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Well-rounded equivariant deformation retracts
of Teichmüller spaces

Lizhen Ji*

Abstract. In this paper, we construct spines, i.e., Mod^ -equivariant deformation retracts,
of the Teichmüller space Tg of compact Riemann surfaces of genus g. Specifically,

we define a Modg- -stable subspace S of positive codimension and construct an intrinsic

Mod^-equivariant deformation retraction from Tg to S. As an essential part of the proof,
we construct a canonical Mod^-deformation retraction of the Teichmüller space Tg to
its thick part Tg(e) when s is sufficiently small. These equivariant deformation retracts

of Tg give cocompact models of the universal space .EModg- for proper actions of the

mapping class group Modg-. These deformation retractions of Tg are motivated by the

well-rounded deformation retraction of the space of lattices in R. We also include a

summary of results and difficulties of an unpublished paper of Thurston on a potential

spine of the Teichmüller space.

Mathematics Subject Classification (2010). 32G15, 22F99.
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1. Introduction

Let Sg be a compact oriented surface of genus g, and Modg be the mapping
class group of Sg. Let Tg be the Teichmüller space of marked complex structures

on Se. When g 1, Te can be identified with the upper half plane H2 and

Mod^ SL(2,Z).
We will assume that g > 2 in the following. Then every compact Riemann

surface of genus g admits a canonical hyperbolic metric, and hence Tg is also
the moduli space of marked hyperbolic metrics on Sg.

It is known that Tg is a complex manifold diffeomorphic to R6g-6 and Modg
acts holomorphically and properly on Tg. It is also known that Modg contains

*Partially Supported by NSF grant DMS-1104696.
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torsion elements and does not act fixed point freely on Tg. By using the geodesic
convexity of the Weil-Petersson metric of Tg, see [Wol], (or earthquakes in Tg
and positive solutions of the Nielsen realization problem [Ke] and [Wol], it can
be shown, see [JW], Proposition 2.3, that Tg is a model of the universal space
.EModg of proper actions of Modg, which means that for every finite subgroup
F C Modg, the set of fixed points (Tg)F is nonempty and contractible.

On the other hand, it is well-known that the quotient Modg \Tg is the moduli

space of compact Riemann surfaces of genus g and is non-compact. For many
applications, an important and natural problem is to find a model of the universal

space ET for T Modg which is T-cocompact, i.e., the quotient T\ET is

compact, or rather more to the point, is a finite C W -complex. Another closely
related problem is to find a model of ET which is of as small dimension as

possible, for example, equal to the virtual cohomological dimension of T.
For any n > 1, let Sg,n be the surface obtained from Sg by removing n

points, and Tg,n be the corresponding Teichmüller space of Sg,n and Modg,n
the corresponding mapping class group. Then Tg,n is also a model for the
universal space i?Modg,n for proper actions of Modg,n. It was shown in [BoE],
[Ha], and [Pe2] that Tg,n admits the structure of Modg,„ -simplicial complex,
and hence admits an equivariant deformation retraction to a subspace which is
cofinite Modg,n-CW-complex of dimension equal to the virtual cohomological
dimension of Modg,„. This is a model of EModg,n of the smallest possible
dimension. This result was used by Kontsevich [Ko] in proving a conjecture
of Witten on intersection theory of the moduli space A4g,n. The method for
constructing the above spine of Tg,n depends crucially on the assumption that

n > 1 and cannot be applied to Tg.
Briefly, the important role played by the punctures in triangulating the

Teichmüller space Tg,n can be explained as follows. As in [Hal], Chapter 2, we
assume that n 1 for simplicity. Let * be a fixed basepoint in S. Then essential

simple closed curves in Sg passing through * define a simplicial complex A,
called the arc-complex, where each simplex corresponds to an arc-system of Sg
based at *, which is a collection of essential simple closed curves nonhomotopic
to each other and intersecting only at *. Let Aqq be the subcomplex consisting
of simplexes whose arc-systems do not not fill Sg. The basic result is that there
is a canonical homeomorphism between 7^.i and A — A00. One way to see this
is that for each marked Riemann surface (Eg, p) with p corresponding to the

basepoint * in Sg, there is a unique, up to multiplication by positive constants,
horocyclic holomorphic quadratic differential on Eg with its pole of order 2

at p. The foliations defined by the quadratic differential will produce a filling
arc-system together with related weights so that they define a canonical point in
A — Aoo (or rather a point in the simplex determined by the arc-system). The
second way to see this is to use the hyperbolic metric on the punctured Riemann
surface Eg —{p}. Then a suitably defined distance of points of Eg — {p} to the
ideal point at infinity p of Eg — {p} defines a spine of Eg — {/>}, which also
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allows one to define a filling arc-system and related weights, and hence to map
(Eg, p) to a point in A —

Once 7^,i is identified with A — Aoo, the first barycentric subdivision of A

gives an equivariant spine of A — A^ of the optimal dimension, which gives a

spine of Tg,i of the optimal dimension. See Remark 2.2 for more details.

As mentioned above, when g 1, the Teichmüller space 7i H2, and

Modi SL(2,Z). An equivariant deformation retract, i.e. a spine, of H2
is known. In fact, this was used in [Hal], Chapter 2, to motivate the above

construction of the spine in 7g,i We will also give a construction of the spine
of H2 using the identification H2 SL(2, R)/SO(2) in Remark 3.3 below.

For the above problem to construct Modg -cocompact universal spaces

iTModg, there are two approaches based on the action of Modg on Tg :

either construct a partial compactification Tg such that the inclusion Tg —»• Tg is a
Modg -equivariant homotopy equivalence, or construct a Modg -stable subspace S
such that Modg\5 is compact and there exists a Modg-equivariant deformation
retraction from Tg to S. The second approach seems to be more accessible and

might give spaces of smaller dimension than Tg.
In a preprint [Th] circulated in 1985, Thurston proposed a candidate of Modg -

equivariant deformation retract, i.e., a spine, of Tg, of positive codimension. An
outline was given to deform Tg into a small neighborhood of the proposed
subspace. But the deformation retraction to the proposed subspace does not
necessarily achieve its goal. See Remark 4.4 below for a summary of results
in [Th], discussions of the difficulties, and an alternative proof of one key result
in [Th].

