§ 3. Elliptic curves and abelian varieties

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 19 (1973)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 20.09.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

By using certain geometric properties of \mathbf{P}^2 , it is possible to prove that *m* gives C(k) an abelian group structure (cf. Fulton [1], p. 125). We choose instead to prove the following proposition.

Proposition 6 The "algebraic" group law on C coincides with the "geometric" group law on C, i.e. m = M.

Proof:

Let $P_1, P_2 \in C(k)$. Let $P_3 = \varphi(P_1, P_2)$. Then there exists a line L_1 such that $L_1 \cdot C = P_1 + P_2 + P_3$. Let $P_4 = \varphi(e, P_3) = \varphi(e, \varphi(P_1, P_2))$ $= m(P_1, P_2)$. Then there exists a line L_2 such that $L_2 \cdot C = e + P_3 + P_4$. Let $f = L_1/L_2$ and regard f as an element of k(C). $(f) = P_1 + P_2 - e$ $-P_4 \Rightarrow P_4 \sim P_1 + P_2 - e$, i.e. $P_4 = M(P_1, P_2)$. Therefore m = M.

§ 3. Elliptic curves and abelian varieties

The purpose of this section is to prove the equivalence of notions (II) and (III). Up to this point, we have a group law on the set of k-points of an elliptic curve, and we would like to know that this is induced by an abelian variety structure. We shall also prove that 1-dimensional abelian varieties are elliptic curves.

Definition Let k be a field. An abelian variety X is a complete non-singular variety defined over k together with k-morphisms

$$m: X \times X \to X$$
$$i: X \to X$$
$$e: \operatorname{Spec} (k) \to X$$

which satisfy the usual group axioms (cf. Mumford [2], p. 95).

To show that an elliptic curve can be given the structure of an abelian variety, it suffices to check that the map φ described in § 2 is a morphism. Recall that φ was defined on k-points as taking $(P_1, P_2) \in C(k) \times C(k)$ to the unique third point $P_3 \in C(k)$ such that $P_1 + P_2 + P_3 = L$. C for some line L. It is quite easy to see that φ is a morphism on a certain affine open subset of $C \times C$. To be precise, we have the following lemma.

Lemma 7 φ defines a morphism from

 $\mathscr{S} = \operatorname{Spec} \left(k \left[X_1, Y_1, X_2, Y_2 \right] / \left(f(X_1, Y_1), f(X_2, Y_2) \right) \left(X_1 - X_2 \right) \right)$ to $\mathscr{T} = \operatorname{Spec} \left(k \left[X_3, Y_3 \right] / f(X_3, Y_3) \right)$ where f is an affine equation for C.

1.1.1

Proof:

In any characteristic, C is isomorphic to a curve in \mathbf{P}^2 given by $F(X, Y, Z) = Y^{2}Z + a_{1}XYZ + a_{2}YZ^{2} + X^{3} + a_{3}X^{2}Z + a_{4}XZ^{2} + a_{5}Z^{3}$ with $a_i \in k$. Assume C is in this form. Taking Z = 0 as the hyperplane at infinity, $Z \cap C = (0, 1, 0)$ which we take as the point e. The affine then becomes $f(X, Y) = Y^2 + a_1 X Y + a_2 Y + X^3 + a_3 X^2$ equation $+ a_4 X + a_5$. The k-points of \mathscr{S} are points (P_1, P_2) such that $P_1, P_2 \in C(k)$ $-\{e\}$ and such that if $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, then $x_1 \neq x_2$. The line L through P_1 and P_2 is given by $L = Y - \lambda X - v$ where $\lambda = (y_1 - y_2) / (x_1 - x_2)$ and $v = y_1 - \lambda x_1 = y_2 - \lambda x_2$. Letting $Y = \lambda X + v$ in f(X, Y), we obtain a polynomial in X of degree 3. $P_1, P_2 \in C(k) \Rightarrow x_1$ and x_2 are roots of $f(X, \lambda X + v)$. The third root x_3 is thus an element of k, specifically $x_3 = \langle x_1 - x_2 - \lambda^2 - a_1\lambda - a_3 \rangle$. Setting $y_3 = \lambda x_3 + v$, we obtain the third point $P_3 = (x_3, y_3)$ in the intersection cycle L.C, i.e. $P_3 = \varphi(P_1, P_2)$. [Note that we have just used an affine version of Lemma 8 below.] Thus the morphism φ is defined by the ring-homomorphism taking X_3 to $-X_1 - X_2 \lambda^2 - a_1 \lambda - a_3$ and Y_3 to $\lambda X_3 + v$.

