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INTRODUCTORY NOTES
ON RICHARD THOMPSON’S GROUPS

by J. W. CANNON, W. J. FLOYD, and W. R. PARRY

The groups F, T, and V were defined by Richard Thompson in 1965.
McKenzie and Thompson used them in [McT] to construct finitely-presented
groups with unsolvable word problems. In unpublished notes [T1], Thompson
proved that T and V are finitely-presented, infinite simple groups. Thompson
used V in [T2] in his proof that a finitely generated group has a solvable
word problem if and only if it can be embedded into a finitely generated
simple subgroup of a finitely presented group.

The group F was rediscovered by homotopy theorists in connection with
work on homotopy idempotents (see [Dyl], [Dy2], and [FrH]). F has a
universal conjugacy idempotent, and 1s an infinitely iterated HNN extension
([FrH], [BroG]). Brown and Geoghegan [BroG] proved that F is FP,, thereby
giving the first example of a torsion-free infinite-dimensional FP., group. They
also proved that T is of type FP.,, H*(F,ZF) =0, and H*(T,ZT) = 0. It
follows from [Mi] that F is simply connected at infinity, and hence F has no
homotopy at infinity. Brin and Squier [BriS] proved that F' does not contain
a free group of rank greater than one and F does not satisfy any laws (these
are also proved in [FrH]).

Higman [H] generalized V to an infinite family of finitely presented simple
groups G, , ; Brown [Brol] extended this to infinite families F, , C Tog © Vg,
and proved that each of the groups I" is finitely presented, is of type FP..,
and has H*(I',ZI') = 0. Brown also obtained simplicity results; Scott [Sc]
discusses these groups from that point of view. Stein [St] generalized these
families further, and obtained homology results and simplicity results.

_ This work was supported in part by NSF research grants and by The Geometry Center,
University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc.
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This paper is largely expository, and much of the material in it is standard.
These notes originated from our interest in the question of whether or not
F 1s amenable. They were expanded in order to make available Thompson’s
unpublished proofs (from [T1]) of the simplicity of T and V and Thurston’s
interpretations of F' and 7 as the groups of orientation-preserving, piecewise
integral projective homeomorphisms of the unit interval and the circle.

In §1 we define F as a group of piecewise linear homeomorphisms of
the unit interval [0, 1], and then give some examples of elements of F. In
§2 we represent elements of F as tree diagrams, and give a normal form for
elements of F. Two standard presentations for F are given in §3. In §4 we
prove several theorems about F'; these are partly motivated by the question
of whether F is an amenable group. In §5 we define T and give Thompson’s
proof that 7 is simple. In §6 we define V and give Thompson’s proof that V
is simple. In §7 we give W. Thurston’s interpretations of F and T in terms
of piecewise integral projective homeomorphisms.

The group that we are denoting F was originally denoted P in [T1] and
B’ in [McT], and was denoted P in [T2]. It was denoted F in [BroG] in
1984, and it was also denoted F' in [Bri], [BriS], [Brol], [Bro3], [Fo], [FrH],
[GhS], [Gre], [GreS], [GuS], and [St]. It is denoted G in [BieS].

The group that we are denoting 7" was originally denoted C in [T1]. It was
denoted T in [Brol] in 1987 and was denoted 7 in [Bri] and [St]. However,
it was denoted G in [GhS] and [Gre]. It is denoted S in [BieS].

The group that we are denoting V was originally denoted V in [T1] and
¢’ in [McT], and was denoted F#(“2) in [T2]. It was denoted G,; in [H] in
1974, and was denoted G in [Brol], [Bro2], and [St].

We have not included here all of the known results about these groups,
but we have included in the bibliography those references of which we are
aware.

We thank the referee for supplying important references of which we were
unaware and helping to clarify the exposition. We also thank Ross Geoghegan
for helpful comments.

§1. INTRODUCTION TO F

Let F be the set of piecewise linear homeomorphisms from the closed unit
interval [0, 1] to itself that are differentiable except at finitely many dyadic
rational numbers and such that on intervals of differentiability the derivatives
are powers of 2. Since derivatives are positive where they exist, elements of F
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preserve orientation. Let f € F, and let O=xg <X <xp<---<x,=1 be
the points at which f is not differentiable. Then since f(0) =0, f(x) = aix
for xg < x < x;, where a; is a power of 2. Likewise, since f(x;) 1s a
dyadic rational number, f(x) = axx + b2 for x; < x < x», where ay 1is
a power of 2 and b, is a dyadic rational number. It follows inductively
that

f(x) = aix + b; for xi_; <x <y

and i = 1.....n, where q; is a power of 2 and b; is a dyadic rational
number. It easily follows that f~! € F and that f maps the set of dyadic
rational numbers bijectively to itself. From this it is easy to see that F is
closed under composition of functions. Thus F is a subgroup of the group
of all homeomorphisms from [0.1] to [0.1]. This group F is Thompson's
group F'.

