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Quantum Theory in Real Hilbert Space

by E. C. G. Stueckelberg*)
(Universities of Geneva and Lausanne)

Abstract. Relativistic Quantum Theory is brought to a form, where all operators,
including time reversal, are linear: Hilbert space is real. Instead of the imaginary

w w
number i (/ — 1, an operator J (J2 —1) is introduced, which commutes with
all observables and with the orthogonal operators representing ortho-chronous
Lorentz transformations, and anti-commutes with the orthogonal representation
of pseudo-chronous Lorentz transformations. It is shown, that / is necessary in
order to have an uncertainly principle (§ 2). Furthermore it follows that momentum-
energy and angular momentum-centre of energy are pseudo-chronous quantities.
Therefore, the Hamiltonian operator does not change sign under time reVersal
(§ 5). Lorentz transformations are considered as passive coordinate frame-)
transformations (§ 7).

In the annexes the following topics are discussed: A possible generalisation of
quantum theory involving non linear operators (A-l) ; The dictionary between
conventional theory in complex Hilbert space and the proposed formalism in real
Hilbert space (A-2) and (A-3) ; The dictionary between a quantum theory in quaternion

Hilbert space and our real theory (A-4). Also an error, frequently found in
literature, concerning the representation of the Lorentz group is pointed out (A-5).

Introduction and Conclusion
This article presents the essential of the lectures on Relativistic Quantum

Theory (Q T) of Fields, given at the universities of Geneva and
Lausanne during the past 20 years. The problem was to show students, why
the imaginary unit enters quantum theory. We start therefore from a

theory built entirely upon real numbers and are lead to introduce an
operator / (with J2 — 1), in order to have an uncertainty principle (UP)
between the mean square errors (AF2y and <AG2> of two observables F
and G. Observables are symmetric tensors (or symmetric linear operators)
in real Hilbert space (RHS) Fah Fba, or

FT= F,GT=G,... (0.1)**)

*) Supported by the Swiss National Research Fund.
**) AT is the transposed operator: A^b Aba, which plays the analogous role as

the hermitian conjugate Aï (A t AQ]*) in Complex Hilbert Space (CHS), see
Annex (A-2).
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The criterium for the impossibility of measuring F and G simultaneously,
is a non vanishing commutator

FG-GF [F, G] - [F, Gf =t= 0. (0.2)

The expectation value <[F, G]> vanishes, because [F,G] is an antisymmetric

tensor. Therefore, only the positive définit observable

P _ [F, G]2 PT (0.3)

can occur in
<AF2) <AG2> >A2<P>. (0.4)

A is a real number. Unless otherwise mentioned (Annexes (A-2), (A-3) and
(A-4)) all numbers occurring in this paper are real.

We show, that this uncertainty principle leads to a contradiction,
unless X2 0, in which case (0.4) is a triviality. We show, in § 2, that the
only other possibility consists in introducing an antisymmetric operator

J(fg) which has an inverse J~fq) (an<i may therefore, without loss of generality,

be normalised to — 1) and which commutes with F and G.

J(FG) ~ J (FG)' J(FG) ~~ J (FG) J (FG) ~ * (""¦')

Ucfgv F] [/(FG), G] 0. (0.6)

We may now form the symmetrical operator

C(FG) J(FG) IX X C(FG) (°-7)

and expect a uncertainty principle of the form

<AF2><AG2> > A2 <C(FG)>2. (0.8)

Let H be a third observable. C(FG) being an observable, J(CHi has to
commute with CiFG) and H. Thus, the simplification to assume but one
universal

Im) / (0-9)

commuting with all observables, seems natural.
Finhelstein, Jauch and Speiser3) have shown that only three

possibilities: RHS, CHS (Complex Hilbert Space) and QHS (Quaternion
Hilbert Space) are possible in Quantum theory (QT). Thus three anti-
commuting J's (Jly J2, J3) may exist. We have analysed QHS in terms
of RHS in the annex (A-4).

We begin (§ 1) by an analysis of probability, which leads us necessarily
to RHS. The linearity of the operators is a further assumption, which
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may eventually be omitted, because classical statistical mecanics does

not necessarily require the Jakobean cyclic identity, but may give

fgh{F,{G,H}}*0 (0.10)*)

for the generalised Poisson brackets (see annex (A-l) and 2)).

Therefore, the corresponding identity for linear operators

FGH J [F, J [G, H]] 0 (0.10/)

may not hold. In § 2 we discuss the uncertainty principle (UP). In § 3

we introduce the representation of the linear group {L} (which leaves the
metric tensor gaß g(aft**) invariant) by orthogonal operators 0 in RHS :

0T 0-\ L->e]lO. (0.11)

In § 4 we show, that the metric gaß of the differential manifold x {x"-},
a. ß... 12 n, has necessarily the thermodynamic signature (Stueckelberg

and Wanders4)5)) if the existence of fundamental state W(0), the

vacuum, is postulated:

signât (gX ± (1 1... 1 - 1). (0.12)

This gives a preference to one coordinate xn t, the time. Thus, {L} is the
full Lorentz group in n-dimensional space (including time reversal L T).

Furthermore it is shown, that / / is a pseudochronous operator

1= O"1 JO sig (L\) J (0.13)***)

if 'X L\ (xa + La) : 'x Lx; det (L\) * 0 (0.14)****)

satisfies g'x '" 7Xa L'ßß gX (0.15)

Multilocal ortho-chronous observables transform according to

'p'a-ß... ('x'y...) L\ L'ß,F*ß™ (L-ì'x L-ì'y...)
(0.16)

0-xF« ß... rX'y...) o j

while pseudo-chronous quantities transform according to

'TX" ('*...) sig (L\) L\... Fa(L~i 'x...) O-i F'«- ('*...) 0
w

(0.1720

*) abc stands for the cyclic sum.
**) F(aßy---) is a totally symmetric tensor, while Ft01/5'/---] is a totally

antisymmetric tensor in œ-space.
***) sig (X) is the sign function sig (A) + 1 for X J 0.

****) Frame transformations are written with the primes to the left:
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We shall later*) also use pseudo-chorous quantities, which transform
according to (ik 12 n — 1)

F'x- {'x...) sig (det (£,'«,)) L'aa... Fa- (L~l 'x

O-1 F'x- ('x 0

O G

and finally pseudo-quantities F F:

F'«~ ('x...) sig{det (L\)) L\... F

(0A7F)

o
o (0.17F)

0-1 F'*-('x...) 0. |

Let us remark, that we consider (§§ 3, 4 and 5) L always as passive
transformations. As a matter of fact, we show (§ 7), that this passive point of
view is perfectly reasonable in QT, because a statistical analysis of
observations at two epochs t' and t", is independent of whether t" is later or

kj kj kj
earlier than t' in the thermodynamic time scale (S(t") > S(t'); S(t)

entropy > 0, at epoch t, cf. *) and 6)7)).

