Zeitschrift: Helvetica Physica Acta

Band: 7 (1934)

Heft: [2]: Supplementum 2. La théorie des électrons dans les métaux

Artikel: Quelques remarques sur la théorie des métaux liquides de Mott et sur

les points de transition des métaux et d'autres solides

Autor: Fowler, R.H.

DOI: https://doi.org/10.5169/seals-110414

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Quelques remarques sur la théorie des métaux liquides de Mott et sur les points de transition des métaux et d'autres solides par R. H. Fowler (Cambridge).

En l'absence du Professeur Mott, que tous nous regrettons, je désire commencer par attirer votre attention sur un de ses récents travaux concernant la variation de la résistance électrique d'un métal lors de sa fusion¹). Ce travail est important pour la théorie électronique de la conduction et il jette un jour nouveau sur la structure des liquides et sur le phénomène de la fusion.

De nombreux arguments nous poussent à croire qu'un liquide n'a pas une structure complètement désordonnée, mais que par exemple chaque atome (ou mieux ici chaque ion métallique) est presque toujours environné par un nombre régulier de voisins très proches formant un ensemble plus ou moins régulier, et que les mouvements des ions dans le liquide consistent avant tout en vibrations autour d'une position d'équilibre exactement comme dans un solide; par contre la position d'équilibre elle-même se déplace lentement. Aussi pouvait-on s'attendre à ce que la résistance électrique du liquide soit due à l'interaction entre les électrons et ces vibrations thermiques quasi élastiques, comme cela se passe immédiatement au-dessous du point de fusion.

Cette manière de considérer un liquide peut être mise à l'épreuve; il suffira en effet, partant de ces hypothèses, de calculer la variation de la conductibilité au point de fusion et de la comparer avec les valeurs observées.

Si nous laissons de côté certains facteurs qui dépendent de constantes physiques générales ou de la nature propre de l'ion plutôt que de la nature du réseau, la conductibilité électrique σ à hautes températures $(T \gg \Theta)$ s'exprime par la relation:

$$\sigma = A \frac{1}{k} \left(k \frac{dE}{dk} \right)^2 \frac{\Theta^2}{T} \quad (A \text{ const.})$$
 (1)

où Θ est la température de Debye, k le nombre d'onde et E l'énergie d'un électron situé au sommet des niveaux qui sont normalement pleins. Comme la plupart des métaux ne changent presque pas de volume lors de la fusion, k ne change pas. Si d'autre part la relation électronique E (k) est approximativement celle corres-

¹) N. F. Mott, Proc. Roy. Soc. 146, 465, 1934.

pondant aux électrons libres, on doit avoir $k \frac{dE}{dk} = 2E$ qui ne dépend que du volume atomique, de sorte que ce facteur reste lui aussi inchangé par la fusion, spécialement pour les métaux monovalents tels que les métaux alcalins (cependant pour d'autres métaux, ce facteur peut subir des variations considérables). Nous voyons donc que, dans des cas simples tout au moins, la nature du liquide proposé nous amène à écrire qu'au point de fusion

$$\frac{\sigma_l}{\sigma_s} = \left(\frac{\Theta_l}{\Theta_s}\right)^2$$
 (s = solide, $l = ext{liquide}$)

Or Mott a montré d'une façon très ingénieuse que l'on a approximativement:

$$\left(rac{\Theta_l}{\Theta_s}
ight)^2 = e^{-\,80\,L/T_M}$$

où T_M est la température de fusion et L la chaleur latente de fusion en kilojoules (10^{10} ergs) par atome-gramme. Il arrive à cette expression 1^0 en identifiant le Θ de Debye et le Θ d'Einstein, 2^0 en calculant l'énergie libre pour les deux phases au moyen de fonctions de répartition formées avec ces Θ et 3^0 en égalant les énergies libres par atome au point de fusion. C'est là évidemment une approximation grossière mais suffisante pour le but proposé. De la sorte σ_l/σ_s est donné en fonction des quantités T_M et L mesurées indépendamment. Les résultats numériques donnés cidessous dans la table I ont été calculés de cette façon avec une

Table I.