Thus φ may be regarded as a rational map from $C \times C \to C$. The whole point is to prove that φ is defined on all of $C \times C$. Let φ' denote the morphism from \mathscr{S} to C defined in Lemma 7. We proceed by taking the closure of the graph of φ' in $C \times C \times C$ and using this closed set to give us a morphism from $C \times C \to C$.

Let $\mathscr{P} = \mathbf{P}^2 \times \mathbf{P}^2 \times \mathbf{P}^2 \times \mathbf{P}^2^*$, where P^{2^*} denotes the projective space consisting of all lines in \mathbf{P}^2 (we identify the line $a_1X + a_2Y + a_3Z$ with the point (a_1, a_2, a_3)). We want to define a certain subscheme of \mathscr{P} , namely the closed subscheme Γ whose k-points consist of all (P_1, P_2, P_3, L) such that the intersection cycle $L \cdot C = P_1 + P_2 + P_3$. This should of course give us the graph of our sought-for φ after projection onto the first three factors.

Recall that the procedure for passing between a homogeneous polynomial G in two variables and an inhomogeneous polynomial G' in one variable implies that G can be written as a product of linear factors over \bar{k} since G' can be written as a product of polynomials of degree 1 over \bar{k} . The resulting factorization is of course unique up to constant factors.

Lemma 8 (cf. Fulton [1], p. 82) Let F be a curve of degree n in \mathbf{P}^2 and let L be a line which is not a component of F. Then there exists a homogeneous form G(M, N) in k[M, N] of degree n such that the factors of G(M, N) correspond (with the same multiplicities) to the points in the intersection cycle $L \cdot F$. To be precise: let $U = (u_1, u_2, u_3)$ and $V = (v_1, v_2, v_3)$ be two distinct k-points on the line L. We have an isomorphism $h: \mathbf{P}^1 \approx L$ given by $(s, t) \rightarrow (su_1 + tv_1, su_2 + tv_2, su_3 + tv_3)$. Let $G(M, N) = F(Mu_1 + Nv_1, Mu_2 + Nv_2, Mu_3 + Nv_3)$. Moreover, let $H(M, N) = \prod_{i=1}^{n} (t_i M - s_i N)$ be a homogeneous form of degree n with $t_i, s_i \in \bar{k}$. Let $P_i = h(s_i, t_i) \in L(\bar{k})$. Then $L \cdot F = P_1 + \dots + P_n \Leftrightarrow H(M, N)$

$$= \lambda G(M, N)$$
 for $\lambda \in \overline{k}$

Proof:

G(M, N) factors over \bar{k} , and we can write $G(M, N) = \prod_{i=1}^{n} (\alpha_i M + \beta_i N)$ with $\alpha_i, \beta_i \in \bar{k}$. Let $P \in L(\bar{k})$ and let $(\alpha, \beta) = h^{-1}(P)$. The intersection number $I(P, F \cap L) = \operatorname{ord}_P^L(F) =$ the maximal $d \in \mathbb{Z}$ such that $(\beta M - \alpha N)^d | G(M, N)$. Bezout's theorem plus unique factorization finishes the proof.