In § 5 we analyse the infinitesimal group L(ô Xm ôcol"])

'X X + ô X ô o>\ x- x* + òX« + \ò a,«"! XX xr (0.18)

y '<*
— r '<* — rj'a p — r)'a P^fiv a [fiv] a wn ova wv Sjia (0.19)

generating the continuous group {F(cont)}. The generators of the
corresponding Lie group {0}, with n + (1/2) n (n— 1), parameters A1* and coßv

KJ KJ KJ KJ KJ KJ

colf,vi are — / TI^ and / M J M{jlv]. The pseudo-chronous observables

are the pseudo-chronous momentum-energy vector TI and the pseudo-
KJ

chronous angular momentum-centre of energy tensor M We arrive at
the relation

K +ÒI + -) F«~ (xy - /[ìl,, F«- (xy ...)] (0.20)

(([*„. ^ + b> VI + ¦¦¦) «ir # • ¦ ¦ + V«- # • • •
'

+ Ó« 2^V... + •••) F«'ß'- (xy - / [£„, F^- (*y...)].

From the structure relation of the generators of {L (cont)} (— 0^ and

Nn>>a' \Aii> dyi K' + XX')- the commutation relations

j[h/l,nv] o (0.22)

(0.21)

*) In a following article on real representations of the spinor group \+ òB, + y B,

±Xa2]X---±X'-a"]X}-
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XV MaT\ - g/OT MVT - g„T M^ + g/lT Mva + gva M„ (0.23)

Kn,,M„T} g,anT-g^n„ (0.24)

follow*).' KJ KJ

In § 6, we show, that 27 and Af can be expressed in terms of an
ortho-chronous observable, the momentum energy tensor

0"ß (x) <9(a» (*), daßaß (x) 0 (0.25)
KJ

as integrals over a surface '%(%) 0, whose surface element d crjx) is a
time-like pseudo-chronous vector (signât (gxß) (1,1 1 — 1))

dajyx) do*(x) < 0; dan(x) > 0 (0.26)

27" - f daa e*>\x) ; M"' f daa (x" 0ar - xv &^) (x). (0.27)

't(xj 0 't(*)-0

In the annexes, we consider classical statistical mecanics with pQH {F,
{G, H}} + 0 (AA), hermitian CHS (A-2), unitary and antiunitary transformations

U and V in CHS (A-3), quaternion Hilbert space (QHS) in (A-4),
and an error frequently found in literature due to a wrong definition of
the representation 0 (in RHS) or U (in CHS) (A-5).

§ 1. Analysis of Probability
Let F and G be two observables, whose spectra, assumed discrete, are

F: {F<*>} {F« < F<2> < < F<*"> < < P»f} (1.1F)

G: {GW} {G^< G<2>< ...< G<*>< < G>g>} (1.1G)

and let W7"', resp. W<*> be the probabilities that F takes the value F<!'> (resp.
G the value G<*>)

P7(.-); jj/(*) > o 27j h/(,)=27* ^™= 1- (L2)

Then we may, without loss of generality, write W{i) as a sum of squares

a- co ß - '«>/.

Wù= £V%; IT<*> Z "*%, (1.3)
a-l ß-1

which introduces an oj{- (resp. 'cok-) fold degeneracy of the spectral term
F(?> (resp. Gik'). Now let us introduce two indices a and 'a:

*) Due to a wrong sign in the representation L-^-eJ'O, these commutations
relation are frequently wrong in several books on QT of fields (see Annex (A-5)).
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a b 1 2 yjco, 1 2 coR j

'a'b... A'2...£'cok='l'2...'coR j

and write the degeneracies in the form

pia) — jtr(*»)) pu*) pa) G('a>= G"X G(kß) G<*>. (1.5)

Now we may chose the arbitrary large numbers coR and 'coR equal, and

represent Wa Wia, and 'W,a 'Wkß as components of the same abstract
vector W (state vector), referred to two different orthogonal coordinate frames
in an Euclidien space of coR 'coR dimensions. In general, this number
coR will be infinite. Therefore, we call this space the Real Hilbert Space

(RHS). The two sets of components are related to each other by an orthogonal

matrix 0 {0,aa}.
Using the summation convention, we write :

'&.-O...T.I 'W=OW; 0T=0-i (1.6)

the expectation values are now

xv Ziwii) FU) wa Fab vb {v, f w) (1.7)

Fab=FMÔab (1.8)

XV 27* WW G<*> 'W.a 'Gvt '¥,„ Wa Gab Wb (W, G V) (1.9)

•G,a.b GM ò,a,b; Gab OX 'Gvt 0.bb (1.10)
where

(0, W) (w, 0) =0awa >v.a '0,a (lu)
is the scalar product between vectors in RHS. F, G and all observables
are symetrical tensors in RHS:

FT=F,GT=G, HT H,... (1.12)

In the «-frame, F is diagonal (1.8) and in the '«-frame 'G is diagonal (1.10).
The transposed operator of an operator A, A {Aab} is defined by

(0,AV)=(AT0,W); Alb Aba. (1.13)

Now, F and G are two tensor ellipsoids in RHS or a-space: The length
of their principal axes are given by the spectra (1.1F) and (1.1G). The

length of the axes are thus independent of the orientation of the a-space
vector W. However the relative orientation of the two ellipsoids F and G
i. e. the relative orientation of the a-frame and 'a-frame in abstract RHS
is not necessarily independent of W. Thus, 0 {0,aa} may depend on W.
This introduces the possibility of assuming F and G to be more general
operators than linear ones2) (see (0.10) (O.IO7) and Annex (A-l)).
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§ 2. The Uncertainty Principle
In order to express the uncertainty principle (UP), we introduce in

(0.4) the error operators

AF=F-1<F>V; z1G=G-l<G>ï, (2.1)

from which we form the mean square errors <ZlF2>yand <ZlG2>,pin (0.4).
There are two possibilities :