1000000	σ_s/σ_l calculé	σ_s/σ_l observé
Li	1,57	1,68
\mathbf{Na}	1,58	1,45
\mathbf{K}	1,67	1,55
$\mathbf{R}\mathbf{h}$	1,76	1,61
\mathbf{Cs}	1,75	1,66
Cu	1,97	2,07
$\mathbf{A}\mathbf{g}$	2,0	1,9
$\widetilde{\mathbf{A}\mathbf{u}}$	2,22	2,28
Al	1,8	1,64
\mathbf{Cd}	2,3	2,0
${f Pb}$	1,87	2,07
$\mathbf{T}\mathbf{l}$	2,3	2,0
$\mathbf{Z}\mathbf{n}$	2,3	2,09
Hg	2,23	3,2-4,9
Bi	5,0	0,43
\mathbf{Ga}	4,5	0,58
Sb	5,6	0,67

petite correction tenant compte du fait que la condition $T \gg \Theta$ n'est pas toujours bien réalisée. La concordance dans la première partie de la table entre les valeurs calculées et observées est excellente et les divergences pour les autres métaux peuvent fort bien être attribuées aux variations de $k \frac{dE}{dk}$.

Je pense que le succès de la théorie de Mott est très frappant et qu'il constitue un nouvel argument en faveur des idées sur la structure des liquides qui nous ont servi de base.

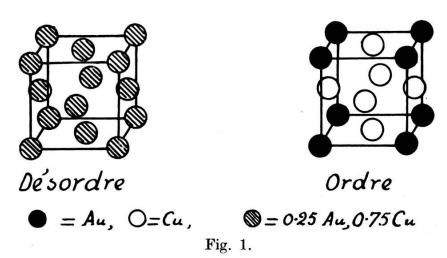
Aussi (pour différents buts) nous pouvons décrire un liquide comme une nouvelle phase cristalline quasi solide ayant son Θ propre et nous pouvons dire que la fusion est l'exacte analogue d'une transition solide.

En considérant ce travail, un ancien problème nous vient inévitablement à l'esprit: expliquer la netteté de tels points de transition (y compris le point de fusion). N'importe quelle théorie comme celle de Mott fournit aux atomes l'alternative d'états solide-solide ou solide-liquide, avec des énergies distinctes, et toute tentative directe de distribuer les atomes entre les états qui leur sont accessibles conduit inévitablement à une transformation à longue échéance, dans laquelle la phase d'énergie supérieure est présente par une quantité de l'ordre de $e^{-L/RT}$ au lieu d'apparaître soudainement lorsque $T = T_M$. Je ne prétends pas offrir une solution de ce problème, mais il me semble que la méthode correcte pour l'aborder consiste à étudier en détail n'importe quel type de transition, pour lequel il est possible de construire une théorie rationnelle, même si cette transition n'est pas soudaine. Qu'il nous suffise de mentionner un exemple familier pris dans le ferromagnétisme: L'apparition du ferromagnétisme est caractérisée par un point de transition brusque, le point de Curie, et une explication rationnelle de cette soudaineté a été fournie par la théorie de Weiss-Langevin, sous la forme que lui a donnée Heisenberg. Je désire discuter d'autres exemples de phénomènes du même type. La caractéristique nécessaire pour l'apparition de tels changements brusques est que quelque part dans le phénomène il doit y avoir une action coopérative de beaucoup d'atomes. Ceci peut être rendu plus clair par les exemples que je vais maintenant présenter.

Le premier de ces exemples est la théorie de l'ordre et du désordre dans les alliages métalliques que W. L. Bragg¹) a donnée. On sait d'après leurs propriétés physiques que certains alliages, par exemple les alliages Cu—Au dans la phase homogène pour

¹⁾ W. L. Bragg and Williams, Proc. Roy. Soc. A. 145, 699, 1934.

laquelle la constitution est presque Cu_3Au , ou les alliages Fe—Al dans la phase près de Fe₃Al, possèdent une température critique (cela a du reste été confirmé par l'analyse aux rayons X). Endessus et au-dessous de cette température, l'alliage existe dans le même réseau géométrique, mais l'arrangement des différents atomes sur les points du réseau est différent. En-dessous de T_c les atomes sont arrangés autant qu'il est possible avec une régularité parfaite, en-dessus de T_c parfaitement au hasard. Un exemple, Cu_3Au , suffira: en-dessous de la température critique, les atomes sont arrangés ainsi (voir fig. 1): Au sur un réseau cubique simple et Cu sur les trois autres réseaux cubiques simples nécessaires pour compléter le réseau à faces centrées caractérisant cette phase de l'alliage. Au-dessus de la température critique,