It is known [Ha] that the virtual cohomological dimension of Modg is 4g — 5.
An important problem is whether there exists a Modg -stable subspace of Tg which
is of dimension 4g — 5 and is a Modg -equivariant deformation retract of Tg. The
question whether such a deformation retract of T exists or not is Question 1.1

in [BV].
In this paper, we consider two spines of Tg. The first one is the thick part

Tg(s) of Tg, i.e., for any s > 0 which is sufficiently small, Tg(s) consists of
hyperbolic surfaces which do not contain closed geodesies with length less than

s. The second subspace S consists of hyperbolic surfaces whose systoles, i.e.,
the shortest simple closed geodesies, contain at least an intersecting pair. (See
Theorem 4.2 in §4 for more detail.) An important point about the second spine
S is that it is an intrinsically defined subspace of positive codimension.

It is known that Tg(s) is a real-analytic submanifold with corners and is
stable under the action of Modg with compact quotient.

Existence of a Modg-equivariant deformation retraction of Tg to Tg(s) was

proved in [JW], Theorems 1.2 and 1.3. Therefore, Tg(s) is a Mod^ -cocompact
ET space for T Modg.
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On the other hand, the deformation retraction of Tg to Tg(e) in [JW], §3,
is the flow associated with a vector field which is patched up from local vector
fields, which increase any fixed collection of short geodesies simultaneously, using
a partition of unity. In order to get an equivariant deformation, the construction of
the partition of unity is delicate. Since there is no intrinsic or canonical partition
of unity, the deformation retraction is not unique or canonical.

A natural problem is to construct a deformation retraction of Tg to Tg(s)
which depends only on the intrinsic geometry of the hyperbolic surfaces in Tg
and the geometry of Tg. An answer is given in Theorem 3.9 below. Due to the

intrinsic nature of the construction, it is automatically Modg -equivariant. Since the

construction is motivated and similar to the well-rounded deformation retraction
for the space of lattices in R", see [Asl], which is explained in Remark 3.3

below, we also call it the well-rounded deformation retraction of the Teichmüller

space Tg in the title.

The continuation of the deformation retraction to Tg(e) gives rise to a
deformation retraction to the second spine S. It is a real sub-analytic subspace
of Tg of codimension at least 1. See Theorem 4.2 below for a precise statement.

It seems that this spine S is the first example of equivariant deformation retract
of Tg which is of positive codimension. A natural problem is whether this idea

can possibly be generalized to construct equivariant deformation retracts of Tg
which are of higher codimension. This will depend on understanding subspaces
of Tg consisting of hyperbolic surfaces whose systoles intersect. (See [Sch] for
a survey of some work on systoles of surfaces.) In Proposition 4.3, we explain
how to obtain a spine of Tg of codimension at least 2.

Another natural problem is to find good candidates of spines of Tg which are

of the optimal dimension 4g — 5. It is reasonable to believe that spines of Tg
should consist of "rounded hyperbolic surfaces", and hyperbolic surfaces in the

spine S in Theorem 4.2 are in some sense the least rounded among all possible
definitions of "rounded hyperbolic surfaces". One idea is to require hyperbolic
surfaces to be cut into smaller pieces by some systoles such that the pieces are
"rounded". Once good candidates are found, deformation retractions to them can
be difficult.

Acknowledgements. I would like to thank Scott Wolpert for very helpful
conversations, references and encouragement and Hugo Parlier for helpful correspondence,

for example, the arguments in the proof of Proposition 4.3 are due to
them, and Juan Souto and Alexandra Pettet for the example on a flow on the

unit disk that explains a problem with the spine in [Th]. I would also like to
thank an anonymous referee for constructive suggestions which have improved
the exposition of this paper.
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2. Definition of spines and examples

Let X be a topological space, and Y a discrete group acting properly on X.
A subset S of X is called an equivariant spine or simply a spine if
(1) S is stable under T,
(2) and there exists a T -equivariant deformation retraction from X to S.

For example, if Y is a cofinite, nonuniform Fuchsian group, and X HI2

is the Poincaré upper half-space, then H2 has an equivariant spine given by a
tree. The best known example is Y SL(2, Z), which is equal to Modg when

g 1 ; see [BoE]. (We note that when Y is a torsion-free non-uniform Fuchsian

group, then the fundamental group 7Ti(r\H2) is a free group.)

Proposition 2.1. If X is contractible, then any spine S of X is also contractible.

If X is a universal space for proper actions of T, then S is also a universal

space for proper actions of Y.

Proof We only need to note that for any finite subgroup F of T, the fixed
set SF is a deformation retract of the fixed point set XF in X and hence is

nonempty and contractible.

In the following we assume that X is a universal space for proper actions
of T. Then S is called a minimal {or optimal) spine if dim S vcd Y, where
vcd r is the virtual cohomological dimension of Y. The reason is that since S
is also a universal space for proper actions of Y, dim S > vcd Y.

The spine S of X is called a cofinite spine if S is a Y - C W -complex and

the quotient Y\S is a finite CIL-complex. S is called a cocompact spine if
Y\S is a compact space. We note that if S is cofinite, then it is cocompact. On
the other hand, the converse is not automatically true, since a general Y -space
may not admit the stmcture of a Y-CW-complex.

It is known that given any discrete group Y, there always exists a universal

space EY for proper and fixed point free actions of Y, and a universal space
EY for proper actions of Y. Both EY and EY are unique up to Y -equivariant
homotopy equivalence (see [Lü] and references there). The quotient Y\EY is a

classifying space BY of Y, i.e., tz\(BY) Y, and jti (BY) {1} for i > 2.
When r is torsion-free, then EY is equal to EY.

Models of EY can be constructed for groups by a general method due to
Milnor via the infinite join of copies of Y [Mil] and are infinite dimensional. A
generalization gives a construction of a model of EY via the infinite join of copies
of cosets T/F, where F ranges over finite subgroups of Y, and such a model is
also infinite dimensional. (See [Lü], §3, and [Tom], Lemma 6.11, Chapter I, for
additional references and more details. The basic reason is that joining produces
highly connected spaces, and Y acts on these models by multiplication on the

vertices, and hence the action satisfies the desired stabilizer property.) But good
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models of ET and ET, in particular those having various finiteness properties,
are important in order to understand finiteness properties of T such as finite
generation, finite presentation and cohomological finiteness properties of T, and

also for proofs of the Novikov conjectures and the Baum-Connes conjecture
for T. See [JW], §2, for an explanation of some applications.