X2 <Pyw (2.2P)
<AF2yv (AG2yv >

X2 iCyl (2.2C)

where F is a positive observable of dimension [F]2 [G]2 and C is an observable

of dimension [F] [G]. X is a number to be determined.
Let us demonstrate, that the first choice (0.4) or (2.2P) leads to a

contradiction: We express (2.2P) or (0.3), (0.4) in the a-frame, where F is

diagonal. Then, if [F, G] =t= 0, G has nondiagonal elements in this frame.
Suppose further that F has the value F(a,) i.e. Wa W'a ± àaa-. Then
we have

[F, G]ab (FW - F») Gab; Gab * 0 (2.3)

and (on account of GT G)

Pat, - [F, G] I =£c (F<«> - X>) (FW - F«) Gac Gbc. (2.4)

Therefore the expectation value is

<PV Ec (^ - F(C))2 (X- cY (finite ')2 > 0. (2.5)

Now (AF2yw, 0. Let the spectre of G (1.1 G) be bounded. Then we have
<zJG2V < (Ga) - GC°g))2 (finite)2 and (2.2P) (or (0.4)) reads

0 • (finite)2 > X2 (finite ')2 (2.6)

which has only the trivial solution X 0, corresponding to the trivial
statement

<AF2yw <.AG2)W >0 (2.7)

The only other possibility, (2.2C) is to introduce an observable C, linear
in F and linear in G. This implies the existence of an antisymmetric tensor
in «-space J(Fg) — ~~ J(fg) commuting with F and G:

C J(fg) VF, G] CT (2.8)

In order to deduce the UP, we form, with an arbitrary number |,

\(AF+i JAG) W\2= (W, (AF - | AGJ) (AF + | JAG) W)

<AF2yw - <[J2A G2Vl2+ <7 [F, G]ywi\ (2.9)*)

/(f)>X„(X>o.
*) We have written / for J(fg)-
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In order to make appear (AG2yw in (2.9), it is necessary that Jfpc) is a

number + 0. Being antisymmetric, this number must be negative. As
£ is an arbitrary number, we lose no generality in normalising J"(FG) ~~ !•
Thus, we arrive at the conditions (0.5) and (0.6).

The minimum /min (f') of /(£) is easily found to be at

I' - 1/2 <7(FG) [F, G]V ^G2)-1 (2.10)

which we insert in the last inequality (2.9). Multiplying with (AG2yw, we
find the inequality (0.8) with X2 1/4. Assuming but one universal J
(see text following (0.8)), we arrive at the UP:

<z1F2>y/ <dG2V > \ </[F, G]X (2.11)

§ 3. The linear inhomogenous group {L} in «-space

{L} is defined by its general element L (0.14) and the condition (0.15),

stipulating the invariance of the metric tensor gaß. A classical observable
transforms according to (0.16) or (0.17). It will be useful to combine the
.indices'

{xß ...xy...} X (3.1)

and define

'F'x 'F'a'ß- (Vy Lxx Fx

L\L'ßß... fdnxò('x- Lx) fd"yò('y- Ly)... F*ß-(xy...) (3.2)

L\L'ßß... Faß- (L-^'xL-^'y

Let us now consider how the expectation value

<Fa- (x...)yw (V, F'~ (x...) V) Wa Fxb Tp (3.3)

transformes under {L}. There are two possibilities: Either we leave Wa

unchanged and write

<'F'a- ('x ...)yw L\ ...(V, Fa- (L-1 'x W) (3.4)

which expresses the fact that 'F'x is the transformed operator (3.2) (0.16)
(0.17). Or, we may express the transformed expectation value in terms
of the initial operator F'xwith the index 'X= ('a... V..) and in terms
of a transformed vector 'W,a

'ip-, 0. V W 0T, (3 5)± a w'aa 1 a ± a^a'a V"*)
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in the form

<'F'*- ('*...)>„ <F'«- (>x ...)y.v 'V,a F',x,b 'W.b. (3.6)

Equating (3.4) and (3.6) we obtain an identity

Wa L\ FaV (F-1 'x ...)Wb=Wa OX Flïb ('x 0,, b Wb (3.7)

between two quadratic forms in Wa. Or, these forms are equal, for an
arbitrary W, if and only if*)

L\ ¦ ¦ ¦ F^r- (I-i 'x...) OX F>a;b ('x 0.b h, (3.8)

We may write this identity (multiplying by 0 O-1)

p'X T'X q pX QT /3 Q\1 'a'b — *- X w'aa l ab wb'b W'-'l

Thus Fxb considered as a ,vector' in X {a.... x .}-space and as a sym-
metrix tensor in a-space, is left invariant, if it is transformed with respect
to its three indices X and a, b. This is in perfect analogy to metric tensor
gaß in (0.15) and to the (/.-vector mixed bispinoryxAB (cf.1) and an article,
to appear in this journal, on Spinor Calculus in RHS).

Now it is easily seen, that the {0} group is a ray representation of the
{L}-group: Write F(1) and 0(1) in (3.9) and consider a second transformation

F(2) and 0(2) leading from the frames 'X 'a to the frames "X "a :

p"X p'X Q(2) Q(2) p'X /3 1QNr"a"b — ^C2)'X U"a'a U"b'b l 'a'b \3.1X>)

and substitute (3.9) in (3.10) : From

f;x (X> X))"X (o<2> o»).„ (o<2> ovybb Fxh (3.11)

it is seen that L -+ 0 and L -> (— 0) is a two valued representation.
However, since / commutes with any observable F, G, we may write

L-+e*'J 0, £.-*-> O1^ (3.12)

where the number X is an arbitrary phase. We see, that 0 does not necessarily

commute with /.
To illustrate the identity

<'F'xyv <FX-y
we have drawn the Fig. 1 and 2 :

*) In CHS, where < ¥, A W > is a complex number (cf. Annex (A-2)) the unitary
transformation Ut XJ-1 replaces Or O-1. Thus we have two real identities,
and the condition

l\aI (L~X) U~i A*, ('x) U.„„ (3.8 A)a p q \ I p p p q \ / qq v '

is valable for all operators A, whether hermitian or not.
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\b

Aa» ab

K

Fig. 1

a-frame

W
aà

AA-

Fig. 2

-frame and 'a-frame

Either (Fig. 1), we form Wa 'F'ax WVb in the a-frame from the ('X<- X)-
transformed tensor

'p'x _ T'X px1 ab — ^ X L ab

(which has, on account to the {L}-invariance, the same length of the
principal axes as the untransformed tensor F'xb) with respect to Wtt.