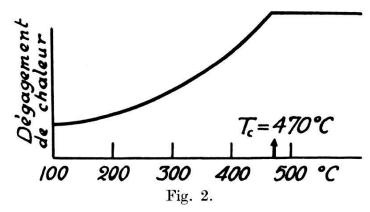


chacun des atomes (Cu ou Au) occupe indifféremment n'importe quel point du réseau. La transition d'un état dans l'autre est brusque, un peu comme la transition ferro-paramagnétique, comme la chaleur dégagée, par exemple, le montre. La fig. 2 montre la courbe de refroidissement du laiton β , CuZn. Elle indique exactement de combien la chaleur dégagée au cours du refroidissement de l'alliage de T jusqu'à la température ordinaire dépasse la valeur normale du dégagement de chaleur par une même quantité de cuivre. La tangente à la courbe donne la chaleur spécifique supplémentaire qui est comme on le voit discontinue pour T_c (= 470° C). Nous interprétons cette énergie comme l'énergie dégagée lorsqu'on passe d'un état de désordre à un état d'ordre parmi les différents atomes du réseau.

La belle explication de ces propriétés (et d'autres) que Bracc a donnée se résume comme suit. On peut supposer que l'état parfaitement ordonné est l'état d'énergie potentielle minimum et que pour le désordonner en interchangeant une paire d'atomes, il est nécessaire de fournir en moyenne une quantité d'énergie V_0 , ou peut-être $V_0(T)$. Si cette quantité de travail est indépendante de l'état de désordre déjà existant, alors l'ordre disparaît d'une façon exponentielle quand T augmente et il ne connaîtra pas de fin lorsque $T \rightarrow T_c$. Mais nous n'avons aucune raison d'admettre que V_0 est constant, au contraire, car alors que le désordre augmente les atomes ne peuvent pas savoir quels états sont ordrés ou désordrés, de sorte que si le degré d'ordre tend vers zéro V doit aussi tendre vers zéro. La supposition la plus simple est que

$$V = S V_0$$

où S est une mesure d'un degré d'ordre que nous définirons plus loin.



Il est nécessaire de trouver maintenant une relation entre S et T et V, qu'on peut obtenir en employant la loi de distribution de Boltzmann. Soit n le nombre de positions disponibles dans le réseau pour les atomes A et B en ordre ou en désordre, et dans l'état d'ordre parfait soit rn le nombre de positions occupées par les A et n (1-r) par les B. Soit encore p la fraction des rn occupée réellement par les A et (1-p) la fraction occupée par les B. Nous pouvons alors définir S par

$$S = \frac{p-r}{1-r} \,, \tag{4}$$

et écrire aussi

et écrire aussi $\frac{p}{1-p} \begin{cases}
= \frac{\text{le rapport des probabilités pour qu'en remplaçant un}}{B \text{ par un } A, A \text{ occupe une position d'ordre ou de désordre.}} \\
= \frac{\text{nombre de positions ordrées disponibles occupées}}{\text{nombre de positions désordrées disponibles, oc-}} \times e^{V/kT} \\
= \frac{rn(1-p)}{(1-r)n-rn(1-p)} e^{V/kT}
\end{cases} (5)$

ce qui donne immédiatement $S=S\left(V,\,T\right)$. Le cas important $r=\frac{1}{2}$ donne

$$S = \operatorname{Tanh} \frac{V}{4 k T}. \tag{6}$$

En combinant avec $V=S\,V_0$, on voit que l'analogie formelle avec le ferromagnétisme est profonde et que l'on pourra rendre compte d'une façon excellente des phénomènes observés.