For some basic groups such that arithmetic subgroups (or more general discrete

subgroups) of Lie groups and mapping class groups, there are natural finite
dimensional ET -spaces. For the former groups, they are the symmetric spaces
or more general contractible homogeneous spaces associated with the Lie groups,
and for the latter groups, they are given by the Teichmüller spaces.

But such natural spaces are often not T -cofinite, or even T -cocompact,
ET -spaces, as pointed out in the introduction, and an important problem is to
find good equivariant spines contained in them in order to construct cofinite
models of ET -spaces of dimension as small as possible.

Remark 2.2. Suppose X is a simplicial complex with some faces of some
simplexes missing. Let X* be the completion of X, i.e, if an open simplex is
contained in X*, then all its simplicial faces are also contained in X*. Suppose
X ^ X*. Then there is a canonical spine of X obtained as follows. Take the
maximal full subcomplex of the barycentric subdivision of X* that are disjoint
from X* — X, i.e., from the missing faces of X. This is the spine constructed
in [As2] for the space of positive definite quadratic forms in n variables (or
equivalently the space of lattices in R"), the Teichmüller space Tg,n of Riemann
surfaces of genus g with «-punctures when n > 0 in [Ha], and the outer

space associated with the outer automorphism groups Out(Fw) of the free groups
in [CV].

On the other hand, if X does not have a structure of T-simplicial complex,
it is often less clear how to construct a spine or whether a spine of positive
codimension exists.

3. Deformation retraction of the Teichmüller space to the thick part
and well-rounded lattices

Let Sg be a compact oriented surface of genus g > 2. A marked compact
hyperbolic surface of genus g is a hyperbolic surface Eg together with a

homotopy equivalence class [<p] of diffeomorphisms <p Eg —» Sg. Two marked

hyperbolic surfaces (Eg,i, [<pi]), (Eg,2, W2]) are defined to be equivalent if there
exists an isometiy h Eg,i —» Eg,2 such that [<pi\ [<p2 oh] Eg.i —> Sg. Then
the Teichmüller space Tg is the set of equivalence classes of marked compact
hyperbolic surfaces of genus g :
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Let Diff+(iS"g) be the group of orientation preserving diffeomorphisms of
Sg and let Diff°(5'g) the identity component of Diff+(Sg). The quotient

is the mapping class group Mod^, and Modg acts on
Tg by changing the markings of the marked hyperbolic surfaces.

By the collar theorem of hyperbolic surfaces, there exists a positive constant

£o such that for any compact hyperbolic surface Eg and any two closed geodesies

yi,y2 in it, if
£(yi),£(y2) < £o,

then

yi PI y2 0
For any s with 0 < s < so, define the s -thick part Tg (s) by

Tg(s) {(Eg, \(p\) I for all simple closed geodesic y in Eg, l(y) > s}.

Then the following result is known.

Proposition 3.1. The subspace Tg(s) is stable under Modg with a compact
quotient Modg\7^(f). Under the above assumption that 0 < s < so, Tg(s)
is a real-analytic manifold with corners and hence admits a Modg -equivariant
triangulation such that Modg \Tg (f) is a finite C W -complex.

Proof It is clear that Tg(s) is stable under Modg since its definition does not
depend on the markings. The compactness of the quotient Modg\7^(f) follows
from the Mumford compactness criterion for subsets of Modg\7^, see [Mu].
Near any boundary point p (Eg, [<p]) e dTg(s) — Tg(s), the subspace Tg(s)
is defined by the inequalities:

£(yi),...,£(yic) > £,

where y\,..., are all the simple closed geodesies on the marked surface Eg
such that t(y\)(p) s,..., t(yk)(p) £• (Here we mean that the geodesies

y\, • • • ,yjç are all the systoles for the marked hyperbolic surface represented by
the point p in the Teichmüller space.) By the assumption on s, the geodesies

y\,..., yk are disjoint. Then they can form a part of a collection of a pants
decomposition of Eg, and their length functions are a part of the associated
Fenchel-Nielsen coordinates, and hence their differentials di(yi),...,dl(yk)
are linearly independent. This implies that the subspace of Tg defined by the

inequalities l(yi) > s, ...,t{yk) > £ is a real-analytic submanifold of Tg with
corners near the point (Eg, [cp]).

The main result of [JW], Theorems 1.2 and 1.3, is as follows:

Proposition 3.2. For every s with 0 < s < so, there exists a Modg -equivariant
deformation retraction of Tg to Tg{s). In particular, Tg(s) is a cofinite model

of the universal space ET for proper actions of T Modg.
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The idea of the proof in [JW] is as follows. For any marked hyperbolic
surface ÇEg,[(p]) in the thin part Tg — Tg(e), we increase the lengths of the

short geodesies by following the flow of a local vector field which is a suitable
linear combination of the gradient vectors of the length functions of these short
geodesies. Specifically, let y\,... ,Yk be all the short geodesies of Eg such that

l(yi) < < t(yk) < s. In a simple case, suppose that £(yi) < £(y2)- For

any geodesic y, let V£(y) be the gradient of the function £(y) with respect to
the Weil-Petersson metric of Tg. Then the flow along the vector field V£(yi)
will increase l(y\) until it reaches ifo) or s. The point to make use of the

Weil-Petersson metric is that it is intrinsic and hence the flow is automatically
Modg -equivariant.

