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Hyperorthogonal family of vectors
and the associated Gram matrix

Bent Fuglede

Abstract. A family of non-zero vectors in Euclidean «-space is termed hyperorthogonal

if the angle between any two distinct vectors of the family is at least jt/2. Any
hyperorthogonal family is finite and contains at most 2n vectors. It decomposes uniquely
into the union of mutually orthogonal irreducible subfamilies. An equivalent formulation
in terms of the associated Gram matrix is given.

Mathematics Subject Classification (2010). 15A03, 15A63.
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Let n and p be natural numbers. The standard inner product of two vectors

v,w G R" is denoted by {v,w), and the corresponding norm of v by
IMI

Definition 1. A p-tuple (v\,...,vp) of vectors in R" \ {0} is said to be

hyperorthogonal if

(vi ,Vj) <0 for any two distinct i, j G {1...., p).

The vectors of a hyperorthogonal p-tuple are of course distinct. A p-tuple
[of vectors] in R" \ {0} is hyperorthogonal if and only if the

normalized vectors Vi/\\vi ||, i G {1, form a hyperorthogonal p-tuple (of
points) on the unit sphere in R", in the sense that the spherical distance

d(vi, Vj) > tt/2 for any two distinct i, j G {1,..., p}.
It is shown in Theorem 1 that an irreducible hyperorthogonal p -tuple in

R" \ {0} of rank r is maximal if and only if p r + 1. According to Theorem 2

every hyperorthogonal p-tuple decomposes uniquely into the union of mutually
orthogonal irreducible hyperorthogonal subtuples. A hyperorthogonal 2n -tuple on

is the same as the union of an orthonormal basis (v\,... ,vn) for R" and

its negative (—v\...., —vn). Furthermore, there is no hyperorthogonal p-tuple
in R" \ {0} with p>2n.
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We close by considering the px p matrix A ({vi,Vj}) associated with a

hyperorthogonal p-tuple (v\,..., vp). Such matrices are characterized by being
positive semidefinite with diagonal entries > 0 and off-diagonal entries < 0. In
a corollary to Theorem 2, an equivalent decomposition of such a matrix A is
obtained.

The concepts and results obtained in this paper naturally extend to the case
of p -tuples of vectors in E \ {0}, where E denotes any n -dimensional vector

space over R, endowed with an inner product.
The present concept of hyperorthogonal p -tuples enters in an elementary proof

of a characterization of certain positive projections related to Jordan algebras, given
in [3].

Further related results are mentioned at the end of the paper.

Definition 2. A hyperorthogonal p-tuple (x>\,... ,vp) in R" \ {0} is termed
maximal hyperorthogonal, or just maximal, if it cannot be extended to a

hyperorthogonal (p + 1) -tuple by adjoining a vector (necessarily non-zero) from
the linear span lin(ui,..., vn) of (v\,..., vn).

A single vector v G R" \ {0} trivially forms a hyperorthogonal 1 -tuple. It is

not maximal because the antipodal pair (v,—v) is a hyperorthogonal 2-tuple in

lin(u) Rv.

Definition 3. A p-tuple (iq,..., vp) in R" \ {0} is said to be reducible if some

q among its vectors, with q G {1 ,...,p— 1}, are orthogonal to the remaining

p — q vectors.

Remark 1. An irreducible (i.e. not reducible) hyperorthogonal p -tuple (iq,.. .,vp)
in R" \ {0} is maximal if (and only if) it cannot be extended to an irreducible
hyperorthogonal (p + 1)-tuple by adjoining a vector v G lin(ni,..., vp). In fact,
if (v\,... ,vp,v) were a reducible hyperorthogonal (p + 1)-tuple then v would
be orthogonal to v\,.. .,vp, and hence v 0.

Example 1. The vertices v\,..., vn+i of a regular «-simplex in R" centered at
0 form a maximal irreducible hyperorthogonal (n + 1)-tuple in R" \ {0}. Indeed,
the angle between two of the vertices is 2 arccos £ > ^ (if n > 2), which also

implies irreducibility. Maximality follows from the implication (i) A (iii) => (ii)
in Theorem 1 below since p n + 1 here and since (v\,..., vn+\) clearly has

full rank n.