Des points de transition tout à fait semblables apparaissent dans les halogénures d'ammonium (et dans d'autres cristaux) que Pauling¹) a été le premier, à ma connaissance, à associer à des transitions d'états d'oscillations à des états de rotation des ions ammonium. Le calcul de Pauling était grossier. Il supposait que les molécules se trouvaient dans un champ de force $V_0 \cos \vartheta$ (ce qui est très raisonnable) et que si $k T < 2 V_0$ toutes les molécules oscillaient, alors qu'elles étaient en rotation si $k T > 2 V_0$. Ceci est apparemment arbitraire, car on peut voir immédiatement que si V_0 est constant, il ne se produit pas de changement brusque. Cependant Pauling a mis en évidence le fait que V_0 ne peut être constant. Le champ de force directionnel agissant sur une molécule est certainement dû à l'absence de symétrie sphérique du champ des molécules voisines. Mais lorsqu'elles se mettent à tourner, leur champ, perdant leur asymétrie, devient en moyenne de symétrie sphérique de sorte que V_0 , pour la molécule considérée, diminue et devient nul à haute température. Pauling s'arrête à ces généralités. On doit donc traiter ce problème d'une façon analogue à celle de Bragg pour les alliages. On peut écrire

$$V = S V_{\mathbf{0}} \tag{7}$$

où S représente une mesure convenable de la moyenne des rotations qui ont lieu à l'instant considéré, puis calculer S d'après la loi de distribution de Boltzmann pour les rotateurs dans un champ S V_0 cos ϑ . La fonction de partition classique d'un rotateur de moment d'inertie I dans un champ d'énergie potentielle — V cos ϑ est:

$$f(T) = \frac{1}{h^2} \iiint \exp\left\{-\frac{1}{kT} \left[-V\cos\vartheta + \frac{1}{2I} \left(p_\vartheta^2 + \frac{p_\varphi}{\sin^2\vartheta}\right)\right]\right\} d\vartheta \, d\varphi \, dp_\vartheta \, dp_\varphi$$

$$= \frac{8\,\pi^2 \, I \, k \, T}{h^2} \, \frac{k \, T}{V} \sinh\frac{V}{k \, T}. \tag{8}$$

¹⁾ Pauling, Phys. Rev. 36, 430, 1930.

Si maintenant on écrit la relation de non rotation comme suit

$$\frac{1}{2I} \left(p_{\vartheta}^2 + p_{\varphi}^2 / \sin^2 \vartheta \right) \leqslant 2 V \tag{9}$$

la partie de la fonction de partition satisfaisant à cette condition est

$$f_0(T) = \frac{8 \pi^2 I k T}{h^2} \frac{k T}{V} \sinh \frac{V}{k T} \left(1 - e^{-\frac{2 V}{k T}} \right).$$
 (10)

Donc

$$S = \frac{f_0(T)}{f(T)} = 1 - e^{-\frac{2V}{kT}}.$$
 (11)

(D'autres conditions possibles mènent à des résultats semblables.) Par conséquent S et V sont déterminés en fonction de T par les équations

$$V = S V_0, \quad S = 1 - e^{-\frac{2V}{kT}},$$
 (12)

qui resemblent fort aux équations ferromagnétiques. Il y a une température critique donnée par la relation de Pauling

$$k T_c = 2 V$$
.

telle que pour

$$T > T_c$$
, $S \equiv 0$.

Une étude des chaleurs spécifiques de rotation à la lumière de cette théorie est actuellement en train.

En considérant la problème de l'établissement des rotations libres dans un solide, on est inévitablement conduit à considérer aussi la variation en fonction de la température de la constante diélectrique des substances dont les molécules portent des dipoles. Quand les dipoles se trouvent dans un champ d'une asymétrie telle qu'ils ne peuvent tourner et qu'ils ont un axe dont la direction est bien définie, il est évident que leur contribution à la constante diélectrique est faible, ou même nulle. Si l'asymétrie disparaît de façon qu'ils puissent tourner librement, alors leur contribution est celle de molécules gazeuses.

La polarisibilité d'un solide (ou d'un liquide) dipolaire tel que la glace (ou l'eau) est très grande à basses fréquences. On sait donc qu'il faut inclure l'effet de cette polarisation elle-même dans le champ agissant sur une molécule. La force polarisante effective F' est donc:

$$F' = F + \frac{4\pi}{3}P$$

où F est le champ électrique à l'intérieur du milieu et P la polarisation. On trouve que si les porteurs de dipoles sont libres de tourner, la constante diélectrique η est donnée par¹)

$$\eta = 1 + \frac{3 T_c}{T - T_c} \qquad \left(T_c = \frac{4 \pi N \mu^2}{9k} \right)$$
(14)

où μ est le moment d'un dipole et N le nombre de molécules par cm³. En appliquant cette formule à la glace (ou à l'eau), on trouve $T_c=1200^{\circ}\,K$. Cela est naturellement impossible, aussi faut-il examiner si le fait de placer les molécules dans un champ — $V\cos\vartheta$ a pour effet de réduire T_c de façon que l'eau ou la glace ne soit plus polarisée en permanence comme le voudrait la théorie.