Recall that we want to define a closed subscheme Γ of \mathscr{P} whose k-points (P_1, P_2, P_3, L) are precisely such that $P_1 + P_2 + P_3 = L \cdot C$. One way of defining a closed subscheme Γ is to give a set of homogeneous polynomials and take Γ as the closed subscheme defined by them. We then have to check the statement above concerning the k-points. Take $\mathscr{X} = (X_1, Y_1, Z_1, X_2, Y_2, Z_2, X_3, Y_3, Z_3, A_1, A_2, A_3)$ as a coordinate system for \mathscr{P} . The first thing we do is to write down three equations requiring that P_1, P_2 , and P_3 all lie on the line L. The equations are

$$(E_1) \quad A_1 X_1 + A_2 Y_1 + A_3 Z_1$$

$$(E_2) \quad A_1 X_2 + A_2 Y_2 + A_3 Z_2$$

$$(E_3) \quad A_1 X_3 + A_2 Y_3 + A_3 Z_3$$

Lemma 8 will now help us find the remaining equations. From now on, assume (P_1, P_2, P_3, L) satisfies E_1 , E_2 , and E_3 . Let $L = (a_1, a_2, a_4)$, i.e. L is the line $a_1X + a_2Y + a_3Z$. At least one of a_1, a_2, a_3 is non-zero, say $a_1 \neq 0$ for the moment. Then $U = (a_2 + a_3, -a_1, -a_1)$ and $V = (a_2, -a_1, 0)$ are two distinct points on L.

From the homogeneous polynomial $G_1 = A_1 F(M(A_2+A_3)+NA_2, -MA_1-NA_1, -MA_1)$ where F is the equation for C. Substituting (a_1, a_2, a_3) in G_1 , we obtain the polynomial described in Lemma 8 for the two points U and V. Let $H_1 = A_1 \prod_{i=1}^{3} ((Z_i - Y_i)M + Z_iN)$. Evaluating

 H_1 at (P_1, P_2, P_3, L) yields $a_1 \prod_{i=1}^{3} ((z_i - y_i)M + z_iN)$. Using the isomorphism h in Lemma 8, we find that $h(-z_i, z_i - y_i) = (-z_i(a_2 + a_3) + (z_i - y_i)a_2, -z_i(-a_1) + (z_i - y_i)(-a_1), -z_i(-a_1) + (z_i - y_i)(0)(= (-z_ia_3 - y_ia_2, y_ia_1, z_ia_1) = (x_i, y_i, z_i) = P_i$ since (P_1, P_2, P_3, L) is assumed to satisfy E_1 , E_2 , and E_3 . Thus, by Lemma 8, $L \cdot C = P_1 + P_2 + P_3 \Leftrightarrow G_1(P_1, P_2, P_3, L) = \lambda H(P_1, P_2, P_3, L)$ for some $\lambda \in \bar{k}^*$. But how can we write down this latter condition in terms of polynomials? Write

$$G_1 = \sum_{i=o}^{3} g_i M^i N^{3-i}$$

and

$$H_1 = \sum_{i=0}^{3} h_i M^i N^{3-i}$$

where $g_i, h_i \in k[\mathcal{X}]$

Let

$$D_{1ij} = \det \begin{pmatrix} g_i & g_j \\ h_i & h_j \end{pmatrix} = g_i h_j - g_j h_j$$

for $0 \le i, j \le 3$. To say that G_1 and H_1 differ by a non-zero constant $\lambda \in \overline{k}^*$ is precisely the same as requiring the D_{1ij} 's to be 0. So the case $a_1 \ne 0$ is taken care of. But clearly we can form the corresponding polynomials G_2, K_2 , and the D_{2ij} 's for $a_2 \ne 0$ and G_3, H_3, D_{3ij} 's for $a_3 \ne 0$. We take Γ to be the closed subscheme of \mathscr{P} defined by E_1, E_2, E_3 the E_{1ij} 's, the D_{2ij} 's, and the D_{3ij} 's. The k-points of Γ are precisely those (P_1, P_2, P_3, L) such that $L \cdot C = P_1 + P_2 + P_3$.

