Part 3: Applications to Fourier series

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 16 (1970)

Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 23.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

satisfying $1 \le p < 2 < q \le \infty$, the series (6.6) converges normally in $L^q_p(G)$ to T. Next, T is the limit in E of

$$S_r = \sum_{n=1}^r \omega_n T_{K_n}$$

as $r \to \infty$ and, since it is plain that supp $S_r \subseteq \Omega$ for every r, (ii) is easily derived. Finally, if \hat{T} were a measure μ , it would necessarily be the case that supp $\mu \subseteq \overline{\Omega}$ and so, for every $n \in N$, one would have by (6.1) and (6.4)

$$f_n(T) = \left| u_n * Tv_n(0) \right| = \left| \int_{\Gamma} \hat{u}_n \hat{v}_n \, d\mu \right|$$
$$\leq \left| \mu \right| (\overline{\Omega}),$$

which is finite since Ω is relatively compact. However, this plainly would entail $f^*(T) < \infty$, in conflict with (6.8), so that T cannot be a measure and (iii) is verified. This completes the proof.

6.4 REMARK. Theorem 6.3 was proved by Hörmander ([14], Theorem 1.9) for $G = R^n$ and any given pair (p, q) satisfying $1 \leq p < 2 < q \leq \infty$, this result being extended to a general noncompact LCA G by Gaudry [5]. The argument given by Hörmander (loc. cit. Theorem 1.6 and the remark immediately following) for the case $G = R^n$ can also be extended to a general LCA G and shows that, if either $q \leq 2$ or $p \geq 2$, then every $T \in L_p^q(G)$ is such that \hat{T} is a measure [and indeed a measure of the form $\psi \lambda_{\Gamma}$, where $\psi \in L_{loc}^2(\Gamma)$ if $q \leq 2$ and $\psi \in L_{loc}^p(\Gamma)$ if $p \geq 2$, and so $\psi \in L_{loc}^2(\Gamma)$ in either case]. Thus the hypotheses made in Theorem 6.3 about p and q are necessary for the validity of the conclusion.

PART 3: APPLICATIONS TO FOURIER SERIES

§7. Applications to divergence of Fourier series.

7.1 Throughout §§ 7-10, G will denote an infinite Hausdorff compact Abelian group with character group Γ , and λ_G the Haar measure on G, normalised so that $\lambda_G(G) = 1$. For any $f \in L^1(G)$, \hat{f} will denote the Fourier transform of f; for any finite subset Δ of Γ ,

$$S_{\Delta}f = \sum_{\gamma \in \Delta} \hat{f}(\gamma)\gamma \tag{7.1}$$

is the Δ -partial sum of the Fourier series of f; and sp (f) will stand for

the spectrum of f, i.e., for the support supp $\hat{f} = \{\gamma \in \Gamma : \hat{f}(\gamma) \neq 0\}$ of \hat{f} . The term "trigonometric polynomial" will frequently be abbreviated to "t.p.". In addition, Φ will denote the largest torsion subgroup of Γ ([7], (A.4)), and π the natural map of Γ onto Γ/Φ . If Δ denotes a subset of Γ , [Δ] will stand for the subgroup of Γ generated by Δ .

By a *(convergence)* grouping we shall mean a sequence $\mathcal{D} = (\Delta_j)_{j \in \mathbb{N}} = (\Delta_j)$ of finite subsets Δ_j of Γ such that

$$\Delta_j \subseteq \Delta_{j+1} \quad (j \in N);$$

 $\bigcup_{j=1}^{\infty} \Delta_j = \Gamma_0 \text{ is a subgroup of } \Gamma, \text{ said to be}$ covered by \mathcal{D} ;

(7.2)

for each $j \in N$, $\Delta_j = \Omega_j + \Lambda_j$, where Λ_j is a nonvoid finite subset of Φ and Ω_j is a finite subset of Γ such that $\pi \mid \Omega_j$ is 1-1.

[The first two conditions are natural enough in the context described in 7.3, but the third is less so and may well be pointless.] The grouping \mathcal{D} is said to be of *infinite type* if and only if $\pi(\Gamma_0)$ is infinite.