A pair of vectors (v,w) in R" \ {0} is termed antipodal if there exists a real
number a < 0 such that w av. An antipodal pair in R" \ {0} is the same as

a maximal hyperorthogonal 2-tuple in R" \{0}, and is moreover irreducible.
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Remark 2. If a hyperorthogonal p -tuple (v3.... ,vp) in R" \ {0} contains an
antipodal pair, say (v\, v2), then the remaining vectors v3,... ,vp are orthogonal
to and v2. If (vi,... ,vp) is moreover irreducible then p 2, and we just
have an antipodal pair.

Lemma 1. Let (v\,... ,vp) be a hyperorthogonal p-tuple in R" \{0} of rank r
and having no antipodal pair containing vp. For any vector v G R" let vf denote
the orthogonal projection of v on the orthogonal complement (Ri^)^ of Ri^
in R". Then (vx, v'p_x) is hyperorthogonal of rank r — I. If (vvp) is

(a) maximal or (b) irreducible,

then so is (v[,..., v'p_x).

Proof. Clearly n,p > r > 2, for if r 1 then (v\,vp) would be an antipodal
pair. Assuming as we may that ||üp|| 1, we have

(1) v[ Vi - (Vi,vp)vp for i < p.

In view of (1) the p-tuple (v[,..., vp_x, vp) has the same rank r as (v\,..., vp).
Being orthogonal to vp ^0, (v[,... ,vp_x) therefore has rank r — 1. Since

(v\,... ,vp) is hyperorthogonal it follows from (1) that so is (v[,... ,vp_x)
because

(2) (vi,Vj) - (vt,vp)(vj,vp) < 0

for distinct i,j < p.
(a) Suppose that (v\,... ,vp) is maximal. For maximality of the hyperorthogonal

(p — 1) -tuple (v[,..., v'p_x), suppose that, on the contraiy, there exists a non-zero
vector v e lin(v[,..., vp_x) such that (vfx,..., vp_x, n) is hyperorthogonal. Then

v is orthogonal to each — vrt (which belongs to Ri^, by (1)), and hence

(n, Vi) (v, v-) <0 for i e {1,..., p - 1},

by hyperorthogonality of (vrx,..., v'p-\, u). Thus (vi,... ,vp,v) is hyper-
orthogonal in R" \ {0} along with (vi,..., vp) and (vi,..., vp-\, n), in view
of (vp,v) 0. Furthermore,

v G lin(nj,..., v'p_i, vp) lin(ui,... vp-\, vp),

by (1). This contradicts the maximality of (v\,... ,vp).
(b) Suppose that (vi,..., vp) is irreducible. If (vrx,..., vp_x is reducible we

may assume that, for example, vrx,... ,v'q are orthogonal to v'+l,... ,v'x for
some q G {1,— 2}. We then show that (when thus including vp) either

(3) (Vi, Vq) ± (Vq+i, Vp-i,Vp)
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or

(4) Ol,..., I)q,Vp) ± Oî+1» • ' Vp-\).

For i G {1,..., q} and j G {q + 1.— 1} we have in fact in view of (1)
by hyperorthogonality of 01...., vp)

because vrt _L vf- and that {vi, vp) <0 and {vj, vp) <0, again by hyperorthogonality

of Oi, • • •, Vp). Thus the equality signs in (5) prevail, and so (vi, vj) 0
for i <q< j < /> — 1, and the non-negative number (vi, vp)(vj, vp) therefore

equals 0. Hence either (nz, vp) 0 for every i G {1, or else Oy, vp) — 0
for every j G {g+1,— 1}. In the former case, (3) holds in view of (5)
with equality signs, as just established; and similarly in the latter case, (4) holds.
In either case, this contradicts the irreducibility of Oi, • • •, vp)- D

Remark 3. If v\,... ,vp are normalized, that is, if they lie on E„, it is natural
to replace the orthogonal projection v' of any v G E„ on R"-1 (Ru^)^
with v ^ ±vp by the spherical projection v° (the point of the "equator"

i (Rn^)^ fl T,n nearest to n). Clearly u'/IO'll, an4 hence Lemma 1

remains valid when v't is replaced by v°, i < p.

