Introduction

Objekttyp: Chapter

Zeitschrift: Veröffentlichungen des Geobotanischen Institutes der Eidg. Tech. Hochschule, Stiftung Rübel, in Zürich

Band (Jahr): 94 (1989)

PDF erstellt am: 01.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

1. INTRODUCTION

In cool, northern wetlands nutrients tend to be withdrawn from circulation through incorporation into organic matter and surface litter which accumulates because of slow decomposition in this type of climate (e.g. WEIN 1983). ROWE and SCOTTER (1973) called this process nutrient lockup. WARD (1968) reported for wetland areas where water levels had been artificially stabilized that organic matter can accumulate to substantial depths in comparatively short periods of time that is 10 to 20 years. And WELLER (1975) found in a newly established cattail stand the formation of a 35 to 43 cm thick mat in as little as 3 years. Unless there is a continuous supply of nutrients, the lock-up process must lead to a decrease in available minerals. WHITMAN (1974, 1976) observed this process in water level stabilized marshes similar to the one studied in the present paper, where in a relatively short period of time after impounding and flooding the amount of available nutrients declined. As was shown by BEAUCHAMP and KEREKES (1980), newly flooded impoundments tend initially to be limited by nitrogen and later on by phosphorus.

In areas where in more or less regular intervals drought periods occur, freshwater marshes tend to undergo cyclic changes (e.g. WELLER and SPAT-CHER 1965, WELLER 1978, 1982, VAN DER VALK and DAVIS 1978a, b, 1979, VAN DER VALK 1981). During wet periods nutrients are removed from circulation, accumulated and locked-up in surface litter and soil organic matter, during dry periods they are released through decomposition. Due to recurrent drought, prairie marshes in North America are periodically rejuvenated, a complete cycle requiring from 5 to 35 or more years (VAN DER VALK and DAVIS 1978a). WELLER (1982) argues that natural fires must have occurred regularly in the prairie eliminating the bulk of accumulated plant material, returning locked-up nutrients into circulation and rejuvenating the marsh in a way very similar to that of drought. Whereas drought periods in cool northern ecosystems are too limited in duration and too infrequent to reverse the lock-up process, recent studies (e.g. TOLONEN 1983) indicate that fire has always been an essential ecological factor in northern latitudes. The marsh studied proved to burn anytime of the year provided the weather was sunny and windy since there was a sufficient quantity of contiguous fuel (surface litter) to permit fire spread even among green <u>Typha</u> stems (KRüSI and WEIN 1988). The hypothesis that ageing ecosystems can be revitalized through improved nutrient cycling conditions brought about by fire has been termed the "paludification-fire-nutrient release hypothesis" (WEIN 1983), "paludification" or "swamping" being the term proposed by HEILMANN (1966) for the species change associated with the nutrient lock-up process. Up to date, quantitative information and experimental studies concerning the paludification-fire-nutrient release hypothesis are rare. Moreover, there is conflicting opinion as to the degree of revitalization and as to whether paludification is enhanced in moist ecosystems (e.g. HEINSEL-MANN 1975).

The objective of the present study was to test the paludification-firenutrient release hypothesis for a <u>Typha glauca</u> floating mat in a waterlevel stabilized marsh and to compare the effectiveness of burning with that of draining. In order to get a more precise idea of the extent to which draining and burning affect the nutrient status of the system studied, their impact was compared with that of the application of known amounts of fertilizers viz. (i) nitrogen, (ii) phosphorus, (iii) lime and (iv) nitrogen, phosphorus and lime combined. Burning has been reported to have similar effects on plant growth as liming (FOWELLS and STEPHENSON 1934 cited in RAISON 1979) or as fertilizing with nitrogen and phosphorus (e.g. BURTON 1944, RAISON 1979). Treatment effects were evaluated in terms of phenological and growth characteristics of <u>Typha</u> glauca.

Acknowledgments

It is a pleasure to acknowledge the help of a large number of people. I am grateful to Prof. Dr. E. Landolt, Swiss Federal Institute of Technology, Zurich, who supported my application for a postdoctoral fellowship in Canada. Special thanks are due to Dr. Ross W. Wein, Director of the Fire Science Center of the University of New Brunswick in Fredericton, Canada, and his staff who received me cordially and encouraged me to undertake this study. Janice M. Moore and Katherine J. Turner assisted in the field and laboratory. Scott Whitman provided considerable support as summer student. Timothy G. Dilworth, Mohamed El-Bayoumi and Peter Thomas helped when burning was conducted. The National Wildlife Area Committee permitted the study to be carried out on the Tintamarre National Wildlife Area. Mr. and Mrs. Walter Phinney and Mr. Larry Phinney were our neighbours at the research site and helped us kindly in many ways. Sincere thanks of the author are addressed to all these persons as well as

- 6 -

to all the other colleagues of the University of New Brunswick, Fredericton N.B., and the Université de Moncton, Moncton N.B., who helped occasionally in the marsh. The advice of Dr. George P. Malanson, Iowa City, who read an early draft of the paper is greatly appreciated.

The Postdoctoral Fellowship awarded by the University of New Brunswick as well as the operating funds provided by the World Wildlife Fund (Canada), the Canadian Sportsmen's Fund, Ducks Unlimited (Canada), the Canadian Wildlife Service, the Natural Sciences and Engeneering Research Council of Canada and the University of New Brunswick Research Fund are gratefully acknowledged. Last but not least, statistical analysis of the data would not have been possible without the permission to use the computing facilities at the Centre National Universitaire Sud de Calcul, Montpellier, France, generously granted by the Module "Dynamique et Succession" of the Centre Louis Emberger, Centre National de la Recherche Scientifique, during a stage in 1984 at Montpellier, France.