7.2 EXAMPLES. (i) Let Γ_0 be any countable subgroup of Γ such that $\Gamma_0 \cap \Phi = \{0\}$; for example, $\Gamma_0 = \{n\gamma_0 : n \in Z\}$, where $\gamma_0 \in \Gamma \setminus \Phi$. Then a grouping \mathcal{D} covering Γ_0 results whenever $\Lambda_j = \{0\}$ and $\Delta_j = \Omega_j$ for every $j \in N$, where $(\Omega_j)_{j \in N}$ is any increasing sequence of finite subsets of Γ_0 with union equal to Γ_0 . This grouping is of infinite type if and only if Γ_0 is infinite.

(ii) If G is connected, and if Γ_0 is any countable subgroup of Γ , then ([10], 2.5.6 (c), 8.1.2 (a) and (b) and 8.1.6) Γ_0 is an ordered group isomorphic to a discrete subgroup of R. Assuming $\Gamma_0 \neq \{0\}$, Γ_0 has a smallest positive element γ_0 and $\Gamma_0 = \{n\gamma_0 : n \in Z\}$. A natural grouping \mathscr{D} covering Γ_0 is that in which $\Lambda_j = \{0\}$ and

$$\Delta_j = \Omega_j = \{n\gamma_0 : n \in \mathbb{Z}, |n| \leq j\}$$

for every $j \in N$; this grouping is of infinite type.

7.3 A grouping $\mathscr{D} = (\varDelta_j)_{j \in \mathbb{N}}$ will be thought of as specifying one of the many possible ways in which one may interpret the convergence of Fourier series of functions f on G satisfying $sp(f) \subseteq \Gamma_0$, namely, as convergence of the corresponding sequence of partial sums $(S_{\varDelta_i}f)_{j \in \mathbb{N}}$.

Indeed, the conditions (7.2) guarantee that $\lim_{j \to \infty} S_{A_j} f = f$ for all sufficiently regular such functions f. However, our concern rests with the possibility of constructing continuous functions f on G satisfying

$$\operatorname{sp}(f) \subseteq \Gamma_0, \overline{\lim_{j \to \infty}} \operatorname{Re} S_{\Delta_j} f(0) = \infty.$$
 (7.3)

It will appear that the possibilities exhibit a fairly clear dichotomy, depending largely upon whether G is or is not 0-dimensional.

In the first place, it will emerge in 7.6 that the construction principle of § 2, applied to the Banach space E = C(G) of continuous complex valued functions on G [with norm $|| \cdot ||$ equal to the maximum modulus] and to sequences of gauges of the type

$$f \mid \rightarrow \operatorname{Re} S_{\Delta} f(0) = \operatorname{Re} \int_{G} D_{\Delta} f d\lambda_{G},$$
 (7.4)

where D_A stands for the "Dirichlet function"

$$D_{\Delta} = \sum_{\gamma \in \Delta} \bar{\gamma}, \tag{7.5}$$

shows that the problem hinges on the existence of groupings \mathcal{D} for which

$$\rho_j = \left\| D_{A_j} \right\|_1 = \int_G \left| D_{A_j} \right| d\lambda_G \to \infty.$$
(7.6)

Accordingly, and in view of the fact ([7], (24.26)) that G is 0-dimensional if and only if Γ coincides with Φ , it emerges that the dichotomy referred to may be expressed in the following way.

7.4 Two cases arise, namely:

(i) G is not 0-dimensional (i.e., $\Phi \neq \Gamma$). Then (see Example 7.2 (i)) there exist groupings $\mathscr{D} = (\varDelta_j)$ of infinite type; and, for any such grouping, one can construct (fairly explicitly, as described in 7.6) continuous functions f on G satisfying (7.3). In particular [cf. Example 7.2 (i)], if Γ_0 is any countably infinite subgroup of Γ satisfying $\Gamma_0 \cap \Phi = \{0\}$, and if $(\varDelta_j)_{j \in N}$ is any increasing sequence of finite subsets of Γ_0 with union Γ_0 , we can construct a continuous f on G satisfying (7.3).

(ii) G is 0-dimensional (i.e., $\Phi = \Gamma$). Then there exists no grouping of infinite type. However, given any countable subgroup Γ_0 of Γ , there are groupings $\mathcal{D} = (\Delta_j)$ covering Γ_0 , in which $\Omega_j = \{0\}$ and $\Delta_j = \Lambda_j$ is a finite subgroup of Γ_0 , and for which

$$f = \lim_{j \to \infty} S_{A_j} f$$

uniformly on G for every continuous f satisfying sp $(f) \subseteq \Gamma_0$.

Case (i) will be dealt with in § 8, case (ii) in § 9. The groupings described in case (ii) prove to be exceptional in various ways; see 9.3.