EXAMPLE 1.1. Two functions in F are the functions A and B defined
below.

(X 0<v<s
5, 0<x<3 C :
L 1 3 Yty 3SySy
AX)=q x— 3. <x<73 B(x) = < R Do
TTy 1=Y=%
2x—1, 2<x<1 ;
) ( 2v — | gg\gl

A useful notation for functions f in F will be described next. Construct
a rectangle with a top, which is viewed as the domain of f. and a bottom,
which is viewed as the range of f. For every point x on the top where f is
not differentiable, construct a line segment from x to f(x) on the bottom. Call
the result the rectangle diagram of f. By juxtaposing the rectangle diagrams
of a pair of functions, it is easy to compute the rectangle diagram of their
composition. We learned about rectangle diagrams from W. Thurston in 1975
they also appear in [BieS].

EXAMPLE 1.2. Figure 1 gives some examples of functions in F and their
rectangle diagrams.

Now define functions Xy,X;,X,,... in F so that X, = A and

X, = A~""DBA""! for n > 1. From Example 1.2 it is easy to see that
the rectangle diagram of X, is as in Figure 2.
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FIGURE 1

The rectangle diagrams of some elements of F

1-27"

FIGURE 2
The rectangle diagram of X,

§2. TREE DIAGRAMS

The notion of tree diagram is developed in this section. Tree diagrams
are useful for describing functions in F; we first encountered them in
[Brol].

Define an ordered rooted binary tree to be a tree S such that i) S has a
root vg, 1) i1f S consists of more than vy, then vy has valence 2, and iii)
if v is a vertex in S with valence greater than 1, then there are exactly two
edges e, 1, ey, r Which contain v and are not contained in the geodesic from
vo to v. The edge e, [ is called a left edge of S, and e, g is called a right
edge of S. Vertices with valence O (in case of the trivial tree) or 1 in S will
be called leaves of S. There is a canonical left-to-right linear ordering on the
leaves of S. The right side of S is the maximal arc of right edges in S which
begins at the root of S. The left side of S is defined analogously.

An isomorphism of ordered rooted binary trees is an isomorphism of rooted
trees which takes left edges to left edges and right edges to right edges. An
ordered rooted binary subtree S’ of an ordered rooted binary tree S is an
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ordered rooted binary tree which is a subtree of S whose left edges are left
edges of S, whose right edges are right edges of S, but whose root need not
be the root of S.

EXAMPLE 2.1.  The right side of the ordered rooted binary tree in Figure 3
is highlighted. Its leaves are labeled 0O,...,5 in order.

2%

2 3 4 5

FIGURE 3

An ordered rooted binary tree with 6 leaves

Define a standard dyadic interval in [0, 1] to be an interval of the form
(&, 2t1], where a, n are nonnegative integers with a < 2" — 1.

There is a tree of standard dyadic intervals, T , which is defined as follows.
The vertices of 7 are the standard dyadic intervals in [0, 1]. An edge of 7
is a pair (I,J) of standard dyadic intervals / and J such that either [ is the
left half of J, in which case (I,J) is a left edge, or I is the right half of J,
in which case ([,J) is a right edge. It is easy to see that 7 is an ordered

rooted binary tree. The tree of standard dyadic intervals is shown in Figure 4.

[0.1]
[0,172] [1/72,1]
[0,1/4] [1/4,1/2] [172,3/4] [3/4,1]
FIGURE 4

The tree 7 of standard dyadic intervals

Define a 7 -tree to be a finite ordered rooted binary subtree of 7 with
root [0,1]. Call the 7 -tree with just one vertex the trivial 7T -tree. For every

nonnegative integer n, let 7, be the 7 -tree with n+ 1 leaves whose right
side has length n. 73 is shown in Figure 5.

~
e — e
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RN

FIGURE 5
The 7 -tree T3

Define a caret to be an ordered rooted binary subtree of 7 with exactly two
edges. Every caret has the form of the rooted tree in Figure 6.

/N

FIGURE 6

A caret

A partition 0 = xg < x; <x < --- < x, =1 of [0,1] determines intervals
[x;_1,x]] for i = 1,... ,n which are called the intervals of the partition. A
partition of [0,1] is called a standard dyadic partition if and only if the
intervals of the partition are standard dyadic intervals.