Nous considérons par conséquent le modèle simple suivant: la moitié des molécules se trouve dans un champ d'énergie — $V\cos\vartheta$ et l'autre moitié dans un champ $V\cos\vartheta$. C'est la façon la plus simple de s'assurer que la substance n'est pas naturellement polarisée en l'absence de tout champ extérieur. Nous superposons alors à ce champ le champ électrique effectif F' produisant un potentiel supplémentaire — $\mu F'\cos\vartheta$ pour les deux types de molécules. Pour le premier type, la fonction de partition est alors

$$\begin{split} f_{1}(T,F') &= \frac{1}{h^{2}} \iiint \\ &\exp \left[-\frac{1}{kT} \left[-V\cos\vartheta - F' \,\mu\cos\vartheta + \frac{1}{2I} \left(p_{0}^{2} + \frac{p_{\varphi}^{2}}{\sin^{2}\vartheta} \right) \right] d\vartheta \,d\varphi \,\,dp_{0} \,\,dp_{\varphi} \right] \\ &= \frac{8\,\pi^{2}\,I\,kT}{h^{2}} \,\,\frac{kT}{V + F'\mu} \sinh\frac{V + F'\mu}{kT}. \end{split} \tag{15}$$

Pour le second type, on a

$$f_{2}\left(T,F'\right)=\frac{8\,\pi^{2}\,I\,kT}{h^{2}}\,\frac{kT}{V-F'\,\mu}\,\sinh\frac{V-F'\,\mu}{k\,T}\,. \tag{16}$$

La polarisation P due à $\frac{1}{2}$ N molécules de chaque type est alors

$$P = \frac{1}{2} N k T \frac{\partial}{\partial F'} \left[\log f_1 + \log f_2 \right] \tag{17}$$

ce qui donne facilement

$$\frac{P}{F'} = \frac{N \,\mu^2}{3 \,k T} \left[3 \left(\frac{k^2 \,T^2}{V^2} - \frac{1}{\sinh^2 \frac{V}{k \,T}} \right) \right]. \tag{18}$$

¹⁾ Voir par exemple Bernal et Fowler, Journ. of Chem. Phys. 1, 515, 1933.

Ceci est en fait la formule habituelle sauf qu'un facteur g multiplie $N \mu^2$, avec

$$g = 3\left(\frac{k^2 T^2}{V^2} - \frac{1}{\sinh^2 \frac{V}{k T}}\right) \to 1 \text{ pour } \frac{V}{k T} \to 0. \quad (19)$$

Les valeurs observées pour η de l'eau peuvent être exprimées en valeurs observées de g^1). On verra alors que g (le f de l'article mentionné), varie entre 0,1 à 175° K et 0,3 à 350° K sans montrer de discontinuité au point de fusion. Ces valeurs sont très bien redonnées par la théorie si l'on prend

$$\left(\frac{k\,175}{V}\right)^2 = \frac{1}{30}$$

ou

$$V = 950 k = 0.078$$
 volt-électrons.

Cela donne une force de liaison très grande, mais on doit s'attendre justement à de grandes forces pour les dipoles dans l'eau. On voit de plus que le point critique T_c pour des rotations libres, doit être autour de 1900° K et que la valeur V_0 de V à basse température doit rester inaffectée jusqu'à 350° K.

Nous continuons nos études sur d'autres substances dipolaires. Il y a tout lieu de croire que le comportement de la constante diélectrique de substances telles que le nitrobenzène et le sel de Seignette trouvera une explication, peut-être grossière, dans cette théorie, lorsqu'on aura considéré les différentes relations possibles entre T_c , la température critique naturelle pour la polarisation diélectrique, et T_r , la température critique pour les rotations²).

¹⁾ Bernal et Fowler, loc. cit., p. 526, table II.

²) Une discussion plus complète de cette théorie vient d'être achevée (Déc. 1934) et envoyée aux Proc. Roy. Soc.