Or (Fig. 2), we form 'W,a F'x,b IF-jin the 'a-frame from the tensor F'x>h

(which has, in the '«-frame, the same components as F'xh has in the
«-frame) with respect to 'WV,a.
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From the two figures follwes immediately:

"X 0,a. Wa; F,'X 0.a. 0.b b 'F'x (3.13)

'Xf L'xx Fab 0-a\ F'x,b 0,bb, (3.14)

'F'a- ('x...) L\... Fa- (L-i'x...) O-1 F'«-- ('%...) 0

8 4. The Thermodynamic Signature of g<*ß
KJ

and the Pseudo-Chronous Character of J J
We need the hypotheses that a particular state WV^ of the cosmos exists,

the vacuum, which is homogeneous and isotropic. Let us consider, for the
simplicity, a local scalar observable F(x), and write the UP for two events

x and y in the form

<7 [F(x), F(y)]yw(o) EE f(x y) - f(y x). (4.1)

Homogeneity requires :

ï(xy)=)(x-y). (4.2)

Isotropy would further require :

ï(xy)=ï((x-y)2), (4.3)

(* - y)2 (* - y), (* - y)a- (4-4)

However, (4.3) is in contradiction with the antisymmetry (4.1) of the
commutator. There is only one way to turn this difficulty: We have to
give to the differentiable manifold {xa} one privileged axis, x" t, the
time. By this we understand that the metric has the thermodynamic
signature:

signât (gaß) ± (1 1 1 - 1). (4.5)

We have shown in an earlier paper4), that this signature is necessary for
a phenomenological relativistic thermodynamics. Thus we may define
a function

KJ

fix y) sig (xn - yn) f l(x - x)2) ]

(4.6)
/ ((x — y)2) 0 for x — y spatial J

which is homogeneous and ,quasi-isotropic'. Now it is easily seen, that
KJ

f is a pseudo-chronous bilocal scalar

'/('* X sig (L\) f(L-i 'x I-i 'y) (4.7)

because, for L'"n > 0, we have

'/ ('x 'y) /"(L-i '* L-i 'y) f(x y) ; L\ > 0 (4.8)

47 HPA 33, 8 (1960)
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while, for L'"„ < 0, the relation (x 7_1 'x) is

V ('* 'y) - sig (*» - y") / ((* - y)2) 1

-/Vy); 7\<0. j

Thus we may write, using the homogeneity and the pseudo-chronous iso-
KJ

tropy of //
'ï('x'y)=s\g(L\)ï(xy). (4.10)

Now, consider the transformed value of the observable J[F(x), F(y)],
which is, according to (3.5) and (3.6), the expectation value with respect
to *F«» of

O-i (/ [FC*), F('y)]) 0 |

(4.11)
0-i JO ['F('x), 'F('y)] \

in <0~i J 0 ['F ('*), 'F ('y)]yw(o) VC* 'y) (4.12)

or 'F('x) F (7-1 '*) F(x), according to (0.16). Thus, making use of
the relation (4.10), we obtain

<(0-i J 0) [F(x), F(y)]Vo, sig (L\) )\xy). (4.13)

Comparing this relation to (4.1), we find (0.13):

7 7; O-i J 0 sig (L\) J '/ (4.14)

(4.14) defines the transformed operator 'J:
KJ KJ

The transformation law J -> 'J is now analogous to the law (0.17) for
KJ

an ^-indépendant operator. Note however, that 'J is but a definition,
because we have established the identities expressed in the second equation

(0.16) (and (0.17)) by comparing (3.4) and (3.6) in (3.7) only for
observables, i, e. for symmetric «-space tensors F,G... and not for antisym-

KJ

metric «-space tensors like J.

§ 5. Infinitesimal Lorentz transformations
After having introduced the pseudo-euclidian signature with one privileged

axis *" t in § 4, our group {7} is the full Lorentz-group in n dimensions.

Writing down the infinitesimal transformation 7 L («3 A ' ò co '"-1)

((0.18) (0.19)) we find

L\ Fa(7-i '*) (ò\ + \ ôc^Z/t;\) F«C* • - ok • - èco •
„ V

F'- Cx) + ÒX" (- 'd.) F'a ('*) + \ chA* W„X F«('*)
(5.1)
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where — 'd„ and
JA,

XX«=XXXXa + 2X\. (5-2)

are the generators Qf the n+ (1/2) n(n— l)-parameter Lie-group {7(c0nt)

7 (A' co1"))}, which is the continuous subgroup of {7}. The generators
satisfy the Lie structure relations:

[ - d„, - X 0 (5.3)

X,- Xrl - S> Xt - Svr N^ + g,T AX + X<r g„T (5-4)

[- d„, A,,] g/OT.(- dr) -. g„T X Ö,)• (5.5)

Now.the corresponding orthogonal operator 0(ôX' ôw["]) can be written as

0(ÔX- ô aX) 1 + M" (- 72X) + | &/" (7 MX- X6)

The symmetric operators 27 and M{ j) are pseudo-chronous observables

and commute with 7, because O(cont) -> 7(cont), contains neither time- nor
space-reflections. In particular, the generators of the group {0(cont)}:

WW WW
— 727, and J M must satisfy the Lie structure relations (5.3)-(5.5) of

Xont)- w
Multiplying by 7-1, these are (0.22)-(0.24).

The identity (3.9), which relates 7 and 0 is, for the infinitesimal element

F'"('x) F'«(;x) + ÒX" (-'d„ F'«('x) - Jin,, F'a('*)])

l (5.10)

2
dor (>Nßv\ F«('*) + J[M/1V, F'«('x)])

}

and leads thus to (0.20) and (0.21).
KJ

The sign of 27 is chosen in order to give, for signât (g*ß) (11...
1-1), the relation (d„ dt, /7» - 27„ H)

dtF(x,t) J[H,F(xt)], (5.11)

where the Heisenberg operator F(x t) and the Schrödinger operator F(x)
are related by

<F(x t)yv <F(x)>=(t); W(t) e-^-W (5.12)

or F(x) F(x t) X" F(x) <XX (5.13)
Kj

We write H with the pseudo-chronous sign w, because it is the n — th
KJ

component of 27". For time reflection, (V *', 'xf — *") we have
therefore : ,u w

'27 27,'22 - 22. (5.14)



740 E. C. G. Stueckelberg H.P.A.

The energy operator H 27" does not changs its sign, while the ;

w

operator n changes sign, because velocities change sign.
w

In order to show that Mik is the angular momentum operator, we
consider the transformation for an infinitesimal displacement of the origine :

'*'" *'" + ÔX'" (5.15)

'M'" '" O-i M'" '" 0 M'" '" + ôX° /[Ìl,,, M'" '"] (5.16)

or, using (0.24)
'M'f '" M'" '" + (ÒX'" 17'" - òA'v 27'"). (5.17)

This shows that the arm-length of the moment with respect to the primed
frame ('a-frame) is larger by the amount OX'" than the arm-length with
respect to the a-frame.