It is easy to see that the leaves of a 7 -tree are the intervals of a standard
dyadic partition. Conversely, the intervals of a standard dyadic partition
determine finitely many vertices of 7, and it is easy to see that these vertices
are the leaves of their convex hull, which is a 7 -tree. Thus there is a canonical
bijection between standard dyadic partitions and 7 -trees.

LEMMA 2.2. Let f € F. Then there exists a standard dyadic partition
O=xg<x1 <xp <---<xp,=1 such that f is linear on every interval of
the partition and 0 = f(xg) < f(x1) < flxp) < -+ < f(xy) =1 is a standard
dyadic partition.

Proof. Choose a partition P of [0,1] whose partition points are
dyadic rational numbers such that f is linear on every interval of P. Let
[a,b] be an interval of P. Suppose that the derivative of f on [a,b] is
27k Let m be an integer such that m > 0, m+k > 0, 2"a € Z,
2"b € Z, 2"*f(a) € Z, and 2" (b) € Z. Then a < a+ 5 < a+ 5
< a-+ zi < -+ < b partitions [a,b] into standard dyadic intervals, and
fla) < f(a) + 7,,% < f(a) + 2—,,?;,; < fla) + —2% < .-+ < f(b) partitions
{ f(a), f(b)} into standard dyadic intervals. This easily proves Lemma 2.2. []

Eeoa
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Formally, a tree diagram is an ordered pair (R,S) of T -trees such that R
and S have the same number of leaves. This is rendered diagrammatically as
follows :

R—S.

The tree R is called the domain tree of the diagram, and S is called the
range tree of the diagram.

Suppose given f € F. Lemma 2.2 shows that there exist standard dyadic
partitions P and @ such that f is linear on the intervals of P and maps them
to the intervals of Q. To f is associated the tree diagram (R,S), where R is
the 7T -tree corresponding to P and S is the 7 -tree corresponding to Q.

Because P and () are not unique, there are many tree diagrams associated
to f. Given one tree diagram (R,S) for f, another can be constructed by
adjoining carets to R and S as follows. Let I be the n™ leaf of R for some
positive integer 7, and let J be the n™ leaf of S. Let I;, I be the leaves
in order of the caret C with root I, and let J;, J, be the leaves in order of
the caret D with root J. Because f is linear on I and f(I) = J, it follows
that f(I;) = J; and f(I,) = J,. Thus (R',S’) is a tree diagram for f, where
Rr=RUC and S =SUD.

In the other direction, if there exists a positive integer n such that the
n™ and (n+ 1)™ leaves of R, respectively S, are the vertices of a caret C,
respectively D, then deleting all of C and D but the roots from R and §
leads to a new tree diagram for f. If there do not exist such carets C, D in
R, S, then the tree diagram (R, S) 1is said to be reduced.

In this paragraph it will be shown that there is exactly one reduced tree
diagram for f. Suppose that (R,S) is a reduced tree diagram for f. It is easy
to see that if 7 is a standard dyadic interval which is either a leaf of R or not
in R, then f(I) is a standard dyadic interval and f is linear on I. Conversely,
if I is a standard dyadic interval such that f(I) is a standard dyadic interval
and f 1s linear on I, then [ is either a leaf of R or not in R because (R,S)
is reduced. Thus R is the unique 7 -tree such that a standard dyadic interval
I is either a leaf of R or not in R if and only if f(/) is a standard dyadic
interval and f is linear on /. This gives uniqueness of reduced tree diagrams.

Furthermore, if (R,S) is a tree diagram, then it is clear that there exists
f € F such that f is linear on every leaf of R and f maps the leaves of R
to the leaves of S.

Thus there is a canonical bijection between F and the set of reduced tree
diagrams.



222 J.W. CANNON, W.J. FLOYD AND W.R. PARRY

EXAMPLE 2.3.  Figure 7 shows the reduced tree diagrams for A and B.

FIGURE 7
The reduced tree diagrams for A and B

From Figure 2 it is not difficult to see that, for n > 0, the reduced tree
diagram for X, is the tree diagram in Figure 8.

/ \\ \J( n edges / \ \4 n edges
N Xn R \\\ )

FIGURE 8§

The reduced tree diagram for X,

It is easy to see that if (Q),R) is a tree diagram for a function f in F and
(R,S) is a tree diagram for a function g in F, then (Q,S) is a tree diagram

for gf.

The following definition prepares for Theorem 2.5, which makes the
correspondence between functions in F and tree diagrams more precise. Define
the exponents of a 7 -tree S as follows. Let Iy,..., I, be the leaves of S
in order. For every integer £ with 0 < k < n let g; be the length of the
maximal arc of left edges in S which begins at I; and which does not reach

the right side of S. Then a; is the k™ exponent of S.

