Z = — 1/2 Crl+ L), Zp= —,/12‘ (e +8-80), ]
(6.2)

As a consequence of the introduction of the operators I1, and II; the
wave equation corresponds now not only to the one classical identity
Dr U — Do Vo + 2 =0 but to four such identities corresponding to re-
placements of p, v, and $, v, by + $, v, and + p, v, with all four combi-
nations of the - signs. This is easily seen by using a diagonal matrix
representation for I7, IT] and I1, IT,, based on table 1. Classically these
combinations of signs would be impossible because of the classical
identity p, = % v, according to which replacement of p, by — p, entails
a replacement of v, by — v,, leaving 4, v, unaltered.

Discussion of the conservation laws derived from wave equation (2.9)
has led to the definition of operators for isobaric spin T, (2.38) and for
electric charge Qg = Ry(IT, + I13)/2, (2.35). 1t is of considerable interest
to discuss the meaning of these operators in terms of the reflexion status
of (P, v,), 1.€. in terms of eigenstates of I1; I1; and IT, IT; as described
above. We shall in particular deal with the electric charge operator Q
and notice that in the matrix representation which diagonalises /T, IT;
and IT, IT;, the operator (I1, -+ IT;)/2 is represented by ¢,, (2.44). It acts
only on the first two //-components of the wave function corresponding
to the fact that there are only two non zero types of electric charge
(positive and negative). Our attention can thus be restricted to these two;
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in a formal way they are obtained by operating with QF on the wave
equation. We then find the two equations,

(Th ) Bde+ () Bade s (W) =0 (63

Y2

because the matrix representations of I7; IT; and I1,Il; are given by
— &y and — &5 (eqn. 3.6) respectively. Here y; and , stand for @, 4, @y
in the case of w-meson, or for X, X,, in the case of K-meson; x repre-
sents the respective mass. The 4- g, 0, and + , 0, show that the charged
components correspond for p , v, either (y,) to equal temporal and oppo-
site spacial reflexion status (i.e. both p,, v, forward or both backward;
+ #p, combined with — v, or — $, with + v,) or (,) to opposite temporal
and equal spacial reflexion status. The charge operator in terms of the
two components y,, y, 1s represented by

Qs — Ry (] =) (6.4)

as obtained from (2.35) and (2.44). It can be brought to principal axes by
unitary transformation by

6= VLZ (e _im), 66 —~("1) (6.5)

which combines ; and y, into (p, and y, are real)

G:ffl — ’P*)’ fw:R2'g)1—{—iR1’(,l)2:Rz(V)l—{_iRSy@)
P2 U (6.6)
y)*:Rg%—?;Rliﬁz '

where p, p* satisfy the conventional Kemmer equation 8,0, + %, » = 0
and its conjugate complex.

In our theory, therefore, a state with definite electric charge is de-
scribed by a superposition of a wave function y, having equal temporal
and opposite spacial reflexion status of p,, v, and a wave function R; y,
having the opposite temporal and equal spacial reflexion status (com-
bined with an internal space-time reflexion by R;). In fact, electric
charge is defined as the operator (, causing an oscillation between these
two reflexion states v, p,. It is, therefore closely connected with space
time reflexions.

At this point it seems worth pointing out that the four-current based
on 8, vanishes identically in view of the reality conditions, while currents
based on v, = (¢ [I{f, — II,,) are not conserved. Conserved non
vanishing currents depend, of course, on v, but involve other operators
like Qg, T3 as well. The electric current density (space component) for

instance is from (2.32) and (2.10) obtained as ¥(x) Q3 IT, I, 1 B, ¥(x) =
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= Y(x) Q5 IT, v, ¥(x). We notice (i) that this current contains v, = ¢ IT; §;
only in the form I7, v, = 1 I1, I; f; and thus depends on I7, IT| and not
on I1; alone. Secondly, it refers to a specific quantity Qg or Ty which it
carries. Similar remarks hold for the relation of the momentum P, =

-
7 / 0, @°t to the operator .

Definition of the electric charge operator by Q, leads to the question
of why it is that we choose the third component of Q for it. We note, of
course, the invariance of the I7,, IT; under rotations of the external frame
in isospace, but no compelling reason has been given to use the third and
not another component. A modification of the wave equation (2.9) can
be given which does in fact lead to the desired result, namely replacement
of (2.9) by

Bﬂaﬂ+H3HéM, Y=0, (6.7)

Clearly only Q4 and T, but not Q,, Q,, 75, T,, lead now to conserved
currents. It will be noticed that the energy momentum tensor 0, defined
in (3.14) does not require modification. For 9, 6, = 0 holds even when
(2.9) is replaced by (6.7); on the other hand — 6, remains positive,
provided the constants C and ¢ entering the operator M are positive. The
reality conditions also remain unaltered.

The solutions of the wave equation involved three pairs of Pauli spin
operators namely I7,, IT;; 0,, 0" and ¢,, o;. Furthermore, in the case of the
IT,, IT;, an orbital operator I was introduced. It was then postulated that
¥ should be antisymmetric under exchange of all pair variables. This led
to two types of solutions depending on whether the eigenvalue of I2 was
0 or 1. In the former case an isobaric spin triplet and a singlet results. The -
triplet relates to mechanical spin O particles (-mesons) and the singlet to
spin particles with zero mass, i.e. it results in the Maxwell equation. The
case I2 =1 leads to four isobaric spin states both with 73 = 4 1/2 as
required by K-mesons. This case yields besides K-mesons (mechanical
spin 0) another two isobaric doublets with mechanical spin 1 and a larger
mass than that of K-mesons (y-particles).

The operator I is closely connected with the orbital angular momentum
in isospace around the 3-axis (the figure axis). Like IT; and 73, I is in-
variant under rotation in isospace. The definition of an isobaric spin
vector T, such that T x T = ¢ T is satisfied was possible only for the
eigenvalues 0 and 1 of /2. The physical meaning of this restriction is not
clear to me at the moment.

The mass operator M was introduced such that solutions with different
1sobaric spin have different rest mass. A very simple form of M led to
nearly the correct mass ratio of z- and K-mesons. This form of M has not
been derived, however, in a compelling way. Nevertheless, already at this
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stage introduction of the M-operator demonstrates an attitude towards
an interpretation of rest mass which is very different from one which
regards this quantity as resulting from field self energies. If this attitude
is correct then interactions should be formulated in terms of an (im-
proved) mass operator.

Note added in proof

1. By replacing in wave equation (2.9) the Kemmer operators 8, by Dirac
operators, the wave equation for z-mesons based on the symmetric X, (/)
functions leads to the wave equation for the electron-neutrino field pro-
vided M = m g3 is used. The wave function has then 3 x 4 = 12 compo-
nents which with an appropriate reality condition provides 6 complex
components as required by the 2-component neutrino, 4-component elec-
tron theory. Expression (2.35) can still be used for the electric charge
operator (03, though R, is now a different operator, such that isospin can
no longer be defined because (2.40) can not be fulfilled. This operator
Q; and an appropriate operator for neutrino charge provide automati-
cally the expressions required by hole theory. Electric charge conjugation
is still given by (4.11) but parity reflexion can not be separated from
neutrino charge conjugation.

2. Careful investigation reveals two types of Lorentz transformations:
one which retains complete symmetry in isospace, leaving all @, (and T7)
invariant; and a second which leaves only Q5 invariant and transforms
charged and uncharged fields independent of each other.
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