§ 6. The momentum-energy density operator
W w

27" and M[""i can be expressed as integrals over an arbitrary time-like
w

surface 'x(x) 0, whose covariant «-component dan(x) of the surface-
w

element daa(x) is positive in every a-frame, if we choose the signature
KJ

+ (1 1 1 — 1). This means that daa(x) is a pseudo-chronous time-like
vector (0.26). Then it follows from Gauss' theorem, that the pseudo-

w w
chronous quantities 27" and M',v are indépendant of the surface 't(*) 0

chosen, if (0.25) holds.
To verify the transformation law, let us transform (6.2) according to

'jj" f d aa (x) O-i 6*" (x) 0=L\ f daa (x) Laß &ßa (L-1 x) (6.5)

't(z)-0 't(x)=0
w

and write y L"xx. Then, from the pseudo-chronous character of daa
follows

d oa(Ly)L«p sig (L\)daß(y) (6.6)
w w

where dan (Ly) is orientated parallel to *" (Ly)", while dan(y) is orientated

parallel to y" (L^x)".
Thus we have finally, writing 'pi for pi and /j, for a

'27'" sig (L\) L'», J daß(y)Gß"(y). (6.7)

'r(Ly)-T(y)=0

The integral being independent of the particular surface x(x) 0 or
'r(x) 0 chosen, we may write :

'27'" sig (7\) 7'" 27". (6.8)
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Analogously, we transform

'M"v 0-1 M"" 0= fdax (x) Laß (*" L\ 0ßr (L~xx) - xv L\ &ßa (L~xx))
rW-0 (69)

and substitute * 7y: *" 7"ff (yCT + L"). Using again (6.6), we obtain

'M'«'> sig (L\) L'% L'% J daß (y) ((y" + 7") &» (y)

t(30-0

- (y' + 7*1) 6ß" (y)) sig (7'K„) !>, 7'"„ (M"" + 7"27" - 7"À'")

Thus we have verified the pseudo-chronous character of momentum-
w W

energy 27" and of angular momentum-centre of energy M["v\ expressed
as surface integrals of an ortho-chronous momentum-energy density
(9(*^(*) over a surface r(x) 0, with a pseudo-chronous time-like surface

element doa(x).

§ 7. Physical Meaning of the Passive Time Reversal
To our passive interpretation of time reversal, it has been objected, that

only the active interpretation has a physical sense, because an observation
at an epoch t' changes the earlier state (in the thermodynamic sense) of
the system WV into a later state WV' corresponding to the measure of an
observable F F1'"*. However, we may consider an observer which makes

only correlation experiments:
This observer makes a great number, say N, of experiments, at two

epochs £(i) and l''^, i('2) and t"^ etc...., separated always by At. Let us

suppose first that t measures the thermodynamic time order, and that

t — t <(1) — t(1j t(2) — i(2) t(Nj — t^N) A t > 0 (7.1)

Every time, an observer observes F(i-) at the earlier epoch V, he will
observe G {G**'} at the later epoch and thus be able to make a statistics

pa') -> G<«, g<2>, G<*>, GW (7.2)

giving transition probabilities

W(kj')>0; E*w^') 1- (7-3)

However, he is free to evaluate his statistics the other way round:
Every time he registers G^'"1 at the later epoch t", he makes statistics of
the corresponding measures of F F(!'> at the earlier epoch t'. Thus, he ¦

obtains transition probabilities

W(k\l) > 0, Ei W(kFJ) 1. (7.4)
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The coefficients (7.3) and (7.4) are of course equal

W(kJ) W(k,i) W(k, i). (7.4b)

The arrows -+- (evolution in the thermodynamic sense) and -> (evolution
in the opposite sense) are thus superfluous. This means, that quantum-
mechanical .predictions' can be made for the future as well as for the
past. If the system ist not degenerate, we may write F(a) and G('a) for
F(i) and G(*> (see (1.5)) and our correlation coefficients are

W('a,a) (0,aa)2=(0:,a)2. (7.5)

They correspond to the doubly normalised transition amplitudes :

w(k, i) >o; e w(k> i) 1; EW(.k^ 1 (7X
k i

used by Inagaki, Piron and Wanders9) to prove the Boltzmann H
theorem for the most general case (Stueckelberg 8)), while the usual

proves assume, instead of (7.6), detailed balancing

W(k, i) W(i, k) (7.7)

which is known to be insufficient8)9).
Therefore, passive time reversal can be verified experimentally.
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Annex 1. Remark on Generalised Poisson Brackets
In order to establish the Boltzmann H-theoreme in classical statistical

mechanics, we have to start from a covariant theory of motion in phase
space x {*"} (ccß 12 co), which satisfies the theorem of Liou-
ville. The conservation of energy H H (x) leads to an equation of motion
for *a za(t)

z*(t)=dtz*(t) (dßH(z(t))f«(z(t)), (AAA)
where

fß(x) /[««(*) (A-2.2)

is an antisymmetrical tensor in phase space. The scalar density of the Gibbs
ensemble is to(*, t) > 0. It satisfies the equation of continuity

/ dmx m(x, t) 1; dtm(z. *) + da(z*MZ' *)) 0 (A-2.2)
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and transforms according to

'w('x, t) | det (A''\(x)) | vo(x, t) > 0. (A-2.3)

'X X(X A\(x)=day>'a(x)

Let dü(x) q(x) I dcp[li — m]
| g d"'x be the invariant scalar volume

(ß)

element, where dcp^1^ — ^ det (dx*) is the antisymmetric tensor of the
'

(ß)

parallelipiped, formed from co non coplanar vectors d xa. Then we may
introduce the scalar of the density w(x, t)

•<*.0-^-f (M>0 (A-2.4)

where g(*) is the .density of volume'. To form such a density we have

only the antisymmetric contravariant tensor /["r] at our disposal, which
is the fundamental tensor in phase space, analogous to the metric tensor
g(<*ß) in Riemann space.