7.5 REMARK. Perhaps it should be stressed here that, if Γ_0 is any infinite subgroup of Γ , there is no obstacle to constructing continuous functions f such that sp $(f) \subseteq \Gamma_0$ and finite subsets $\Delta_j \subseteq \Delta_{j+1}$ of Γ_0 for which

$$\lim_{j} S_{\varDelta_{j}} f(0) = \infty.$$

[One has in fact only to construct a continuous f such that $\operatorname{sp}(f) \subseteq \Gamma_0$ and $\sum_{\gamma \in \Gamma} |\hat{f}(\gamma)| = \infty$; it is then trivial that there exist finite subsets Δ of Γ_0 for which $|S_{\Delta}f(0)|$ is arbitrarily large, so that we can choose a sequence (Δ_j) for which $\Delta_j \subseteq \Delta_{j+1}$ and $|S_{\Delta_j}f(0)| \to \infty$ with j.] However, the sets Δ_j obtained this way will not [and, in view of 7.4 (ii), cannot] in general be such that $\bigcup_{j=1}^{\infty} \Delta_j = \Gamma_0$. For more details, see A.5.1 and A.5.2 of the Appendix.

7.6 Suppose one is given a grouping $\mathscr{D} = (\varDelta_j)_{j \in \mathbb{N}}$ covering Γ_0 and satisfying (7.6). As is described in § 10, one may construct polynomials $q_{p_j,v}$ in two indeterminates over the real field (v being a suitable fixed integer not less than 36 and p_j any positive number not less than $|| D_{\varDelta_j} ||_{\infty}$) such that, for suitable unimodular complex numbers ξ_j , the t.p.s

$$Q_j = \xi_j \left(1 + \frac{1}{\nu} \right)^{-1} q_{p_j,\nu} \left(D_{A_j}, \overline{D}_{A_j} \right)$$

satisfy

$$\left\| Q_{j} \right\| \leq 1, \, sp\left(Q_{j}\right) \leq \left[\Delta_{j}\right] \leq \Gamma_{0},$$

$$S_{A_{j}} Q_{j}\left(0\right) = \int_{G} D_{A_{j}} Q_{j} \, d\lambda_{G} \text{ is real and } \geq \frac{1}{2} \rho_{j}.$$

$$\left. \right\}$$

$$(7.7)$$

In view of (7.2), (7.6) and (7.7), one may choose inductively a sequence $(j_n)_{n \in \mathbb{N}}$ of positive integers so that

$$S_{A_{j_n}}Q_{j_n}(0) \text{ is real and } > n^3,$$

$$j_n < j_{n+1}, sp(Q_{j_n}) \subseteq \Gamma_0.$$

$$\left.\right\}$$

$$(7.8)$$

Accordingly, the t.p.s

$$-280 - u_n = n^{-2} Q_{j_n}$$

satisfy the conditions

$$sp(u_n) \subseteq \Gamma_0, \sum_{n=1}^{\infty} ||u_n|| < \infty
 S_{\Delta_{j_n}} u_n(0) \text{ is real and } > n.
 }$$
(7.9)

At this point the construction in § 2 will yield integers $0 < n_1 < n_2 < ...$ and specifiable sequences $(\gamma_p)_{p \in N}$ of positive numbers such that each function of the form

$$f = \sum_{p=1}^{\infty} \gamma_p \, u_{n_p}$$

is continuous and satisfies

$$sp(f) \subseteq \Gamma_0, \lim_{p \to \infty} \operatorname{Re} S_{A_{j_n}} f(0) = \infty.$$
 (7.10)

A fortiori, f satisfies (7.3).

We add here that, if the Δ_j are symmetric, the D_{Δ_j} are real-valued, and we may work throughout with real-valued functions, replacing Re $S_{\Delta_j} f$ by $S_{\Delta_j} f$ everywhere.

§8. Discussion of case (i): G not 0-dimensional

8.1 In this case $\Phi \neq \Gamma$, and we begin by considering a finite subset of Γ of the form \cdot

$$\Delta = \Omega + \Lambda, \tag{8.1}$$

where Ω and Λ are finite subsets of Γ such that $\pi \mid \Omega$ is 1-1 and $\emptyset \neq \Lambda \subseteq \Phi$. We aim to show that (for a suitable absolute constant k > 0)

$$|| D_{\Delta} ||_{1} \ge k \left(\frac{\log N}{\log \log N} \right)^{\frac{1}{4}}, \qquad (8.2)$$

provided $N = |\Omega|$ (the cardinal number of Ω) is sufficiently large.