On the other hand, a difficulty occurs if £(y\) £(yz) since it is not clear
whether we should use either V£(yi) or V£(y2)-

The way to solve this problem in [JW] consists of two steps: (1) introduce
a local vector field near every point in the thin part Tg — Tg(s), which, in
the notation above, is a suitable linear combination of V£(yi),..., V£(y&) on a
small neighborhood of (Eg,[<p]) in Tg such that under its flow, the lengths of
all the short geodesies y\,..., yk are increased simultaneously, (2) use a suitable

Modg-invariant partition of unity to glue up the local vector fields to obtain a
desired global vector field on the thin part Tg — Tg(s) that is invariant under

Modg.
The construction of the partition of unity in Step (2) is complicated, but not

canonical or intrinsic. A natural problem is to obtain an equivariant deformation
retraction of Tg to Tg(s) which only depends on the intrinsic geometry of the

hyperbolic surfaces Eg and the geometry of Tg. The first purpose of this paper
is to construct such an intrinsic equivariant deformation retraction. To do this, we
first recall the well-rounded deformation retraction of lattices in Rn.

Remark 3.3 (Well-rounded deformation retraction of lattices). The pair (Tg, Modg
has often been compared with the pair (SL(n, R)/ SO(ra), SL(«, Z)) of a
symmetric space SL(ft, R)/ SO(n) of noncompact type and an arithmetic subgroup
SL(n,Z) acting on it. Unlike a general symmetric space, SL(«,R)/SO(«) is
the moduli space of marked unimodular lattices in R", where a marked lattice
is a lattice A C R" together with an ordered basis v\,...,vn of A, and a
lattice A C R" is unimodular if vol(A\R") 1. The locally symmetric space
SL(n, Z)\ SL(n, R)/ SO(«) is the moduli space of unimodular lattices in R" up
to isometry. As pointed out above, when n 2, SL(«,R)/SO(«) is equal to
the Teichmüller space 7i, and the deformation retraction described below gives
an equivariant spine of T\.

There is a known SL(n, Z) -equivariant deformation retraction of symmetric
space SL(«,R)/ SO(«) to the subspace of well-rounded lattices by successively
scaling up the inner product on the linear subspace spanned by the shortest lattice
vectors and hence increasing the length of shortest geodesies of the associated
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flat tori in order to reach more rounded flat tori. According to [Asl], this result is
due to Soulé and Lannes and was presented in the unpublished thesis of Soulé. A
generalization of this method to the symmetric space associated with the general
linear group of a division algebra over Q is given in [Asl]. Since we only need the
above special case (SL(«, R)/SO(«), SL(«, Z)), we give a simplified summary
of the deformation retraction in [Asl] to motivate the deformation retraction of
Tg in the next section.

More precisely, let R" be given the usual Euclidean inner product and

A C R" be a lattice. Let

m(A) inf{(n, v) | v e A — 0},

and

M(A) {dgA|(D,D) m(A)}.

If M(A) spans R", then the lattice A is called a well-rounded lattice. If
Act" is a unimodular, not well-rounded lattice in R", then it can be deformed

canonically to a well-rounded unimodular lattice in several steps.
These notions can also be defined for marked lattices. Since there is a natural

marking in the deformation, we suppress the marking in the following discussion.
Or equivariantly, we are defining a deformation retraction of the locally symmetric
space SL(«, Z)\ SL(«, R)/ SO(«).

Suppose A is not a well-rounded lattice. Then the span M(A) ®R, denoted

by Vm(A), is a proper linear subspace of R". Let Vj^(A) be the orthogonal
complement of Vm(A) in R". For any t > 1, define a new inner product )t
on R" such that on Vm(A), the inner product is scaled up by t, and on F^(A),
it is scaled down by a unique factor so that with respect to the new inner )t
on R", the lattice À is still a unimodular lattice. Note that this inner product
depends on the lattice A. Scaling on the subspaces Vm(A) and V^(A) in
the opposite direction gives a canonical isometric identification between the two
Euclidean spaces (R",(,)f) and (R",(,)), and the image of A gives a new
lattice At in the standard Euclidean space (R",(,)).

If A is given a marking, i.e., an ordered basis v\,...,vn, then the images
of v\,... ,vn in A t form a basis of At as well. What is changed is the inner
product and hence lengths of the vectors. This process also gives a canonical
identification between marked lattices At and A.

In the deformation At, the minimal norm m(At) is increasing. We deform
A to A; until M(At) contains at least one more independent lattice vector, i.e.,
the dimension of M(At) ®R increases at least by 1 (note that for small values

of t, M(At) stays constant under the above identification between A^ and A).
This finishes the first step of the deformation. Now we start again using the new
vector subspace Vm(At), and deform it again by increasing the norms of all
minimal lattice vectors simultaneously at the same rate. After finitely many steps,

M(At) spans Rn and the lattice At is well-rounded.
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Though the above deformation procedure is canonical, we still need to show
that it gives a continuous map on Y SL(«, Z)\ SL(«, R)/SO(w). To do this,

we define a filtration of Y :

Y Fi D Y2 O Yn

where Yj {A G Y | dimM(A) (g> R > y }, j 1 ,n. Clearly, Y\ Y, and

Yn is the subspace of well-rounded lattices. The complement Yj—\ — Yj consists

of lattices whose associated subspace M{A) (g) R has dimension equal to j — 1.

The deformation retraction to the subspace Yn of well-rounded lattices consists
of composition of the deformation retractions of Yj—\ to Yj for j 2,... ,n.
Hence it suffices to show that at every step, the retraction of Yj-1 to Yj is
continuous.

Let A, Af e Yj-i be two lattices. If A e Yj-\ — Yj, we deform it to At e Yj
by the procedure described above; otherwise, A e Yj and set At A. Similarly,
we can define the deformation image A't, G Yj. We need to show that At and

A't, are close whenever A, A' are close.

There are two cases.

(1) Suppose A G Yj. If A' G Yj, then A't, A' is close to At A by
assumption. If A/ G Yj-\ — Yj, then the next shortest norm of vectors in A' after

m(A!) is close to m(A'). The reason is that dimM(A) (g) R is at least j but
dim M(A') (g) R j — 1. This implies that the stretching factor in reaching A't,
from A' is close to 1, and Art, is close to A' and hence close to At A.