EXAMPLE 2.4. Let S be the 7 -tree shown in Figure 9.

The leaves of S are labeled 0O,...,9 in order, and the exponents of S in
order are 2, 1,0, 0, 1, 2, 0, 0, O, O.
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FIGURE 9
The 7 -tree S

THEOREM 2.5. Let R, S be T -trees with n+1 leaves for some nonnegative
integer n. Let ag,...,a, be the exponents of R, and let by,...,b, be
the exponents of S. Then the function in F with tree diagram (R,S) is
Xooxbixhe . xbix oo XTOXTUX T, The tree diagram (R,S) is reduced
if and only if i) if the last two leaves of R lie in a caret, then the last two
leaves of S do not lie in a caret and ii) for every integer k with 0 < k < n,
if ax >0 and by > 0 then either ayy1 >0 or by > 0.

Proof. To prove the first statement of the theorem, by composing
functions it suffices to prove that the function with tree diagram (R,7,)
is X, X5, CX[ XY,

The proof of this will proceed by induction on a = > ,a;. If a =0,
then R = 7,, and the result is clear. Now suppose that ¢ > 0 and that the
result is true for smaller values of a. Let m be the smallest index such that
ay, > 0. Then there are ordered rooted binary subtrees R;, R,, R; of R such
that R has the form of the tree at the left of Figure 10.

m edges /\ m edges

FIGURE 10
The 7 -trees R and R’

Let R be the 7 -tree shown at the right of Figure 10, where R/, R}, R,
are isomorphic with R;, R,, R; as ordered rooted binary trees. According
to Example 2.3, the function with tree diagram (R,R’) is X, !. If a},... ,d

e )
are the exponents of R’, then a;, = a, — 1 and a = a; if k # m. Thus
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the induction hypothems apphes to R’, and so the function with tree diagram

(R', T, is X, ° X, a’X a‘X . Again by composing functions, it follows
that the function with tree diagram (R,7,) is X, --- X, “X;“X,®, as
desired.

The second statement of the theorem is now easy to prove.

This proves Theorem 2.5. [

COROLLARY 2.6. Thompson’s group F is generated by A and B.

COROLLARY-DEFINITION 2.7. Every nontrivial element of F can be
expressed in unique normal form

boybiybr | ybay—an . y—Gy—diy—do
Xo X7 X3" - XX, Xy X T X

where n,aq, ... ,a,, by, ..., b, are nonnegative integers such that i) exactly
one of a, and b, is nonzero and ii) if ap > 0 and by, > 0 for some integer
k with 0 < k < n, then ary1 > 0 or byyr; > 0. Furthermore, every such
normal form function in F is nontrivial.

The functions in F of the form Xgon ‘Xé’z - XU with by > 0 for
k=0,...,n will be called positive. The positive elements of F are exactly
those with tree diagrams having domain tree 7, for some nonnegative integer
n. Inverses of positive elements will be called negative.

LEMMA 2.8. The set of positive elements of F is closed under multipli-
cation.

Proof. Let f and g be positive elements of F. Let (7,, R), respectively
(7,,,S), be tree diagrams for f, respectively g. If the right side of S has
length k, then it is easy to see that fg has a tree diagram with domain tree
Ttmax{m—k,0} - Thus fg is positive. This proves Lemma 2.8.  []

Fordham [Fo] gives a linear-time algorithm that takes as input the reduced
tree diagram representing an element of Thompson’s group F and gives as
output the minimal length of a word in generators A and B representing
that element. The algorithm can be modified to actually construct one, or all,
minimal representatives. Fordham assigns a type to each caret of the tree pair;
the minimal Iength is a simple function of the type sequences of the two trees.
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§3. PRESENTATIONS FOR F

Two presentations for F will be given in this section.
Now two groups F; and F, will be defined by generators and relations.
The generators A, B, Xo,X1,Xa,... will be referred to as formal symbols, as

opposed to the functions defined above. Given elements x, y in a group,

[x, y] = xyx~ 1y~

Fi = (A,B:[AB™',A"'BA],[AB~',A7BA%])
Fy = (X0, X1, X0, ... : X7 'XoXg = X1 for k <n)

THEOREM 3.1. There exists a group isomorphism from F; to F, which
maps A to Xy and B to X;.

Proof. There is a group homomorphism from the free group generated
by the formal symbols A and B to F, such that A maps to Xy and B
maps to X;. This homomorphism is surjective because X, = X, (”_DXng“1
for n > 2. To see that the defining relations of F; are in the kernel of this
homomorphism, note that

X7'0X =X X, and  X{'X3X) = X; ' X3Xo,

hence
[XoX; ', X2]l=1 and  [XoX;',X3]=1,

hence
XX, Xy 'XiXol=1 and  [XoX; ', X;2X X3 =1.