Therefore we put g | det (/"-)-i'2| > 0 (A-2.5)

because it has the right transformation property. It is 4= 0 if, and only
ii, co 2 f is an even number. In terms of w(x, t), the continuity equation
(A-2.2) takes the form •

dtw + Da(zaw) 0; Da da+Ga, Ga dalogg, (A-2.6)

where Dx is the covariant divergence operator. The theorem of Liouville
states, that the scalar of the density w remains constant, if we follow an
orbit xa za(t) :

X w(z(t)t t) w(z, t) (dtw + za daw) (z, t) 0. (A-2.7)

This implies (see (A-2.6) :

£>> Da((dßH) X) (dJßH) ,l«fl + (dßH) Da f«n 0 (A-2.8)

and is a covariant condition*) for the fundamental tensor :

Da jM qß 0. (A-2.9./)*)

We may express it in terms of the density 'f-ß (xjaß

da fßi (f 0. (A-2.9J)*)

(A-2.9) is formally analogous to the second set of Maxwell's equations, if
no electric charges qß are present.

*) Da FWy-1 Gtfy-i OT daftW-i (&tfy-i (A-2.9*)
and d[zFßy...] G[aßy ...j are covariant relations. (A-2.13*)
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An observable F(x) varies with time, according to

F(z(t)) z«da F (dßH) fßot]da F ={H,F}=- {F, H} (A-2.10)

where {H, F} defines a generalised Poisson bracket.

It immediately follows, from

{F, {G, 27}} (daF) /[«« dß((dyG) ,™ 0SH)

(daF) jW(dßdyG) f* dsH + (daF) /t«« (drG) j™ dßdsH

+ (daF)(dßG)(dyH)f^d/™
that the cyclic sum is

v {F, {G, 27}} (daF) (dßG) (dYH) ^ X9] dp f™. (A-2.11)
FGH txßy

Thus, the Jakobi identity is not necessarily satisfied.
If we require this identity, we must have

v. fdp f7 q[aßyl 0, (A-2.12)
aßy

to which we may give the form of the first set of Maxwell's equations in
the absence of magnetic charge q^xßY]

^ àjm qlaß7i 0. (A-2.13)*)
aßy

if we introduce the inverse tensor jaß :

L/e €; jaß min (f)/det (/"")• (A-2.14)

From this definition follows

ufiß*P uA Ur (A-2-15)

We may thus raise and lower indices, with these antisymmetric
fundamental tensors j[aß] and j[aß]

Faß..= J., jßß'... F«'ß'... F«ß /-' ff... Fa,ß,„, (A-2.16)

In particular, it follows from

aPaY, (dPr)jßY+jßvdpjß7.=o
that

dpjßy fß'jyy'dpjß,r (A-2.17)

Introducing this expression into (A-2.12), we arrive at the first set of
.Maxwell's equations' (A-2.13), with the conditions that .magnetic
charges' q[xßY] vanish.
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This totally antisymmetric tensor of, magnetic charge' qlaW in phase

space with a fundamental tensor faßl plays an analogous role to the
Riemann-Christoffel Tensor 2?([ce ß][ s]) in a space with a metric g(clßi : If
q{«-ßy\ vanishes, a coordinate frame '*'" exists, where faß] has the form

{XX
0-1
1 0 0 0

0 0-1
1 0 0

0 0

; det ('/'«' 1. (A-2.19)

This is analogous to the existence of an euclidian or pseudo-euclidian frame
'g'a'ß — ± o'a'ß in the flat space, if F([a/3][yd]) 0. The proof of this theorem

is given for instance by Whittaker1°) (see also Pauli12) :

It states, that the Pfaff differential expression formed from aa in

faß d« al
consisting of co terms

0;2/ <«

(A-2.20)

(A-2.21)

(A-2.22)

(A-2.22)

1. (A-2.23)

aa(x)dxa=EPi(x)dqi(x) +
i-i | dql+1; 2/ + 1 < n

can always be expressed in the form of the right-hand side.
Now put (as co 2/)

p.(x) 'x*-\ q,(x) 'x2i, i 1 2 /.
Then we have

'a2i('x) 'x21-1; 'a2i_x('x) 0

and the only non zero component of 'fx'ß

'd2i_x 'a2i('x) 'j2i_12i + 1, V2'''2''"1 min ('/„.„-J -
Introducing

'H('x) H(x) 'H(p, q) (A-2.24)
we have

d

d

Therefore we see, that the Jakobi identity is by no means necessary to

establish the H-theorem: OnlyJ the .second Maxwell set' (absence of
"electric charges' cf) has to be satisfied. The presence of 'magnetic
charges' qlxßy] in the "first Maxwell set' does not invalidate Liouville's
theorem (from which the Boltzmann 22-theorem follows). To this generalised

statistical mechanics corresponds aO/T, in which the observables
are no more linear operators, because of:

re* / X> / [G. A]] * °- (A-2.26)

>z2i-l p. ,dzi ,H{>2) T, 2J-1 _.du >H(>z)

'^ ii 'dv-x 'H('z) r»-i'2' 'd2i_x 'H('z) -

'H(p,q)

•H(pq).
(A-2.25)
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Annex 2. Complex Hilbert Space (CHS)
If we restrict ourselves to the ortho-chronous subgroup {7(ochr)} with

W KJ

2-('ochr)» > 0. au operators {F, G, J, 0(ochr)} commute with J:

[J,0{ochT)] [J,F] 0; JT=-J; J2 - 1. (A-2.1)

We may now establish a relation (dictionary) between our QT in RHS
and the conventional QT in CHS. To do this, we consider the eo^-dimen-
sional RHS as a product space between a 2-dimensional RHS and an

coc 1/2 o)Ä-dimensional RHS. We write

0=(0,r)0U));¥
X(r)

WV,

(A-2.2)
0)

and the arbitrary operator A (\J, A] — 0) as the Kronecher product (x)
A 1 x A{r) + j x AU); 7 / x 1 (A-2.3)

X) {A(r)pq} and X) {A(i) pq}

are coc 1/2 «^-dimensional matrices (pq 12... eoc) and

x + *o
Now let us consider the o>c-dimensional complex Matrix (i + l/ — 1)

; i2=-l; X2 (A-2.4)

A A(r) + iA{i); A* ATAir) ÌAl) (A-2.5)*)

and the two <wc-dimensional complex vectors

0 0 »'^.w-r.-w, W Y(r) + iWV(i) (A-2.6)

where 0(r), <Z>(j), ï^, S^g, ^4(r) and ^4(i) are the real <uc-dimensional vectors
and matrices. Now, we define the usual complex matrix element in CHS by

<0,2£> ((<P(r) - i0({)), (Air) + iA(i)) (W(r) + iW(i)))

((0,r),A(r)WV{r)) + (0({),Air)W(l)) - (<Z\r)X(A)
+ (0(i),A{i)WV,r))) + i((0(r),A(i)W{r)) + (0(i),A(i)WV(i)) +

(0ir),A(r)WV(i)) - (0(i),A(r)WVir))) (0lr)0w)

l(r) -

(AW, 0)*.