8.2 PROOF OF (8.2). Introduce H as the annihilator in G of Φ and identify in the usual way the dual of H with Γ/Φ . Likewise identify the dual of K = G/H with Φ ([7], (24.11)).

— 281 —

We then have

$$| D_{A} ||_{1} = \int_{G} | \sum_{\gamma \in A} \gamma | d\lambda_{G}$$

= $\int_{G/H} d\lambda_{G/H}(\bar{x}) \int_{H} | \sum_{\theta \in \Omega} \sum_{\phi \in A} \theta (x+y) \phi (x+y) | d\lambda_{H}(y),$

the inner integral being viewed as a function of $\bar{x} = x + H$ Thus, writing $\bar{\theta}$ for $\pi(\theta)$ and noting that $\phi(y) = 1$ for $\phi \in \Lambda \subseteq \Phi$ and $y \in H$, we obtain

$$\| D_{\Delta} \|_{1} = \int_{G/H} d\lambda_{G/H}(\bar{x}) \int_{H} | \sum_{\theta \in \Omega} \alpha(\theta, x) \bar{\theta}(y) | d\lambda_{H}(y), \qquad (8.3)$$

where

$$\alpha(\theta, x) = \theta(x) \sum_{\phi \in \Lambda} \phi(x).$$

Now, since the dual of H (namely Γ/Φ) is torsion-free ([7], (A.4)), Theorem A of [8] shows that (for a suitable absolute constant k > 0) we have

$$\begin{split} \int_{H} \Big| \sum_{\theta \in \Omega} \alpha(\theta, x) \overline{\theta}(y) \Big| d\lambda_{H}(y) &\geq k \left(\frac{\log N}{\log \log N} \right)^{\frac{1}{4}} \min_{\theta \in \Omega} \big| \alpha(\theta, x) \big| \\ &= k \left(\frac{\log N}{\log \log N} \right)^{\frac{1}{4}} \big| \sum_{\phi \in \Lambda} \phi(\overline{x}) \big|, \end{split}$$
(8.4)

since $|\theta(x)| = 1$ and $\phi(x)$ depends only \bar{x} . By (8.3) and (8.4),

$$|| D_{\mathcal{A}} ||_{1} \geq k \left(\frac{\log N}{\log \log N} \right)^{\frac{1}{4}} \int_{G/H} | \sum_{\phi \in \mathcal{A}} \phi(\bar{x}) | d\lambda_{G/H}(\bar{x}).$$
(8.5)

Since $\Lambda \neq \emptyset$, the remaining integral is not less than the maximum modulus of the Fourier transform of the function $\bar{x} \mapsto \sum_{\phi \in \Lambda} \phi(\bar{x})$, i.e., is not less than unity. Thus, (8.2) follows from (8.5).

8.3 PROOF OF 7.4 (i). The conclusions stated in case (i) of 7.4 are now almost immediate. If $\mathcal{D} = (\Delta_j)_{j \in \mathbb{N}}$ is a grouping of infinite type covering Γ_0 , $|\pi(\Delta_j)| \to \infty$ and so, since $\Lambda_j \subseteq \Phi$, $|\pi(\Omega_j)| \to \infty$. Then (8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.

8.4 SUPPLEMENTARY REMARKS. The fact that, when G is not 0-dimensional, (7.6) holds for suitable subgroups Γ_0 of Γ and suitable groupings $\mathcal{D} = (\Delta_j)_{j \in \mathbb{N}}$ covering Γ_0 can be derived without appeal to Theorem A

the family $(\gamma_k)_{1 \le k \le m}$ is independent (see [7], (A.10)), define

$$\Gamma_{0} = \{ \sum_{k=1}^{m} n_{k} \gamma_{k} : n_{k} \in Z \text{ for } k = 1, 2, ..., m \},\$$

and make use of the formula

$$\int_{G} F(\gamma_{1}(x), ..., \gamma_{m}(x)) d\gamma_{G}(x) = (2\pi)^{-m} \int_{0}^{2\pi} ... \int_{0}^{2\pi} F(e^{it}, ..., e^{it_{m}}) dt_{1} ... dt_{m}, \qquad (8.6)$$