(2) Suppose that A G Yj—\ — Yj. Then dim M(A) ® R j — 1. We claim that
when A' is close enough to A, then dim M(A') <S>R j — 1 - By assumption, for
any v G A — M (A) — {0}, | |u 11 > m(A), and hence these exists a positive number
s such that for all v G A — M(X) — {0}, ||u|| > m(A) + e. Then for any A' G Yj-\
close to A, there exists g G SL(«,R) close to the identity element such that
A' gA. This implies that only minimal vectors in M(A) can be mapped to

M(A'), i.e., M(gA) ç gM{A), and hence dim M(A') ® R < dim M(A) ® R.
Since A' G Yj—\, dim M(A/)(g)R > j —I. By assumption, dim M(A)(g)R j — 1,

it follows that dim M(A') ® R dim M(A) ® R.

Since m (A) and m(A') are close and the next smallest norms in A, A'
are also close, the equality of the dimension dim M(A') ® R dim M(A) (g) R
implies that the scaling factor t needed for M(At) to have a higher dimension,
i.e., for At to reach Yj is close to the scaling factor t' needed for A't, to
reach Yj. This implies that At and A't, are close. This completes the proof of
the continuity of the deformation retraction from Yj—\ to Yj, and hence of the

deformation retraction of Y to the subspace Yn of well-rounded lattices.

A tempting idea is to cariy out the same deformation for Teichmüller spaces
by increasing the lengths of shortest geodesies while decreasing the lengths of
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other geodesies. But there are no linear structures and orthogonal complement on
the set of closed geodesies as in the case of lattices in R", and it is not clear
whether such a deformation is possible. We will need to deform differently.

For any positive s < so, decompose the thin part Tg — Tg(s) into a disjoint
union of submanifolds according to the multiplicity of the shortest geodesies, or
systoles.

Every simple closed curve c of the base surface Sg which is not homotopic
to a point induces a unique simple closed geodesic in every marked hyperbolic
surface (Eg,[<p]), which is contained in the homotopy class [<p~l{c)\ of simple
closed curves.

For a collection of pairwise disjoint simple closed curves c.\,..., of Sg,
let y\,..., yk be the corresponding geodesies in (Eg, [(p]). Define a subspace

%,ci ck {(3%. If]) I %i) - Spl < Uy).
for any other simple closed geodesic y C S}.

In terms of systoles, 7^,Cl ck consists of hyperbolic surfaces whose systoles
are disjoint simple closed geodesies Yi » > Yk -

Proposition 3.4. For every collection of disjoint simple closed curves c.\,..., c^,
the index k satisfies the bound: k < 3g — 3. The intersection ('Tg — Tg(s)) fl
T~g,ci ck Is a nonempty real-analytic submanifold. The thin part Tg — Tg(e)
admits a Modg -equivariant disjoint decomposition into (Tg — Tg (f)) H Tg,Cx ck,
when {c\....,cjc} ranges over all possible collections of disjoint simple closed

curves of the base surface Sg.

Proof The first statement is the standard fact that the maximum number of
disjoint, simple closed geodesies in every hyperbolic surface Sg is equal to
3g — 3. The second statement follows from the proof of Proposition 3.1, and the

fact that for any collection of disjoint simple closed curves c,\,.. .,Ck, there are
marked hyperbolic surfaces whose corresponding simple closed geodesies have

arbitrarily short lengths.
The third statement follows from the fact that for any hyperbolic surface Sg,

the lengths of its simple closed geodesies form an increasing sequence with finite
multiplicity going to infinity, and hence the surface Sg belongs to some subspace
Tg,Cl ck >

where c\,..., are disjoint since their lengths are less than s.

For each collection of disjoint, simple closed curves of Sg, we
define a vector field VCl Cjc on the associated subspace (Tg — Tg(s)) n7^,Cl ck
as follows. Since ('Tg —Tg(ej) Ck is a submanifold of 7J, the Weil-
Petersson metric of Tg restricts to a Riemannian metric on it. By definition,
the length functions are equal on 7^,Cl ck and hence define a

common function, denoted by i. Let Vi1!2 be the gradient of tx^2 with respect
to the restricted Riemannian metric on (J~g — Tg{s)) fl 7J,Cl ck •
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Lemma 3.5. In the above notation, I has no critical point on {Tg — Tg(s)) H

Tg,a c/c an(l the vector field Tltxl2, denoted by VCl Cfc, does not vanish at
any point on (jTg — Tg(sj)C\Tg,C\ ck Furthermore, V^1^2 is uniformly bounded

away from 0 and from above.

Proof Since the geodesies y\,yk are disjoint, their length functions

l\,... ,1k appear as a part of the Fenchel-Nielsen coordinates associated with a
collection of maximal disjoint simple closed geodesies. This implies that V£z ^ 0

for i 1,... ,k. By [Wo3], Lemma 3.12, for any two disjoint geodesies yi, yj
(Vii, V£y) > 0. This implies that on Tg,C\ ck > which can be thought of a partial
diagonal, V£ ^ 0 at every point. This implies that V£1//2 ^ 0 too. When t is

small, the uniform boundedness of V£*/2 follows from [Wo3], Lemma 3.12; see
also [JW], eq. (3.1).

Remark 3.6. We note that an important reason for using V£1//2 instead of V£
is that the former is uniformly bounded away from 0 and from above when i
belongs to (0, a] for any a > 0, in particular near 0. See the discussion in [Wo2],
p. 278.

Lemma 3.7. The vector fields VCl Cjc piece together to define a Modg-equiv-
ariant vector field on the thin part Tg — Tg(s). Denote this vector field by V.

Proof. By Proposition 3.4, the thin part Tg — Tg(s) admits a Modg-equivariant
disjoint decomposition into (Tg — Tg(s)) H Tg,Cx ck - Therefore, the vector fields
VCl Ck combine and define a vector field on Tg — Tg(s). Since the submanifolds
and the vector fields are defined intrinsically in terms of the length functions
and the Weil-Petersson metric, it is clear that V is equivariant with respect to

Modg.

Remark 3.8. We note that the vector field V is not continuous in general. For
example, TCl,C2 ^ contained in the closure of both TCx and TC2 - The vector fields
VCl and VC2 will both extend continuously to TCl,C2 but have different values

at these boundary points. The vector field VCl,C2 is an average of VCl and VC2.

The same phenomenon of discontinuity occurs in the well-rounded deformation
of lattices in SL(«,R)/SO(w) in Remark 3.3. But the deformation paths are
continuous. In some sense, it amounts to the fact that the integral of a piecewise
continuous function is continuous.