WV

¥
*«*V) %))

A(i) A(r)

V)

wv

WV

(A-2.6)*

*) An * denotes the conjugate complex number. An t signifies the Hermitian
conjugate operator:

AL ¦¦ Ant.: A
ap X (A-2.9)
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This expression is equal to

<¥,A0} (0,AW)-i(0,JA¥) (A-2.7)

if we choose X + 1 in (A-2.3), i. e.

i (!".) (A-2.8)

(A-2.7) is the dictionary we proposed to establish.

It is worth noting, that the definition of / in (A-2.3) is univoque : (A-2.8).

Annex 3. Unitary (17) and Anti-Unitary Operators (V) in CHS
We write our dictionary between CHS and RHS (A-2.7) in the form

<<£ A*(x) ¥} (0, (1 - i J) Aa(x) ¥) (A-3.1)

where the left hand side is the scalar product in complex Hilbert space
CHS) and the right hand side is the scalar product in RHS (i. e. all

symbols, except i, stand for real quantities (vectors, operators)). Let us
consider the transformed quantity (matrix element of Aa(x) between
the states 0^W)
<0, 'A'«('x) ¥y L\ (0, (1 - i sig (L\) 7) A^L'1 '*) ¥) \

-. w (A-3.2)
=C0, A'a('x) '¥y ('0, (1 - i J) A'a('x) '¥)

a) Orthochronous transformations

(Jw>0): We have

"X 0,aa ¥a; I W
(1 x 0(r) + j x 0(„) J"' (A-3.4)

\ Mil / \ Mi) /
'% U,pp ¥„; '¥= (0(r) + i 0(!,) ¥ U¥ (A-3.5)

•0% S; u;tp S; u\,p, '£* (o(r)-i o{i)) 0* u*$* 0* x
(A-3.5*)

From the orthogonality of 0

OrO=(lxOj)-/xOj))(lxO(r) + /xO(Q= j
1 x (OJ) 0{r) + 01 0(i)) + j x (0jr) 0(, - 0J} 0(r)) 1 x 1 1 j

follows

Ol) 0(r) + 0fi} 0(;) 1 ; 01, 0(l) - 01 0W 0. (A-3.8)

Thus, according to the definition of U and Uf- in (A-3.5), and (A-3.5*),

X U 1 (A-3.9)
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U {Upq} is an unitary matrix in coc 1/2 coR- dimensional CHS (pq

12...coc; ab 12 coR). Because of sig (L'nn) 1 and of (A-3.1),

we may write the second member of (A-3.2) in the form L'aa <[(f>, Aa(L~x'x)

¥y. Thus we obtain finally (see (A-2.5)) the identity

A'a('x) L'xa U Xa(7-! '*) TP (A-3.10)

i. e. the tensor Apq(x) Axq is invariant if it is transformed with respect to

all its indices :

2;x,q=L'xchl)XU,ppU:qqAxpi (A-3.11)

and U is an unitary representation of 7(ochr)

L(ochI)^e"U. (A-3.12)

b) Pseudochronous Transformations (7('£chr)M < 0)

We try (A-3.2), posing for the transformed matrix element (A-3.2)

S, 'A'«-('x) ¥y i'0, A'x('x) '¥y

L\(0, (1+i J) A^L-1 '*) ¥) L\ <0, 2a(7-i '*) Wy*.
(A-3.13)

It is, in virtue of the definition (A-3.1), « linear function of the untrans-
formed conjugate complex element. We shall see however, that the identity
in A'pq('x) leads now to a contradiction. In order to show that, write,
introducing a non-linear operator V

'¥= (V¥),'0 (V0)
the second and fourth member of (A-3.13) in the Form:

<(V0), V(V~l (A'a('x) (V¥)))y 7'aœ <Xa(7-! '*) WV, Sy. (A-3.14)

Thus, we must have a relation

(V¥),p=U.pp¥*p, (V-i¥)p=UTp,p¥~:p (A-3.15)

(V0):p u:pp0p 0P u;,p, <y-*$); v\,p$.p. (A-3.15*)

where U is an unitary matrix, in order to have

<V($), V(¥)y <0, ¥y* <¥, $y;

Uî u UT u* 1.
(A-3.16)

On account of (A-3.16), the identity (A-3.14) (second forth member in
(A-3.13)) has the form:

(F-i (A'«('x) (V¥))); 0P (L\ ^«(7-i '*) WV)! 0p, (A-3.17)
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which must hold for all 0q. Thus we have

(F-i (A''('x) (V ¥)) )p (L\ 2^(7-1 '*) ¥)p (A-3.18)

from this identity in ¥p (see (A-3.15)) follows

UTP'P A%,q('x) U:qq L\ AftL-* 'x) (A-3.19)

A:;x L'xxu:ppu,qqAfq. (A-3.20)

This identy can evidently not be satisfied in general, because no linear

transformation (L'"a U*... UT) exists, which transforms all tensors Apq
in hermitian CHS into their conjugate complex. Thus we conclude, that
pseudo-chronous transformations are not given by (A-3.13), but we must
have

3, 'A'«('x) ¥y <'0,A"a('x) '¥y L\ <<£,.4a(7-i '*) ¥y*. (A-3.13*)

In this case,Xa ('*) (in the third member of (A-3.2) and in the first
members of equations (A-3.14), (A-3.17)-(A-3.20)) has to be replaced by
i*'a('*).

(A-3.20) is now analogous to (A-3.11)

A''f'q L'^)X U:pp U,qq A*. (A-3.20*)

This rather complicated formalism for time reversal in CHS shows clearly
KJ

the advantage of RHS, where all transformations 7 -> eiJ0 are linear.

Annex 4. Quaternion Hilbert Space (QHS)
QHS has been introduced by Finkelstein, Jauch and Speiser3). They

pose, with i\ — 1 ; ix i2 — i2 ix H CYC1-:

0 0{r) + ix 0(x) + H ®(2) + », *« {Op} (AAA)

* Mr) + H Ml) + H ^(2) + H MS) \*q} (A-4.2)

A A(r) + ix Am + i2 A{2) + iz A{3) {Apq}. (A-4.3)

The QHS has coq 1/4 («^-dimensions: p q, 12 coq.. The scalar
product is defined by

<0,A¥y 0'pApq¥q (AAA)

where 0p is the conjugated quaternion of 0p (ia -> — ia). All numbers,

0p, Apq, ipq and <0, A ¥y are now quaternions (0M AM are real
vectors and tensors). A straight forward calculation gives

<0,A¥y{r)=(0,A¥) (A-4.5)
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0 (0{r)0a)0i2)0{3));¥-

M
X
M
wv,

H. P. A.

(A-4.6)

(A-4.7)A 1 x 4(r) + jx x ^(1) + /a x A{2) + j(S) x ,4(3).