Thus to complete the proof of Theorem 3.1 it suffices to prove that there
exists a group homomorphism from F, to F; which maps X, to A and X; to
B. To prove this it in turn suffices, after setting Yo = A and ¥, = A~ @~ Dpan—1
for n > 1, to prove that

(3.2) Y'Yy =Y,y  fork<n.
A closely related statement is that
(3.3) [A7'B,Y,]=1 form>3.

Lines (3.2) and (3.3) will be proved in this paragraph. To see that line
(3.3) is true for m = 3 note that

[AB™',A"'BA] =1= A" [AB™' , A"'BAJA =1 = [B7'A,A"2BA?] = 1
= [A7'B,A7’BA’] =1 = [A"'B,V;] = 1.
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The same argument gives line (3.3) for m = 4. The following equations show
that line (3.2) is true if line (3.3) is true for m =n — k + 2.

YnYk — A—n—i—lBAl’l—lA—k—I-lBAk—l — A—k+2A—(n—k+1)BAn—k-|—]A—lBAk—l
— A—k+2 Yn_k+2A-—1BAk—1 — A_k+2A_1BYn_k+2Ak_]
_ A——k—{—lBAk—]A—k—i—lYn—k+2Ak—l — YkYn—{—l

Thus line (3.2) 1s true for every positive integer n and k = n—1. In particular,
Y3_1Y4Y3 = Y5. Because line (3.3) is true for m = 3 and m = 4, it follows
that line (3.3) is true for m = 5. An obvious induction argument now gives
line (3.3) for every m > 3. This proves lines (3.2) and (3.3).

The proof of Theorem 3.1 is now complete.  []

THEOREM 3.4. There exist group isomorphisms from F, and F, to
F which map the formal symbols A,B,Xy,X1,Xs,... to the corresponding
functions in F.

Proof. Example 1.2 shows that the interior of the support of the function
AB~! in F is disjoint from the supports of the functions A~'BA, A~2BA? in
F, and so the functions A, B in F satisfy the defining relations of F;. Thus
there exists a group homomorphism from F; to F which maps the formal
symbols A, B to the corresponding functions in F. Corollary 2.6 shows that
this group homomorphism 1is surjective. Theorem 3.1 shows that this surjective
group homomorphism induces a surjective group homomorphism from F,
to F which maps the formal symbols Xg,X;,X5,... to the corresponding
functions in F. To prove Theorem 3.4 it suffices to prove that this latter
group homomorphism is injective.

It will be proved that this latter group homomorphism is injective in this
paragraph. The defining relations of F, imply that

X' X =Xon X0 X' Xe=XX, XXk =XeXap  for k <n.

It follows that every nontrivial element x of I, can be expressed as a positive
element times a negative element as in Corollary-Definition 2.7. If X occurs
in both the positive and negative part of x but X;,; occurs in neither, then
because XiX, 11X, L' =X, for n > k, it is possible to simplify x by deleting
one occurrence of X; from both the positive and negative part of x and
replacing every occurrence of X,,; in x by X, for n > k. Thus every
nontrivial element of F, can be put in normal form as in Corollary-Definition
2.7. Tt follows from Corollary-Definition 2.7 that every nontrivial element of
F, maps to a nontrivial element of F, as desired.
This proves Theorem 3.4. [
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§4. FURTHER PROPERTIES OF F

Geoghegan discovered the interest in knowing whether or not F is
amenable; he conjectured in 1979 (see p. 549 of [GeS]) that F does not
contain a non-Abelian free subgroup and that F is not amenable. Brin and
Squier proved in [BriS] that F does not contain a non-Abelian free subgroup,
but it is still unknown whether or not F is amenable. We first define amenable,
and then discuss why the question of amenability of F is so interesting. For
further information, see [GriK], [P], or [W].

A discrete group G is amenable if there is a left-invariant measure g on
G which is finitely additive and has total measure 1. That is, G is amenable
if there is a function p: {subsets of G} — [0, 1] such that

1) pu(gA) = (A) for all g € G and all subsets A of G,
2) w(G) =1, and
3) WAUB) = u(A) + u(B) if A and B are disjoint subsets of G.

It is clear from the definition that a finite group is amenable. We will
prove by contradiction that the free group K = (a,b) is not amenable.
Suppose otherwise, and let p be a finitely additive, left invariant measure
on K with finite total measure. Then u({1}) = 0 since K is infinite.
For each g € {a,b,a™"',b7'}, let gx = {h € K : h has a freely reduced
representative beginning with g}. Then a™!(ax) = (bx) U (ax) U (b~ %) U {1},
50 plax) = p(bx) + p(ax) + w(b~'x) and hence u(b*) = b ') = 0.
Similarly, p(ax) = u(a=—'%) = 0. Since

K={1}U (@@ %) U b*) U (ax) U (b~ %),
wK)=0.