valid for every $F \in C(T^m)$, where T denotes the circle group. (Recall that $\sum_{k=1}^{m} n_k \gamma_k$ denotes the character $x \to \gamma_1(x)^{n_1} \dots \gamma_m(x)^{n_m}$ of G.) It then appears that (7.6) holds when one takes

$$\Delta_{j} = \{ \sum_{k=1}^{m} n_{k} \gamma_{k} : |n_{k}| \leq r_{j,k} \text{ for } k = 1, 2, ..., m \},\$$

where the $r_{j,k}$ are positive integers satisfying $r_{j,k} \leq r_{j,k+1}$ and $\lim_{j\to\infty} r_{j,k} = \infty$. Moreover, when m = 1, the Cohen-Davenport result (essentially Theorem A of [8] for the case G = T) shows that (7.6) holds for every grouping \mathcal{D} covering Γ_0 .

The verification of (8.6) is simple. First note that, if G and G' are compact groups, and if ϕ is a continuous homomorphism of G into G', then

$$\int_{G} (F \circ \phi) d\lambda_{G} = \int F d\lambda_{\phi(G)}$$
(8.7)

for every $F \in C(G')$. (This is a consequence of the fact that $F \mid \rightarrow \int_{G} (F \circ \phi) d\lambda_{G}$ is invariant under translation by elements of $\phi(G)$, combined with the uniqueness of the normalised Haar measure on a compact group.) Taking $G' = T^{m}$ and $\phi: x \mid \rightarrow (\gamma_{1}(x), ..., \gamma_{m}(x))$, the stated conditions on the γ_{k} are just adequate to ensure that the annihilator in Z^{m} (identified in the canonical fashion with the dual of T^{m}) of $\phi(G)$ is $\{(0, ..., 0)\}$ and so ([7], (24.10)) that $\phi(G) = T^{m}$. Accordingly, (8.6) appears as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited in other ways. For example, suppose more generally that κ is an arbitrary nonvoid set and that $(\gamma_k)_{k\in\kappa}$ is a finite or infinite independent family of elements of $\Gamma \setminus \Phi$. Denote by Γ_0 the subgroup of Γ generated by $\{\gamma_k : k \in \kappa\}$. Taking $G' = T^{\kappa}$ and $\phi : x \to (\gamma_k(x))_{k\in\kappa}$, one may use (8.7) in a similar fashion to show that there is an isometric isomorphism $F \leftrightarrow F \circ \phi = f$ between $L^p(T^{\kappa})$ (or $C(T^{\kappa})$) and the subspace of $L^p(G)$ (or C(G)) formed of those $f \in L^p(G)$ or C(G) such that sp $(f) \subseteq \Gamma_0$. Moreover, if one identifies in the canonical fashion the dual of T^{κ} with the weak — 283 —

direct product Z^{κ}^* , the said isomorphism is such that $\hat{F} = \hat{f} \circ \phi'$, where ϕ' is the isomorphism of Z^{κ}^* onto Γ_0 defined by $(n_k) \to \sum_{k \in \kappa} n_k \gamma_k$.

One consequence of this may be expressed roughly as follows: If the compact Abelian group G is such that $\Gamma \setminus \Phi$ contains an independent family of (finite or infinite) cardinality m, then Fourier series on G behave, in respect of convergence or summability, no better than do Fourier series on T^m .

Another consequence is that, if Δ is a subset of Γ_0 , then Δ is a Sidon (or $\Lambda(p)$) subset of Γ if and only if ${\phi'}^{-1}(\Delta)$ is a Sidon (or $\Lambda(p)$) subset of Z^{κ}^* .

8.5 FURTHER RESULTS. Theorem A of [8] implies something stronger than (8.2), namely: if ω is any complex-valued function on Γ such that

$$\omega (\gamma + \phi) = \omega (\gamma) \quad (\gamma \in \Gamma, \phi \in \Phi), \tag{8.8}$$

so that ω can be regarded as a function on Γ/Φ , and if we write

$$D^{\omega}_{\Delta} = \sum_{\gamma \in \Delta} \omega(\gamma) \,\bar{\gamma}, \, S^{\omega}_{\Delta} f = \sum_{\gamma \in \Delta} \omega(\gamma) \,\hat{f}(\gamma), \quad (8.9)$$

then, for $\Delta = \Omega + \Lambda$ as in (8.1), we have

$$\left\| D_{\Delta}^{\omega} \right\|_{1} \ge k \left(\frac{\log N}{\log \log N} \right)^{\frac{1}{4}} \min_{\gamma \in \Omega} |\omega(\gamma)|$$
(8.10)

provided $N = |\Omega|$ is sufficiently large.