Theorem 3.9. For every s with 0 < s < so, there exists an intrinsic
Modg -equivariant deformation retraction of Tg to Tg(s). In particular, Tg(e)
is a cofinite model of the universal space ET for proper actions of T Modg.
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Proof. The deformation retraction is the flow of the vector field V defined in
Lemma 3.7. Though the vector field V is not continuous, it does not cause any
problem and the flow is still continuous. Roughly, for any hyperbolic surface in
the thin part Tg — Tg(s), we increase the lengths of the systoles at the same
rate until we have reached the thick part Tg(s) or the systolic length equals to
the length of the next shortest geodesic, i.e., the systoles have included more
geodesies, and then we repeat the above procedure. It will reach the thick part
and stop after finitely many steps.

Specifically, we deform any marked hyperbolic surface ÇEg,[(p]) in the thin

part Tg - Tg(s) as follows. Let £(yi) < £(yi) S • • -£(Yn) S be the lengths
of its simple closed geodesies arranged in the increasing order.

Suppose £(yi) £(yz) ••• £(yk) < £(Yk+1)> i-e., the systoles consist of
Yi, Yk- This means that (Eg, [q>]) e Tg,C\ ck - Then we increase the lengths
1(Yi), £(yk) simultaneously at the same rate, i.e., we keep the deformation
path inside Tg,cx ck - This can be achieved by the flow of the nowhere vanishing
vector field VCl Cjc on the submanifold (Tg — Tg(s))C\Tg,Ci ck until the length
of the systoles reaches the next length ^(y^+i) or the value s, i.e., the surface
has reached a point of the thick part Tg(s).

Suppose that the deformation has not reached the thick part Tg (f) yet. At the

next step, we have £(y\) • • • £(Ykf) < £(Yk'+1)> where k' > k + 1.

Since £(yi) £(yi) • £(Yk') < £, Yi> >Yk' are disjoint. We can deform
as above using the vector field VCl Ck> in order to increase the length of the

systoles at the same rate and stop if the systolic length reaches the length of
the next shortest geodesic or the surface has reached a point of the thick part.
Since we have reached Tg(s) already whenever k' > 3g — 3, this process will
terminate after at most 3g — 3 steps.

To show that the deformation retraction is continuous, we follow the proof
of the continuity of the well-rounded deformation retraction of lattices in W1

recalled in Remark 3.3.

For j 1...., 3g — 3, let Tg be the subspace of Tg of marked hyperbolic
surfaces whose systoles contain at least j disjoint simple geodesies. Then

Tg Tg. Define Tg8~2 0. For each j 2, ...,3g — 2, the above

discussion gives a deformation retraction of Tg~l \JTg(s) to Tg \JTg(s), and their

composition gives the deformation retraction to the thick part Tg (f). Therefore, it
suffices to show that the deformation retraction at each step, from Tg~X U 7^(f)
to Tg \JTg(e), is continuous.

Fix a j e I,... ,3g — 2. Let (Eg, [<p]), (E'g, [(p\) be two points in Tg
1

U

Tg(s). Denote their deformed image in Tg UTg(s) by (Eg, [(p])t and (E^, •

(The subscripts indicate the times needed for the flow). We need to show that
when (Eg, [<p\), (E'g, \<p\r) are close, then (Eg,[<p])t, (Eg,[<p]0f are also close.
There are two cases to consider.
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Case (1): (Eg, [<p]) e TgJöTg(e). Then (Eg, \<p])t (Eg, [<p]). If (E^, [<pf]) e

Tj UTg(s), then (Z'g,[<p'])t> (E^,[p']) is close to (Zg,[<p])t.

Otherwise, ÇZg,[(pr]) e (Tg~l — Tg) H 7^ — Tg(e), and the systoles of
(E^,[ç/]) consists of j — 1 geodesies. Since {H'g,[(p]') is close to (Eg,[<p]),
and the systoles of (Eg, [<p\) consists of at least j geodesies, it implies that the

length of j -th shortest geodesic of (E^, \(p\) is close to its systolic length, and

it takes a small deformation for (Eg,[ç/])f/ to reach a point in Tg CTg(e).
(Here we have used the fact that by Lemma 3.5, each vector field VCl Ck

is continuous and its norm is uniformly bounded from both below and above.)
Therefore, (Eg,[<p])f, (Z' are also close.

Case (2): (Eg,[<p]) e (Tg~l — Tj) D Tg — Tg(e). Then the systoles of
(Eg, [<p]) consist of j — 1 geodesies, yi,..., Yj-i, which correspond to simple
closed curves c\,..., cj-\ of the base surface Sg. We claim that when (E^, [cpr])

is sufficiently close to (Eg,[(p]), then the systoles of (Eg.[<p']) also consist of

j — I geodesies y[,, Yj-\ which correspond to the same set of simple closed

curves c,\,... ,cj-\ of the base surface Sg. To prove the claim, we note that
there exists a positive number 5 such that for every simple closed geodesic y
of (Eg, [cp]) different from y\,... ,yj-\, l(y) > £(yi) + 5. This implies that
when (Eg,[<p']) is sufficiently close to (Eg,[<p]), only geodesies of (Eg,[<p'])
corresponding to the simple closed curves c,\,..., cj-\ on the base surface Sg

can be systoles. Since (E^, [<pr]) G Tg~X, it must have at least j — 1 systoles.
This implies that it has exactly j — 1 systoles and the claim is proved.

By the claim, (Eg, [(p]), (E^, [<pr]) belong to the same submanifold Tg,Ci ck •

Then under the flow defined by the vector field VCl Cjc, they reach their

deformation points (Eg,[(p])t, (Erg,[<p'])t' in Tg U Tg(s). We note that by
Lemma 3.5, each vector field VCl Cjc is continuous and its norm is uniformly
bounded from both below and above, and hence the time it takes to move any
point of (Tg

1

—Tg(e)) H7^,Cl ck to (Tg UTg(e)) is also uniformly bounded

in terms of its distance to (Tg CTg(e)) and depends continuously on the initial
point. Therefore, when (Eg,[<p]), (Erg,[<p']) are close, (Eg,[<p])t, (E'g,[(pf])t>

are also close, and the continuity of the deformation retraction of Tg
1

to Tg
is proved.