Theorem 1. Let Ol, • • •, vp) be a hyperorthogonal p-tuple in R" \ {0} of rank

r. Then r > 1, and if (v i,... ,vp) is irreducible then either p r or p r + 1.

Any two of the following three properties imply the third:

(i) (v\,... ,Vp) is irreducible,

(ii) Oi, • • •, vp) is maximal,

(iii) p r + 1.

Proof Clearly p, n > r > 1. It follows that, if p 1, then r 1 and
hence p r. Furthermore, the singleton Oi) is not maximal, the antipodal pair
Oi,~ui) C linOi) being hyperorthogonal. Thus (ii) and (iii) fail, and there is

nothing more to prove when p 1. We therefore assume that p > 2.
Suppose that (i) holds. Assume for a moment that Oi, • vp) is a union of

antipodal pairs. By Remark 2 these are mutually orthogonal, and by irreducibility
there is just one antipodal pair. Such a pair is maximal, and p 2, r 1,
whence (ii) and (iii) hold. We may therefore assume for example that (vi,vp)
is not an antipodal pair for any i G {1,— 1}. It follows that r > 2, for
if r 1 then (vi,vp) would be an antipodal pair. By Lemma 1 the projection

(v\,..., v'p_f) of (v\,..., vp-1) on (Rüp)^ is an irreducible hyperorthogonal
(p — 1)-tuple of rank r — 1. This shows by induction that p — 1 equals either

(5) o > (vi,Vj) {v-,Vj) + (vi,vp)(vj,vp) > 0
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r — 1 or r because p 2 implies either r 1 or r 2, the former in case

(iq, v2) is antipodal, and the latter if not. Thus (i) implies that either p r -\- 1

or p r. If in addition (iq,..., vp) is maximal then so is (v[,..., v'p_f) by
Lemma 1(a), and hence by induction p — 1 (r — 1) + 1, that is p r + 1. This
is because p 2 now implies r 1, and hence p r + 1, a hyperorthogonal
pair of rank 2 being clearly non-maximal. Thus (i) A (ii) =>• (iii).

To show that (i) A (iii) =>• (ii), suppose that, on the contrary, (v\,...,vp)
is not maximal. We shall then prove that p ^ r + 1, that is, p r. There
exists a non-zero vector v G lin(ni,..., vp) such that (v\,... ,vp,v) is an
irreducible hyperorthogonal (p + 1)-tuple, cf. Remark 1. In particular, (v,vp) < 0.

Clearly (v\,... ,vp,v) has unchanged rank r. If (v,vp) were an antipodal pair
then (vi,vp) 0 for i G {1, ...,p — 1}, cf. Remark 2, in contradiction with
the irreducibility of (v\,... ,vp) since p > 2. Thus actually (v,vp) is not
antipodal, nor is (nz vp) for any i G {1.1}, for then p + 1 2 by
Remark 2 applied to the irreducible (p + 1)-tuple (v\,..., vp, v). Consequently,
Lemma 1 applies to the hyperorthogonal (p + 1)-tuple (v\,..., vp-\, v,vp) of
rank r, while keeping vp. It thus follows by Lemma 1 that (v[,..., v'p_\, v')
is hyperorthogonal. Because v G lin(iq,..., vp) and that v'p 0 we have
vf G lin(nj n^_j), and we conclude from the supposed non-maximality of
(vi,..., vp) that (v[,..., v'p_x) likewise is not maximal. According to Lemma 1

as it stands it follows from (i) that (v[,..., v'p_^) is irreducible and has rank

r — 1. By induction, p — 1 r — 1, and hence indeed p r. This is because

p 2 now implies r 2 p, a hyperorthogonal pair (v\, v2) of rank 1 being
antipodal and hence maximal. The conclusion p r contradicts (iii), and so

(v\,..., vp) must actually be maximal, that is, (i) A (iii) =)> (ii).
The remaining implication (ii) A (iii) => (i) will be established after the proof

of (7) below.