So, if we can arrange for $\Omega = \Omega_j$ to vary in such a way that the righthand side of (8.10) tends to infinity with *j*, the substance of 7.6 will lead to a continuous *f* satisfying sp $(f) \subseteq \Gamma_0$ and

$$\lim_{j \to \infty} \operatorname{Re} S^{\omega}_{\Delta_j} f(0) = \infty.$$
(8.11)

Taking the most familiar case, in which G = T, $\Gamma = Z$ and $\Phi = \{0\}$, and supposing $\Delta = \Omega$ to range over a sequence (Δ_j) of finite subsets of Z such that, if $N_j = |\Delta_j|$,

$$\lim_{j} \left(\frac{\log N_j}{\log \log N_j} \right)^{\frac{1}{4}} \min_{n \in \mathcal{A}_j} |\omega(n)| = \infty,$$

the construction will lead to a continuous f on T such that

$$\overline{\lim_{j}} \operatorname{Re} S^{\omega}_{\Delta_{j}} f(0) = \infty.$$

In particular, taking $\Delta_j = \{n \in Z : 2^j \leq n < 2^{j+1}\}$ it can be arranged that

$$\sum_{n\in\mathbb{Z}}\frac{\pm \hat{f}(n)}{(\log(2+|n|))^{\alpha}}$$

diverges for any preassigned distribution of signs \pm and any preassigned $\alpha < \frac{1}{4}$.

Of course, much stronger results are derivable by using random (and unspecifiable!) changes of sign, but there seems little hope of making this even remotely constructive.

§9. Discussion of case (ii): G 0-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero in G formed of compact open subgroups W. For each such W the annihilator $\Delta = W^{\circ}$ in Γ of W is a finite subgroup of Γ . Define

$$k_W = \lambda_G(W)^{-1} \times \text{characteristic function of } W.$$
 (9.1)

Then k_W is continuous, $k_W \ge 0$, $\int_G k_W d\lambda_G = 1$. The transform k_W of k_W is plainly equal to unity on Δ . On the other hand, since W is a subgroup, we have for $a \in W$ and $\gamma \in \Gamma$

$$\hat{k}_{W}(\gamma) = \int_{G} k_{W}(x) \overline{\gamma(x)} d\lambda_{G}(x) = \int_{G} k_{W}(x+a) \overline{\gamma(x)} d\lambda_{G}(x)$$
$$= \int_{G} k_{W}(y) \overline{\gamma(y-a)} d\lambda_{G}(y)$$
$$= \gamma(a) \hat{k}_{W}(\gamma),$$

which shows that $\hat{k}_{W}(\gamma) = 0$ if $\gamma \in \Gamma \setminus \Delta$. Thus \hat{k}_{W} is the characteristic function of Δ , and so

$$k_{W} = D_{W^{\circ}}. \tag{9.2}$$

By (9.1) and (9.2), a routine argument shows that, if $1 \leq p < \infty$ and $f \in L^p(G)$, then

$$f = \lim_{W} S_{W^{\circ}} f \tag{9.3}$$

in $L^{p}(G)$; and that (9.3) holds uniformly for any continuous f.

9.2 PROOF OF 7.4 (ii). If Γ_0 is any countably infinite subgroup of Γ we can choose a sequence W_j of compact open subgroups of G such that

 $W_{j+1} \subseteq W_j$ and $\Gamma_0 \subseteq \bigcup_{j=1}^{\infty} W_j^{\circ}$, where W_j° is a finite subgroup of Γ and $W_j^{\circ} \subseteq W_{j+1}^{\circ}$. The $\Delta_j = W_j^{\circ} \cap \Gamma_0$ satisfy (7.2) and, from (9.3),

$$f = \lim_{j} S_{\Delta_j} f \tag{9.4}$$

uniformly for any continuous f with sp $(f) \subseteq \Gamma_0$. This verifies the statements made in 7.4 (ii).