Since the flow at every step and hence the whole flow from Tg to Tg(e) is

intrinsically defined and hence equivariant with respect to Modg, this completes
the proof of Theorem 3.9.
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4. Deformation of Teichmüller space to a spine of positive codimension

Though the thick part Tg(s) of Tg gives a cofinite model of the universal space
ET for T Modg, it is a subspace of Tg of codimension 0.

It is tempting to conjecture that Tg admits a Modg-equivariant deformation
retraction to a subspace of dimension equal to Ag — 5, which is equal to the

virtual cohomological dimension of Modg.
One modest step towards this is to construct subspaces of Tg which are of

positive codimension and equivariant deformation retracts of Tg to them. As
mentioned in the introduction, such an attempt was first made in [Hi]. In this
section, we continue the flow in the previous section and deform Tg (f) (or rather

Tg) to a subspace of positive codimension.
For any marked hyperbolic surface (Eg,[<p]), arrange its lengths of simple

closed geodesies in the increasing order:

£(Y\) < £(Y2) < < t(Yn) < -

Define a well-rounded subspace S C Tg to consist of marked hyperbolic
surfaces ÇEg,[cp]) satisfying the conditions:

(1) £(yi) • • • i(yk) < t(Yk+1) for some k >2.
(2) some pairs of geodesies from y\,...,yk, i.e., some pairs of systoles of

ÇEg,[(p]), intersect each other.

Proposition 4.1. The well-rounded subspace S is stable under Modg with a

compact quotient, and the codimension of S in Tg is positive. Furthermore, S
is a subanalytic subspace and hence admits a Modg -equivariant triangulation
such that the quotient Modg\iS is a finite CW-complex.

Proof It is clear that S is stable under Modg since it is defined in terms of
the lengths of closed geodesies of hyperbolic surfaces in Tg. For any hyperbolic
surface in S, since two of the shortest geodesies intersect, by the collar theorem,
their length is uniformly bounded from below by a constant which depends only
on g. Then by the Mumford compactness criterion [Mu], the quotient Modg\5
is compact.

Near any point in S, S is locally defined by at least one real-analytic
equation, £(yi) £(yf), •, £(ïk-1) £(ïk)- This implies that S is of positive
codimension.

Since the geodesic length functions are real-analytic, S is a subanalytic space.
The existence of equivariant triangulation of S follows from a general result on
existence of equivariant triangulation (compare [II]).

The second result of this paper is to show that S is an equivariant deformation
retract of Tg.
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Theorem 4.2. The well-rounded subspace S is a cofinite, equivariant spine of
Tg of positive codimension with respect to Modg.

Proof For any collection of simple closed curves c\,... ,Ck of the base surface

Sg, by the same proof of Proposition 3.4, we can show that the subspace
Tg,ci ckT\(Tg—S) associated with it is a smooth submanifold, and Tg—S admits
a Modg -equivariant decomposition into disjoint submanifolds Tg,cx ck H (Tg—S)
as in the case of Tg —Tg(s).

We also note that as in Lemma 3.5 the disjointness of the simple closed

curves c,\,..., implies that k < 3g — 3, and the vector field VCl Ck
Vi1/2

is defined on Tg,cx ck H ('Tg — S) and is continuous and its norm is bounded

away from 0 and from above. To prove this, we note that the norm of Vi1/2 is

uniformly bounded away from zero and the above when i G (0, a], where a is

any positive constant. The condition i G (0, a] for some a > 0 is satisfied since

t is the systole of the hyperbolic surface.

Then the same proof of Theorem 3.9 works by replacing Tg(e) by S, and

Theorem 4.2 can be proved.

One natural question is whether the spine S in Theorem 4.2 can be further
deformation retracted to a subspace of smaller dimension. If S were a smooth

manifold, then the above flow might be continued. In general S should be a

singular subspace.
Define two subspaces of S by

Sf {(Sg, \<p\) g S I there are exactly two systoles y\, y2} and S" S — S'.

It is clear that each hyperbolic surface in S" contains at least three systoles, and
hence S" is a real-analytic subspace of Tg of codimension at least 2.

Next we outline arguments from Wolpert and Parlier which prove the next
result.

Proposition 4.3. The subspace Sr is a smooth submanifold, and VI is a nowhere

vanishing vector field on S' such that its flow defines a deformation retraction

of S to S". Therefore, S" is an equivariant deformation retract of Tg with
codimension at least 2.

Proof. Briefly, we note that for each hyperbolic surface in S\ the two systoles

y1, y2 intersect at one point. Using the fact that the difference of gradients of the

length functions of two geodesies intersecting at a single point is never zero, in

particular Vl(yi) — Vl(yf) ^ 0, we conclude that Sf is a smooth submanifold
of Tg. (See [MaP], Lemma 4 in §8. Briefly, Thurston stretch-map allows one
to increase the length £(y\) at a strictly greater rate than for the length i(yf)
in a suitable direction, since the maximal stretched set is a geodesic lamination
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and can be chosen to be a complete geodesic lamination which contains y\ and
hence not y2.)

Let i l(yi) i(yf) be the systole function on Sf. Let V£ be the gradient
of i on S' with respect to the restriction of the Weil-Petersson metric of Tg.
If VI is not zero, then V£ is the direction along which both l(yi) and i(yf)
are increased at the maximal rate while the equality £(yi) t(yf) is preserved.

Since y\, y2 are two intersecting systoles, it can be shown that y\, y2 do not
fill Eg. (Filling curves means that every closed geodesic will intersect one of
them. So when we cut the surface along these curves, there is trivial topology.)
For example, when g 2, then the complement Eg — y\ — y2 is a one holed
torus. For g > 2, the complement Eg — y\ — y2 is a genus (g — 1)-surface with
one boundary component.

Let 5 be a simple closed geodesic which is disjoint from yi,y2- By [Wo3],
Lemma 3.12, a deformation in Tg along the direction of W(<5) will increase
both i(y\) and t(yf)- This implies that V£ is nonzero. Then the proof of
Theorem 4.2 (or Theorem 3.9) can be repeated to show that the flow of W defines

a deformation retraction of S to S". Therefore Tg admits S" as equivariant
deformation retract of codimension at least 2.