For Assertion (d) of the following theorem, see alternatively [3], Theorem 2.

Assertion (c) shows that p < 2n holds for any hyperorthogonal p - tuple in
R" \ {0}. In particular, there is no infinite hyperorthogonal family, as is also clear
because is compact.

Theorem 2. Let (v\,... ,vp) be a hyperorthogonal p-tuple in R"\{0} of rank r.

(a) There exists a decomposition of {1,..., p}, unique up to permutation, into
nonvoid subsets J\,, Jm with m G {1,..., p} such that the corresponding
hyperorthogonal subtuples (vj : j G Jif) with k G {1 are irreducible and

(if m >2) mutually orthogonal in R".

(b) These hyperorthogonal subtuples are all maximal if and only if (v\,... ,vp)
itself is maximal.



36 B. Fuglede

(c) We have

(6) p <r + m and p <2r <2n.

Furthermore, (v\,... ,vp) is maximal if and only if p r + m and hence p > 2.

(d) If p 2n and hence r m n then (v\,... ,vp) is maximal, and
is the union of n antipodal pairs (necessarily mutually orthogonal if n >2).
If, in addition, each Vi is normalized then (v\,...,V2n) Is the union of an
orthonormal base for R", say (iq,..., vn), and its opposite orthonormal base

(—v\,...,—vn). Conversely, any such union is maximal hyperorthogonal on
and has rank n.

Proof (a) The existence part follows right away in view of Definition 3. For
uniqueness of the decomposition, write briefly V for (v\,... ,vp), and for
(vj : j G Jff), so that we have a decomposition V UST=i ^ of V into mutually
orthogonal subtuples For any other such decomposition V \J/ IF/ of F
into mutually orthogonal subtuples Wi of V, suppose for some k and I that
Vjc D Wi ^ 0. Then

Wi (vknwi)u((v\vk)nwi)
defines a decomposition of Wi into two mutually orthogonal subtuples fl Wi
and (V \ Vk) fl Wi of Wi and hence of V because Vk _L V \ V^. Since Wi
is irreducible and fl Wi ^ 0 we must have (F \ Vfc) fl IF/ 0, that is

W\ C Vjc. By interchanging the roles of V^ and Wi in this argument we also
have Vk C Wi, and so Wi. Thus any two and Wi are either disjoint
or identical. This means, however, that the two decompositions V F^ and

V Wi must be the same (up to permutation).

(b) With the above abbreviations we show by contradiction that V is maximal
if and only if each is so. For the "only if" part, suppose that some is not
maximal. There exists then v e lin such that (r)UF^ remains hyperorthogonal,
that is, v ^ 0 and {v, vj) < 0 for all j G J^. This contradicts the maximality
of V because v G lin V and that (u) U V remains hyperorthogonal. Indeed,
for any / G {1 with / ^ k, Vj is orthogonal to and therefore
v G lin V]ç, whence (vj, v) 0 for every j G //, and altogether (vj,v) < 0
for any j G {1....,/?}. - For the "if" part, suppose that V is not maximal.
Then there exists v G lin V such that (v) U V remains hyperorthogonal, that is,
{v, Vj) < 0 for all j G {1,..., p}. For any k G {1,..., m) denote by v' the

orthogonal projection of v on lin Then (i/) U remains hyperorthogonal,
in contradiction with the maximality of Indeed, for any j G we have

Vj G Vjç, hence v — vr _L Vj, and so (vr, Vj) (v,Vj) < 0. Furthermore v' ^ 0,
for otherwise v v — vf ± Vj, hence v X lin(u7 : j G J= linF^, and so

v vr by definition of vf, in contradiction with v ^ 0.
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(c) For the second inequality (6), denote pk #Jk and rk rk Vk. Clearly
p pk and r the latter because the Vk are mutually orthogonal.
Since Vk is irreducible it follows by Theorem 1 that pk < r* + 1, and hence

m m

(7) p ^2 Pk < m + XI rk m + r < 2r,
k=l £=i

the latter inequality because each > 1 and hence r >m. By Theorem 1, all the

irreducible subtuples F& are maximal if and only if pk + 1 for all k <m,
which in tum, by addition, is equivalent to p r + m since anyway pk < + 1,

as already noted. Thus, by (b), V is maximal if and only if p r + m. And
if V is maximal and reducible then m > 1 and hence p r-\-m>r-\- 1,
thus establishing by contradiction the remaining implication (ii) A (iii) =>• (i) in
Theorem 1.