The idea of amenability arose from Banach’s paper [Ban], in which he
proved that the Monotone Convergence Theorem does not follow from the
other axioms of Lebesgue measure. In [N], von Neumann defined amenability
(though the term amenable is due to Day [Da]). Von Neumann proved that
the free group of rank two is not amenable, and he made the connection
between Banach-Tarski paradoxes and nonamenability of the isometry groups.
He proved that the class of all amenable groups contains all Abelian groups
and all finite groups, and is closed under quotients, subgroups, extensions,
and directed unions with respect to inclusion. We call a group an elementary
amenable group if it is in the smallest class of groups that contains all Abelian
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and finite groups and is closed under quotients, subgroups, extensions, and
directed unions with respect to inclusion.

Following [Da], let EG denote the class of elementary amenable groups,
let AG denote the class of amenable discrete groups, and let NF denote the
class of groups that do not contain a free subgroup of rank two. Day noted in
[Da] that EG C AG and AG C NF (this follows from [N]), and added that it
is not known whether EG = AG or AG = NF. The conjecture that AG = NF
is known as von Neumann’s conjecture or Day’s conjecture; it is not stated
explicitly in [N] or in [Dal].

Olshanskii (see [O]) proved that AG # NF; Gromov later gave an
independent proof in [Gro]. Grigorchuk [Gril] proved that EG # AG. However,
none of their examples is finitely presented. There are no known finitely
presented groups that are in NF\ AG or in AG \ EG. Brin and Squier proved
in [BriS, Theorem 3.1] that F € NF (Corollary 4.9 here). We prove in
Theorem 4.10 that F is not an elementary amenable group. If F is amenable,
then F is a finitely presented group in AG \ EG ; if F is not amenable, then
F is a finitely presented group in NF \ AG.

One approach to proving that F' is not amenable would be to show that
Hy(F,R) # 0 for some positive integer n, where the subscript b indicates
bounded cohomology. This was suggested by Grigorchuk in [Gri2], which is
a reference for the results in this paragraph. If a group G is amenable, then
Hy(G,R) = 0 for all positive integers n by Trauber’s theorem. Since it is true
for any group G that H,?(G, R) = R and Hé(G, R) = 0, the first nontrivial
case is n = 2. It follows from [DeV] that F’ is uniformly perfect. This fact
can be used to show that H,%Q(F ,R) = 0. Ghys and Sergiescu have observed
that, in fact, H7(F,R) = 0.

THEOREM 4.1. The commutator subgroup [F,F] of F consists of all
elements in F which are trivial in neighborhoods of 0 and 1. Furthermore,

F/IF,F1~Z&Z.

Proof. There exists a group homomorphism ¢: F — Z ® Z such that if
f € F, then ¢(f) = (a,b), where the right derivative of f at 0 1s 2 and the
left derivative of £ at 1 is 2°. Since p(A) = (—1,1) and ©(B) = (0, 1), ¢ is
surjective. It is easy to see that if K is a group generated by two elements
and there exists a surjective group homomorphism from K to Z®Z, then the
kernel of that homomorphism is the commutator subgroup of K. Corollary
2.6 shows that F is generated by A and B, and so [F,F] = ker(y). This
proves Theorem 4.1. [
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LEMMA 4.2. If 0 = xp < X <X < - < Xy =1and 0 = yo
<y <y < -0 <y, =1 are partitions of [0,1] consisting of dyadic
rational numbers, then there exists f € F such that f(x;) = y; for i=10,... ,n.

Furthermore, if xi_1 = yi—1 and x; = y; for some i with 1 <1 < n, then f
can be taken to be trivial on the interval [x;—1,xi].

Proof. Let m be a positive integer such that 2”x; € Z and 2"y; € Z for
i=0,...,n. Let R = S be the T -tree whose leaves consist of the standard
dyadic intervals of length 27™. Let [ be the leaf of R whose right endpoint
is x;, and let J be the leaf of § whose right endpoint is y;. By adjoining
carets to R with roots not right of [ or adjoining carets to .S with roots not
right of J, it may be assumed that there are as many leaves in R left of
I as there are in S left of J. Continue in this way to enlarge R and S if
necessary so that the function f with tree diagram (R,S) maps x; to y; for
i =0,...,n. This easily proves Lemma 4.2.  []

THEOREM 4.3. Every proper quotient group of F is Abelian.