9.3 By using the results in [3], more can be said in case (ii) of 7.4; cf. [3], Theorem (2.9) and Example (4.8).

Let $f \in L^1(G)$ and let Γ_0 be any countable subgroup of Γ containing sp (f). Choose the W_j as in 9.2. Then, apart from the fact that (W_j) is not in general a base at 0 in G (they can be chosen to be so if and only if G is first countable), (W_j) is an open-compact D''-sequence ([3], p. 188). The proof of Theorem (2.5) of [3] is easily modified to show that

$$f(x) = \lim_{j \to \infty} S_{W_j^\circ} f(x)$$
(9.5)

holds for almost all $x \in G$. Moreover, Theorem (2.7) of [3] applies to show that the majorant function

$$S^*f(x) = \sup_{j \in N} |S_{W_j^\circ}f(x)|$$
 (9.6)

satisfies the estimates

$$||S^*f||_p \leq 2(p(p-1)^{-1})^{\frac{1}{p}} ||f||_p \quad (1 (9.7)$$

$$|| S^* f ||_1 \leq 2 + 2 \int_G |f| \log^+ |f| \, d\lambda_G, \tag{9.8}$$

$$||S^*f||_p \leq 2(1-p)^{\overline{p}}||f||_1 \quad (0 (9.9)$$

In particular, the convergence in (9.5) is dominated whenever

$$\left|f\right|\log^{+}\left|f\right|\in L^{1}\left(G\right).$$

A more immediate consequence of (9.1) and (9.2) is a strong version of localisability of the convergence of Fourier series: if $f \in L^1(G)$ vanishes a.e. on some neighbourhood of $x_0 \in G$, we can choose the W_j so that $S_{A_j}f(x_0) = 0$ for every sufficiently large j. [A suitable choice of W_j may be made once for all, independent of f, if G is first countable.] Nothing similar is true for general G; see, for example, [11], Vol. II, pp. 304-305.

§ 10. Concerning the polynomials Q_j .

There is no difficulty in making fairly explicit the construction of t.p.s Q_j of the type employed in 7.6.

For p > 0, $t \ge 0$ define

$$h_{p}(t) = \begin{cases} 1 & \text{if } t \leq p, \\ 2\left(1 - \frac{t}{2p}\right) & \text{if } p \leq t \leq 2p, \\ 0 & \text{if } t \geq 2p. \end{cases}$$
(10.1)

For all complex z define

$$f_{p}(z) = \begin{cases} 0 & \text{if } z = 0, \\ |z|^{-1} \bar{z} h_{p}(|z|) & \text{if } z \neq 0. \end{cases}$$
(10.2)

Write

$$E_{n}(z) = \pi^{-1} n \exp(-n |z|^{2},$$

$$P_{n,k}(z) = \pi^{-1} n \sum_{j=0}^{k} \frac{(-1)^{j}}{j!} (n |z|^{2})^{j}$$
(10.3)

Let μ denote Lebesgue measure on C (identified with R^2 in the canonical fashion).

It is then routine to verify that

$$\left\| E_{n} * f_{p} \right\|_{\infty} \leq \left\| f_{p} \right\|_{\infty} = 1,$$

$$\lim_{n \to \infty} E_{n} * f_{p} = f_{p}$$
(10.4)

uniformly on any compact set omitting 0. From this it follows that to every p > 0 and every positive integer v correspond positive integers $\bar{n}(p, v)$, $\bar{k}(p, v)$ such that

$$\left| \left| z \right|^{-1} \bar{z} - f_{p} * P_{\bar{n}, \bar{k}}(z) \right| \leq \frac{1}{v} \text{ for } \frac{1}{v} \leq |z| \leq p,$$

$$\left| f_{p} * P_{\bar{n}, \bar{k}}(z) \right| \leq 1 + \frac{1}{v} \text{ for } |z| \leq p.$$

$$(10.5)$$

Now

$$f_{p} * P_{\bar{n}, \bar{k}}(z) = q_{p,v}(z, \bar{z}), \qquad (10.6)$$

- 287 -

where

$$q_{p,v}(X, Y) = \pi^{-1} \bar{n}(p, v) \sum_{j=0}^{\bar{k}(p,v)} \frac{(-\bar{n}(p, v))^j}{j!} \sum_{l=0}^j \sum_{m=0}^j {\binom{j}{l}\binom{j}{m} X^l Y^m} (-1)^{l+m} \int \zeta^{j-l} \bar{\zeta}^{j-m} f_p(\zeta) d\mu(\zeta)$$
$$= \sum_{l,m=0}^{\bar{k}(p,v)} C_{p,v}(l,m) X^l Y^m.$$
(10.7)

It is easily verifiable that the $C_{p,v}(l, m)$ are real-valued.