The ja 's are four by four matrices and satisfy the same commutation laws
as the quaternions ia 's (j2 — 1; jxjî= — j% ix /a cycl)- They are
Kronecker products of the 'pseudo-quaternions' :

l (oï). /=(ì"ì). A-(ì-ì). *=Q
_ /2 k2 I2 1; /Ä - £/' l, kl - Ik - f (A-4.8)

Ij — jl k

li (Ì;i=lX|; H (î"}) y x Ä; /, (»-i)=/x/. (A-4.9)

However, in order to form the vector components of the quaternion, we
need three further four by four matrices

*i (S_î) *x i; k2 (ki) ixk
1 2 :z= 2 1 ^= 3 * » rt ^"

(J-») *xAì
(A-4.10)*)

(A-4.11)

(A-4.12)

[*.. /J 0; (*„, jp) 0; a * 8

in order to write
S,A¥ya -(0, (kajaxl)A¥).

Introducing, analogous to (A-2.3)

/« /« x i; Ä« *«x i,
we find

df,AV> (0,A¥)-i1(0,K1J1WV)-i2(0l K2J2¥)

-i3(0,KsJ3¥).
Thus, QT in QHS is not equivalent to QT in RHS, because we need — in
addition to the three anticommuting operators

/Î--1; 7i/.--/./i /.cyci. (A-4.14)

— three further operators

2^=1; 2^ tf, Ä2 tfx tf3 cycl. |

(A-4.13)

[Ka, JJ 0; (tfa, /,) 0, x+ß.
(A-4.15) "

*) We write [A, B] AB-BA for the commutator and (A, B) AB + BA
for the anticommutator. This is in strict analogy to our notation for antisymmetric
tensors j'W] —jfaßl and for symmetric tensors g(xß) g(ß*).
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Annex 5. An Error in the Representation Theory
Frequently Found in Literature

Instead of our identity, following from (3.4) and (3.5)

(¥, 'F'a('*) ¥) ('¥, F«('x) '¥) (A-5.1)

many authors start from the identity

('¥, 'Fa('x) '¥) (¥, F'*('x) ¥), (A-5.2)*)

which is analogous to the relation (5.2) between the Schroedinger and the
Heisenberg representation. We refer particularity to the otherwise
excellent book by Jauch and Rohrlichu) (to be referred to as J R). They
define

'¥= 0~¥, 0T O-i (A-5.3)

and, as we have done,

'Fa('x) L\ Fa(7-i '*). (A-5.4)

From the identity in '¥,a they find, of course

'Fa('x) 0 F«('x) X1. (A-5.5)
KJ

Now, they pretend that {eJX0} is a ray representation of {7}. The identity
which follows from (A-5.4) and (A-5.5) is, explicitly written:

L\ F« ,6(7-i '*) Ö,aa F« ('*) Öb}b (A-5.6)

(Eq. (1-43) and (1-42) p. 11 of 7F). According to JR, Ö (and not IX
0T 0, as we found in (3.8)) is a representation of 7. They give no
proof of their statement.

We shall give an argument, which may have lead them to this
contradictory statement : Write 7(1) in (A-5.4) and 0(1) in (A-5.5). 7(1) transforms
from the X {* a}-frame to the 'A-frame. Let 7(1) be followed by 7(2)

transforming "X -<- 'X:
"FX'X 7(2/\ F'«(L-2)l "x) (A-5.4®)

"^"a Ö«. ¥,a (A-5.3«))

"F"a("x) Ö<2) F"a("*) Ö"»)-1. (A-5.5<2>)

Now, substitute (5.4(D) into (5.4(2)) i. e.

"F«("*) (7(2) 7(1))X X((7(2) 7(1))-i "x) (A-5.6)

and (A-5.5<D) into (A-5.5<2>)

"F°«("x) (Ö<2> Ö<«) F"a("x) (Ö<2> Ö<i>)-i. (A-5.7)

*) We denote vectors and operators satisfying (A-5.2) by a bar, in order to
distinguish them from the vectors and operators in the text and in (A-5.1).
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If we eliminate "F"a("x) from the last two equations, we find writing
X {ax}

(Ma X))"X Fl-b (Ö(2) Ö*)„aa F"x (0<2> 0<i))-i. (A-5.8)
KJ

Thus, it seems to follow from (A-5.8) that {V;0} is a representation
of {7}. This is of course contradictory to the theory presented in the
text (§ 3). C. Piron and H. Ruegg shall publish a note in this journal,
which shows how the two contradictory points of view can be understood.

Bibliography
E. C. G. Stueckelberg, Helv. Phys. Acta 32 (4), 254 (1959), and CERN,
Theoretical Study Division 59, 22 (1959).

2) E. C. G. Stueckelberg and D. Rivier, Helv. Phys. Acta 19, 239 (1946).
3) D. Finkelstein, J. M. Jauch and D. Speiser, CERN 59-7, 59-9, 59-17,

Theoretical Study Division (1959). See also : Helv. Phys. Acta 32 (4), 258 (1959).
") E. C. G. Stueckelberg and G Wanders, Helv. Phys. Acta 26, 307 (1953).
5) E. C. G. Stueckelberg, Helv. Phys. Acta 26, 417 (1953).
6) E. C. G. Stueckelberg, Helv. Phys. Acta 33, 605 (I960).
') E. C. G. Stueckelberg. Thermodynamique (in preparation, Birkhäuser Verlag

Basel).
8) E. C. G. Stueckelberg, Helv. Phys. Acta 25, 577 (1952).
9) M. Inagaki, C. Piron and G. Wanders, Helv. Phys. Acta 27, 41 (1954).

10) E. T. Whittaker, Analylical Dynamics, Chap. 10 § 118.

u) J. M. Jauch and F. Rohrlich, The theory of Photons and Electrons, Addison-
Wesley, Cambridge (Mass.) 1955.

12) W. Pauli, Nuov. Cim., 10, 648 (1953).


	Quantum Theory in real Hilbert-Space