Proof. Let N be a nontrivial normal subgroup of F. It must be proved
that F/N is Abelian.

For this it will be shown in this paragraph that the center of F is trivial.
Let f be in the center of F. Since f commutes with B, f and f~! stabilize
the fixed point set of B, namely, [0,3]U {1}. This implies that f(3) = 3.
Because every element of F' commutes with f, every element of F stabilizes
the fixed point set of f. This and Lemma 4.2 easily imply that the fixed point
set of f is [0, 1]. Thus the center of F is trivial.

Because N contains a nontrivial element and the center of F is trivial, N
contains a nontrivial commutator of F'. Let

. b() b] bz b,, —dy —ay —daj —ay
f_XOXIX?_"'Xan "'XQ Xl XO

be such an element expressed in normal form. It is easy to see using the map
@ 1n the proof of Theorem 4.1 that agp = by. Let k be the smallest index

such that a; # by. By replacing f by f~! if necessary, it may be assumed
that by > a;. By replacing f by

—ar YT Ry —aly—doppyao val yaz a
X, Xy XX, X XT X5 X

it may be assumed that by =---=b,_1 =0, ap=---=q, = 0, and b > 0.
By replacing f by X’S_l é‘k it may be assumed that ag = a; = by = 0
and b; > 0. In this case (Xo_leo)(Xf 'xpHTl = Xg‘Xl_b‘. Hence N contains

— — — s
XXX )XY = X"Xb for some positive integer b. Hence N contains
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XoX; ' (X7 XD Xy OGPXD) XXy = XoX3 T 06X ) X, Xy
= XoXoX; 'X; ' =X X, ' =BAT'B7A.

Thus F/N is Abelian.
This proves Theorem 4.3. [

LEMMA 4.4. Let a, b be dyadic rational numbers with 0 < a < b <1
such that b — a is a power of 2. Then the subgroup of F consisting of
all functions with support in [a,b] is isomorphic with F by means of the
straightforward linear conjugation.

Proof. Let ¢: [a,b] — [0,1] be the linear homeomorphism de-

fined by ©x) = ;=x — ;2. Then ¢ ':[0,1] — [a,b] is given by
¢~ 1(x) = (b — a)x +a. The isomorphism from F to the subgroup in question
is defined so that for every f € F, f — ¢~ 'fp. Where it exists, the deriva-
tive of ¢~ !fp is f'¢. The functions ¢ and ¢! both map dyadic rational
numbers to dyadic rational numbers. Thus f is a function from [0,1] to [0,1]
whose points of nondifferentiability are dyadic rational numbers if and only if
¢© fe is a function from [a, b] to [a,b] whose points of nondifferentiability

are dyadic rational numbers. Lemma 4.4 easily follows.  []

THEOREM 4.5. The commutator subgroup [F,F] of F is a simple
group.

Proof. Let N be a normal subgroup of [F,F] containing a nontrivial
element f. According to Theorem 4.1, f is trivial in a neighborhood of 0 and
a neighborhood of 1. Theorem 4.1 and Lemma 4.2 easily imply that there
exists ‘g € [F, F] which maps neighborhoods of the intervals [0, %] and [%, 1]
into these neighborhoods of 0 and 1. Thus gfg~!

N whose support lies in [, 2]. According to Lemma 4.4 the subgroup of all

functions in F with support in [l 3] 1s 1somorphic with F. Now Theorem

4.3 shows that N contains the commutator subgroup of the subgroup of F
of all functions with support in [%, %] Thus N contains all functions in F
which are trivial in neighborhoods of the intervals [0, ;] and [3,1]. Just
as the above function f is conjugated by ¢ into this set of functions, every
element of [F,F] is [F, F]-conjugate to a function in this set.

This proves Theorem 4.5.  []

1s a nontrivial function in

THEOREM 4.6. The submonoid of F generated by A, B, B~ is the free
product of the submonoid generated by A and the subgroup generated by B.
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Proof. The proof will deal with reduced words in A, B, B~!. Given
such a reduced word w, let w denote the corresponding element in F. What
must be shown is that if w; and w, are two reduced words in A, B, B!
with wy = w;, then w; = w;.

Suppose that there exist reduced words w;, w; in A, B, B! with
w; = w; and w; # w,. Choose such words w; and w, so that the sum of
their lengths is minimal. Suppose that one of w; and w, ends (on the right)
with B and the other ends with B~!. Then w;B = w:B, wB # w,B, and
the sum of the lengths of w;B and w,B is minimal. Thus by multiplying
w; and w, on the right by an appropriate power of B, it may further be
assumed that w; ends with A. Because the sum of the lengths of w; and
wy is minimal, w, ends with either B or B!,

There exists a group homomorphism ¢: F — Z such that ¢(A) =1 and
©(B) = 0. Hence ¢(w;) = p(w;) implies that the number of A’s which occur
in w; equals the number of A’s which occur in w,. Let n be this number
of A’s. Clearly n > 0.