If θ is a bounded measurable function on G and

$$Q_{p,\nu}^{\circ} = q_{p,\nu} (\theta, \bar{\theta}), p \ge \|\theta\|_{\infty}, \qquad (10.8)$$

we have from (10.5)

$$\left| \begin{array}{c} \left| \left| \theta \right|^{-1} \overline{\theta} - Q_{p,\nu}^{\circ} \right| \leq \frac{1}{\nu} \text{ whenever } \left| \theta \right| \geq \frac{1}{\nu}, \\ \left| Q_{p,\nu}^{\circ} \right| \leq 1 + \frac{1}{\nu} \text{ everywhere on } G. \end{array} \right|$$
(10.9)

If θ is a t.p., then $Q_{p,v}^{\circ}$ is a t.p. and

$$\operatorname{sp}\left(Q_{p,\nu}^{\circ}\right) \subseteq [\operatorname{sp}\left(\theta\right)]. \tag{10.10}$$

From (10.9) we obtain

$$\left| \left| \theta \right| - \theta \left| Q_{p,v}^{\circ} \right| \leq \begin{cases} v^{-1} \left| \theta \right| \text{ whenever } \left| \theta \right| \geq \frac{1}{v}, \\ \left(2 + \frac{1}{v} \right) \left| \theta \right| \text{ everywhere,} \end{cases} \right|$$

whence it follows that, if $\theta \neq 0$,

$$\left| \int_{G} \theta \ Q_{p,\nu}^{\circ} \, d\lambda G \right| \ge (1 - \nu^{-1}) \left\| \theta \right\|_{1} - \nu^{-1} \left(2 + \nu^{-1} \right) \\ \ge (1 - 2\nu^{-\frac{1}{2}}) \left\| \theta \right\|_{1}$$
(10.11)

provided $v \ge 9 || \theta ||_1^{-2}$.

Taking $\theta = D_{A_j}$ and $p_j \ge || D_{A_j} ||$, the trigonometric polynomials

$$Q'_{j} = \left(1 + \frac{1}{\nu}\right)^{-1} Q^{\circ}_{p_{j},\nu} = \left(1 + \frac{1}{\nu}\right)^{-1} q_{p_{j},\nu} \left(D_{A_{j}}, \overline{D}_{A_{j}}\right) \quad (10.12)$$

are then seen from (10.9), (10.10) and (10.11) to satisfy

$$\left\| \begin{array}{l} Q_{j}^{'} \\ \| \leq 1, \\ \operatorname{sp} (Q_{j}^{'}) \subseteq [\Delta_{j}], \\ \left\| \int v D_{A_{j}} Q_{j}^{'} d\lambda_{G} \right\| \geq (1 - 3v^{-\frac{1}{2}}) \left\| D_{A_{j}} \\ \|_{1} \end{array} \right\}$$
(10.13)

provided ν is chosen $\geq 9 || D_{A_j} ||_1^{-1}$. In view of (7.6), we may choose the integer $\nu \geq \max_j$ (36, 9 $|| D_{A_j} ||_1^{-1}$). Then (10.13) shows that there are unimodular complex numbers ξ_j such that the $Q_j = \xi_j Q'_j$ satisfy (7.7).

APPENDIX

Rudin-Shapiro sequences

A.1 NOTATIONS AND DEFINITIONS. As hitherto, all topological groups G are assumed to be Hausdorff; and, for any locally compact group G, λ_G will denote a selected left Haar measure, with respect to which the Lebesgue spaces $L^p(G)$ are to be formed. $C_c(G)$ denotes the set of complex-valued continuous functions on G having compact supports.

If X and Y are topological groups, Hom (X, Y) denotes the set of continuous homomorphisms of X into Y.

Suppose henceforth G to be locally compact. As in 5.1, if $k \in C_c(G)$, T_k will denote the convolution operator

$$f \mid \rightarrow f * k$$

with domain $C_c(G)$ and range in $C_c(G)$; and $||k||_{p,q}$ will denote the (p, q)-norm of this operator, i.e., the smallest real number $m \ge 0$ such that

$$\|f \ast k\|_q \leq m \|f\|_p \quad (f \in C_c(G)).$$

It is well-known that, if G is Abelian, $\|k\|_{2,2}$ is equal to

$$\|\hat{k}\|_{\infty} = \sup_{\gamma \in \Gamma} |\hat{k}(\gamma)|,$$

where Γ is the character group of G and \hat{k} is the Fourier transform of k. (Something similar is true whenever G is compact, but we shall not use this.)

U-RS-sequences on G are as defined in 5.4.