It seems very difficult that this deformation retract S" can be pushed further
to construct a spine of Tg with higher codimension. For example, it is not clear
whether the subspace S'" of S" consisting of hyperbolic surfaces with exactly
three systoles is a smooth submanifold of Tg. If yes, then S" can be deformed as

above to the subspace Sff — Sr" of higher codimension, which contains surfaces
with at least 4 systoles. We note that when g 2, Sff — S'" is of the optimal
dimension, i.e., the virtual cohomological dimension of Modg, which is equal to
3.

Remark 4.4. The results of [Th] can be summarized as follows.

(1) Let P be the subspace of Tg consisting of hyperbolic surfaces whose systoles
fill the surfaces. This is the spine proposed in [Th].

(2) is a real-analytic subspace of Tg and admits a triangulation, and hence
P is a deformation retraction of a regular neighborhood.

(3) Thurston constructed an isotopy t > 0, such that for any neighborhood
of P and any compact subset K of Tg, there exists a t for which <pt (K)
is contained in the neighborhood of P.

In constructing the isotopy <pt, the key result is the result [Th], Proposition 0.1

(expanding subsets): Let T be any collection of simple closed curves on a surface
which do not fill the surface. Then there are tangent vectors to Teichmüller space
which simultaneously increase the lengths of the geodesies representing curves
in T.
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According to [Th], this is "The only slightly original observation concerning
the geometry of surfaces" in the paper. This was proved as follows.

(1) First cutting the hyperbolic surface along geodesies in T to obtain

hyperbolic surfaces with boundary.

(2) Extend the surfaces to complete hyperbolic surfaces of infinite area.

(3) For any geodesic in the completed surface, cut the surface along it and

glue in a strip. Use the new expanded surface to obtain an expanded surface
of the original surface. After this operation on several geodesies, the lengths of
geodesies in T have all been increased, due to the assumption that T does

not fill the surface. Besides [Th], a description of this is also given in [Hal],
pp. 173-174.

This result was used to construct vector fields that flow points of Tg into
regular neighborhoods P£ of P, which is defined to be the subset of Tg consisting
of hyperbolic surfaces such that the set of simple closed geodesies whose lengths
are within s of the shortest length fill the surface. More specifically, we have
the following facts.

(1) For every collection T of simple closed geodesies which do not fill a

hyperbolic surface, choose a local vector field along which the lengths of
the geodesies in T are all increased.

(2) For eveiy small positive constant s, construct a covering of Tg parametrized
by collections T of simple closed geodesies and define a vector field on
each such open subset. If T does not fill, use the vector field constructed
in (1); if T does, take the zero vector field.

(3) Use a partition of unity defined via lengths of geodesies subordinate to the

covering in (2), and construct a global vector field XB on Tg using the local
vector fields in (2). This vector field is zero on PB and does not vanish on
the complement Pß£ where B is a constant greater than 1 and depending
only on g.

(4) Use the flow defined by the vector field X£ to deform points of Tg into a

neighborhood PßB of P.

There seems to be some problems with the results in [Th]. The first serious

one is that the vector field X£ defined in (3) may not deformation retract all
the complement Tg — Pßs into Pbe in a uniform time, i.e., Step (4) might
pose a problem. Certainly there is no problem to deform any compact subset

K of Tg — Pbe into Pbs in a fixed time, but we need to deform the whole

space. Consider the example of the closed unit disk D in R2 and a vector field
V(x) f(x)ei on D, where e\ (1,0) and f(x) is a nonnegative function
on D which vanishes only on the unit circle. Clearly, for every point p in the

interior of D, the flow of V will deform p into any given small neighborhood
of the unit circle at a finite time. The same thing holds for every compact subset
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K of the interior of D. But we know that the unit disk D cannot be deformation
retracted to the unit circle. This implies that based on the properties of the vector
field XB in (3), it is not necessarily true that the flow of XB will deform Tg
into the neighborhood Pßs- If it can be shown that points in Pbe cannot be
flowed out of Pßs, then it will be fine and Step (4) is valid. In summary, for
this method in [TTi] to succeed, we need vector fields whose flows increase the
number of geodesies whose lengths are close to the systole of the surface, rather
than only increasing the lengths of systoles simultaneously.

The second, non-serious problem is that when the above result is applied to
these non-filling systoles, their lengths are indeed increased, but it is not clear

if they have the same length. This is the reason why the flow can only deform
points of Tg into a small regular neighborhood of P. For example, assume that
T consists of systoles y\,..., yk, and the next shortest geodesic is yk+i • Assume
further that T does not fill, but T U {y^+il does fill. Then it is not clear if the
above deformation will reach P. There are two alternatives to solve the second

problem:

(1) Using triangulations of P and a regular neighborhood of P, the regular
neighborhood of P can be deformed into P. This is not canonical but

depends on the triangulations of P and its regular neighborhood.

(2) Take a sequence of Sj with lim^oo £; 0 and compose their associated
deformations of Tg into small neighborhoods of Pß£i • In the limit, the

deformation will reach P under the assumption that the deformation retraction
of Tg to Pßsi works.

It might be helpful to note that [Wo3], Lemma 3.12, implies the following
result: If a collection of systoles y\,... ,yk of a marked hyperbolic surface Eg is

not filling, then a deformation in Tg along the direction of WI(8), the gradient of
the length of a disjoint simple closed geodesic 8 of Eg, increases simultaneously
lengths of all the systoles yi,... ,yk-

This gives a different proof of [Th], Proposition 0.1, recalled above. But
this probably does not overcome the problem as pointed out above: it does not
obviously lead a good direction to increase the lengths of the systoles y\,... ,yk
and also to make them closer in some sense. To be more precise, we want to
increase the systole (length) but also want to have more geodesies of the minimal
length. In Thurston's deformation, we increase the lengths of all the shortest ones,
but their lengths can differ, so the number of shortest geodesies may decrease.

We are trying to examine if we can increase the systole length while having some
control on the possible separation of these shortest lengths.
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