Let $p_{123}: \mathscr{P} \to \mathbf{P}^2 \times \mathbf{P}^2 \times \mathbf{P}^2$ be projection on the first three factors. p_{123} is a closed map since \mathbf{P}^{2^*} is complete. Therefore $D = p_{123}(\Gamma)$ is closed in $\mathbf{P}^2 \times \mathbf{P}^2 \times \mathbf{P}^2$. $D \subseteq C \times C \times C \subseteq \mathbf{P}^2 \times \mathbf{P}^2 \times \mathbf{P}^2$ and Dis closed in $C \times C \times C$. Consider $\Gamma_{\varphi'} \subseteq C \times C \times C$, where $\Gamma_{\varphi'}$ denotes the graph of φ' . Let E be its closure in $C \times C \times C$. We claim that D = E. D is closed and contains $\Gamma_{\varphi'}$, hence $D \supseteq E$. Consider the projection $p_{12}: D \to C \times C$ onto the first two factors. p_{12} is a bijection on closed points. $p_{12}(\Gamma_{\varphi'}) = \mathscr{S}$ is open in $C \times C$, so $\overline{p_{12}(\Gamma_{\varphi'})} = C \times C$ since $C \times C$ is irreducible. $p_{12}(E)$ is closed and $p_{12}(E) \supseteq p_{12}(\Gamma_{\varphi'})$. Therefore $p_{12}(E) = C \times C$. p_{12} is a bijection, so D = E. We claim moreover that p_{12} is an isomorphism from D to $C \times C$. We know that p_{12} restricted to $\Gamma_{\varphi'}$ is an isomorphism from $\Gamma_{\varphi'}$ onto \mathscr{S} (cf. Mumford [3], p. 71). Thus p_{12} is a birational map from D to $C \times C$. By Zariski's Main Theorem (cf. Mumford [3], p. 413) we conclude that p_{12} is an isomorphism from *D* onto $C \times C$. Let $p_3: D \to C$ be projection onto the third factor. Let $\varphi: C \times C \to C$ be $p_3 \circ p_{12}^{-1}$. φ is a morphism. Define $m: C \times C \to C$ as the composition $C \times C \xrightarrow{(e,\varphi)} C \times C \xrightarrow{\varphi} C$. *m* is a morphism and on closed points it agrees with our old *m*. We have thus proved the following theorem.

Theorem 9 Every elliptic curve can be given the structure of an abelian variety.

We also want to sketch briefly how one goes about proving that a 1-dimensional abelian variety has genus 1.

Theorem 10 (cf. Mumford [2], p. 42) Let X be an abelian variety, and let Ω_0 be the dual space to the tangent space at e. Then there is a natural isomorphism $\Omega_0 \otimes_k \mathcal{O}_X \simeq \Omega_X^1$.

Corollary 11 Let X be a 1-dimensional abelian variety. Then X has genus 1, i.e. X is an elliptic curve.

Proof:

dim $X = 1 \Rightarrow \Omega_0 \cong k \Rightarrow \Omega_X^1 \cong \mathcal{O}_X$ by Theorem 10. Setting D = 0 in the Riemann-Roch theorem gives $g = l(K) = \dim H^0(K) = \dim H^0(\Omega_X)$ $= \dim H^0(X, \mathcal{O}_X)$. X irreducible and complete $\Rightarrow \dim H^0(X, \mathcal{O}_X) = 1$ $\Rightarrow g = 1$.

Thus we have the desired connection between (II.) and (III.).

\S 4. Uniqueness of the group law

The various group laws which we have discussed, have all involved the choice of a k-point e as the identity element. It is natural to ask if this is the only way in which they can differ, and this is indeed the case.

Recall the following extremely useful lemma.

Lemma 12 (Rigidity Lemma) Let X be a complete variety, Y and Z any varieties, and let $f: X \times Z \to Z$ be a morphism such that for some $y_0 \in Y(k)$, $f(X \times \{y_0\})$ is a single point $z_0 \in Z(k)$. Then there is a morphism $g: Y \to Z$ such that if $p_2: X \times Y \to Y$ is projection onto the second factor, then $f = g \circ p_2$.

For a proof, see Mumford [2], p. 43.

We state some immediate corollaries.