(d) If p 2n, and hence n r < m by (6), then by (7) with equality it
follows from (c) that V is maximal, and we have m r, hence 1 for
every k G {1,,m}\ furthermore, pk rk + 1 2 for every k because Vk

is irreducible and maximal, by (b), and thus each of the m r n subtuples
Vk is an antipodal pair, as noted after Example 1. The final assertion in (d) is

easily verified.

Exercise 1. Determine all hyperorthogonal (2n — 1)-tuples on for example
for n 3. (Hint: begin by determining the non-maximal ones.)

We continue identifying a p-tuple (v\,... ,vp) of vectors in R" with the

n x p matrix V with columns v\,...,vp. We only consider matrices with real
entries. The transpose of a matrix V is denoted by V1. The following lemma

concerning the associated Gram matrix VlV is well known.

Lemma 2. (a) For any n x p matrix V (iq,..., vp) of rank r, the p x p
matrix

(8) A M V'V p)

is positive semidefinite and has rank r.
(b) Conversely, every positive semidefinite px p matrix A of rank r has the

form (8) with V an r x p matrix, necessarily of rank r.

Proof (a) A is obviously symmetric: {vi, vj) (Vj,Vi), and positive semidefinite:

p P P P 2

J2 {vi,Vj)xiXj {J2xiVi,J2xjvj) I J2XiVi > 0

i,j 1 Ml y l 1=1
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for x\,... ,xp G R. Clearly rk A < rk V r. For the proof that rk A > r we

may assume for example that v\,.. .,vr are linearly independent. The principal
submatrix

of A then has full rank r. Otherwise there would be an r -tuple (c,\,. ..,cr) G

Rr \ {0} such that Ylj=i cjivi> vj) 0 for every i < r, and hence

(X!!=i Ci Vi, Ylj=i cjvj) — 0, that is, ci vi 0, in contradiction with the

linear independence of v\,... ,vr.
(b) There exists an orthogonal p x p matrix Q such that

a'ASl A diag(Ai ,...,XP),

with X( > 0 for i < r and A/ 0 for i > r because rk A rk A r.
Consider the r x p matrix U obtained from diag(\/Xj,..., VXr) by adjoining
after it p — r columns equal to 0. Then UtU A, and the r x p matrix

V UQ

has the same rank r as U, and satisfies VlV Q'î/'t/Œ Q?A£2 A.

Remark 4. For any n > r, (8) of course remains valid after the r x p matrix
V in the proof of Lemma 2 has been extended by adjoining n — r new rows
equal to 0, whereby rk F remains equal to r. Also note that it was shown in
the proof of Lemma 2 that every positive semidefinite p x p matrix A of rank

r has a principal submatrix B of full rank r.

Lemma 3. For n, p > 1 let V (v\,... ,vp) be an n x p matrix with column
vectors V\,..., vp in R" \ {0}. Let

A ^ V'V

be the associated Gram matrix, cf. Lemma 2, obviously with diagonal entries

> 0. Then

(a) V is hyperorthogonal if and only if the off-diagonal entries of A are all
< 0.

(b) V is irreducible if and only if A is irreducible in the sense that one
cannot decompose {1,..., p} into two nonvoid disjoint parts J\ and J2 such
that aij 0 for i G J\ and j G J2.

(c) V is maximal (hyperorthogonal) if and only if A (with all off-diagonal
entries < 0) is maximal in the sense that one cannot adjoin to A a new last
column a G R"+1 and the corresponding last row a1 in such a way that the

extended (p -\- X) x (p + 1) matrix has all diagonal entries >0, all off-diagonal
entries < 0, and is positive semidefinite with the same rank as A.
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Proof. Assertions (a) and (b) are easily verified. For (c), suppose first that V is

hyperorthogonal, but not maximal. There is then a column vector v G R"\{0} such

that the nx(p-\-1) matrix W with columns v\,..., vp, v remains hyperorthogonal
with unchanged rank r (namely v G lin (ni,..., vp)). In view of Lemma 2,

B W'W

is an extension of A to a positive semidefinite (/? + 1) x (/? + 1) matrix of rank

r with diagonal entries > 0 and off-diagonal entries <0, by (a). This shows
that A is not maximal in the stated sense.

Conversely, suppose that A is not maximal. There is then a column vector
b G V with coordinates b[ <0, and a number c > 0, such that the symmetric
(p + 1) x (p + 1) matrix

c i)
remains positive semidefinite with rank r. In particular, the first p rows of B
have rank r (not just rank < r because rk A r). The system of linear equations

p

J2aiJXJ bi>

7 1

i G therefore has a solution (x\,... ,xp). The linear combination
v lZj=i xjvj satisfies

p p
(9) (vi,v) ^2{vi,Vj)xj J2aijxj bi < 0

7 1 7=1

for i G {1,..p}, showing that the (p + 1)-tuple (v\,... ,vp,v) is hyper-
orthogonal along with (v\.... ,vp). Note at this point that v ^ 0, for if v 0
then b 0, by (9), and since c > 0 this would imply that rk B 1 + rkA,
which is false. We have thus shown that indeed (iq,..., vp) is non-maximal if
A is so, thereby completing the proof of (c).

In view of Lemma 3 we have the following equivalent version of Theorem 2.

Corollary 1. Let A (ßzy)/,ye{i p} be a positive semidefinite pxp matrix of
rank r with diagonal entries > 0 and off-diagonal entries < 0.

(a) There exists a decomposition of {1,..., p}, unique up to permutation, into
nonvoid subsets J\,..., Jm with m G {1,..., p} such that the corresponding
positive semidefinite principal submatrices A^ (ctij)ijjk with k G {1

are irreducible and (if m > 2) mutually orthogonal in R", in the sense that

aij 0 for all (i, j) G x // and distinct k,l G {1,,m).
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(b) These positive semidefinite principal submatrices Afc are all maximal if
and only if A is itself maximal.

(c) We have

Furthermore, A is maximal if and only if p r + m and hence p > 2.

(d) If p 2n, and hence r m n, and if the diagonal entries of A

equal 1, then A is maximal, and (up to a permutation of rows and the same

permutation of columns) A equals the block matrix

where In denotes the n x n unit matrix. Conversely, this block matrix A has

rank n and is maximal with diagonal entries 1 and off-diagonal entries 0 or
-1.

In (d), the requirement that the diagonal entries of A equal 1 of course
amounts to the columns of V from Lemma 2 being normalized. For (10) note
that, by Theorem 2, the columns of V therefore are iq,..., vn, — iq,..., — vn
in terms of an orthonormal base (iq,..., vn) for R". If instead we order the

columns of V as iq, — iq, iq, —iq,... ,vn, —vn then A becomes the diagonal
block matrix

Exercise 2. Determine all positive semidefinite (2n — 1) x (2n — 1) matrices of
rank n with diagonal entries 1 and off-diagonal entries < 0.

Related results. The author owes to the Editors the following observations.

The inequality r > p — m of the last corollary is contained in Lemma 4 of
Section 3.5, Chapter 5 of [1].

Unit vectors iq,..., vp in R" with equal inner products (vi, vj) for distinct
i, j in {1,..., p) have been studied in [4]. For example, given an integer d > 1,

if (vi,Vi) 1 and {Vi,Vj) — 1/d for i ^ j, then p < n + [n/d]; see [4],
Theorem 4.2.

Given a subset S of the real interval [—1,1], a spherical S-code is a
subset V of the unit sphere in R" such that (n,i/) G S for any pair (v,vr)
of distinct vectors in V. In particular, a spherical [—1,0]-code is precisely a

hyperorthogonal set of unit vectors. Bounds on cardinalities of spherical S -codes
have been established in [2] and more recent papers.

p < r + m and p < 2r.

(10)

A diag(jE, E,..., E) with E
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