Now note that A(3) = ; and moreover A"(3) = 27", Because B and
B~! act trivially on the closed interval [O, %] , 1t follows that w—l(%) =27".

Suppose that w, ends with B. Then w, ends with AB™ for some positive
integer m. Note that 1 < B’"(f—l) < % and so }1 <, AB’"(%) & % Again
because B and B~! act trivially on the closed interval [O, %] , 1t follows that
w_z(%) 18 not a power of 2, contrary to the fact that IUT(%) = Z ",

Thus w, ends with B~'. Now note that 7 < B~!(x) = A~'(x) for every

x 1in the interval [% 1}. Because w_z(%) = 27", it follows that w, = wsw;,

where w3 and w, are reduced words in A, B, B~! with w4(%) = % and

ws ends with either A or B. If w; ends with A, then the argument of the
penultimate paragraph shows that w_z(%) = 'L_UE(%) = 27" where n’ is the
number of A’s in ws. But A occurs in w, because w4(%) = %, and so
n' < n. This is impossible, and so ws; ends with B. The argument of the

previous paragraph shows in this case that w—z(%> 1s not even a power of 2.

This contradiction completes the proof of the theorem. [

COROLLARY 4.7.  Thompson’s group F has exponential growth.

Theorem 4.8 and Corollary 4.9 were proved in [BriS] for the supergroup

of F of orientation-preserving, piecewise-linear homeomorphisms of R that
have slope 1 near —oco and co.
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THEOREM 4.8. Every non-Abelian subgroup of F contains a free Abelian
subgroup of infinite rank.

Proof. Let K be a subgroup of F generated by elements f, g such that
[f.g] # 1. Let I;,... .1, be the closed intervals in [0, 1] with nonempty
interiors such that for every integer k with 1 < k < n, if x is an endpoint
of I, then f(x) = g(x) = x and if x is an interior point of I, then either
f) #x or g(x) #x.

In this paragraph it will be shown for every integer £k with 1 < k < n
that the endpoints of I; are cluster points of the K-orbit of every interior
point of [;. Let x be an interior point of [;. Let y be the greatest
lower bound of the K-orbit of x. If y is not the left endpoint of I,
then either f(y) # y or ¢g(y) # y. Suppose that f(y) # y. Then either
f(o) < y or f71(y) < y. Hence there exists a neighborhood of y such
that every element of its image under either f or f~! is less than y.
Thus y 1is the left endpoint of ;. The same argument applies to least
upper bounds. This proves for every integer k with 1 < k < n that the
endpoints of I, are cluster points of the K-orbit of every interior point
of Ik.

Let h; = [f. g]. Just as commutators in F' are trivial in neighborhoods of 0
and 1, A, is trivial in neighborhoods of the endpoints of I;. The result of the
previous paragraph implies that /) is conjugate in K to a function /i, whose
support in /) is disjoint from the support of 4; in [;. It easily follows that there
exists an infinite sequence of functions Ay, A, h3,... in K whose supports in
I, are mutually disjoint. Thus [A;, ;] is trivial on I} for all positive integers
i, j. If [hi.hj] =1 for all positive integers i and j, then it is easy to see that
hi.hy.hs.... form a basis of a free Abelian subgroup of K, as desired.

If [h;, hj] # 1 for some positive integers i and j, then repeat the argument
of the previous paragraph with A; replaced by this nontrivial commutator
[A;. hj] and I; replaced by some interval Iy on which [A;, 5] 1s not trivial.
This process eventually leads to an infinite sequence of functions Ay, hy, hs, . ..
in K which form a basis of a free Abelian subgroup.

This proves Theorem 4.8. [

COROLLARY 4.9. Thompson’s group F does not contain a non-Abelian
free group.

The next result relies on the paper [C] by Ching Chou.
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THEOREM 4.10. Thompson’s group F is not an elementary amenable
group.

Proof. According to (a) of Chou’s Proposition 2.2, it suffices to prove
that F ¢ EG, for every ordinal «. Since EGy consists of finite groups and
Abelian groups, it is clear that F ¢ EGp, so assume that o > 0 and that
F ¢ EGg for every ordinal 8 < «.

If « is a limit ordinal, then there is nothing to prove. Suppose that o
is not a limit ordinal. It must be shown that F cannot be constructed from
groups in EG,_; as a group extension or as a direct union.

First consider group extensions. Suppose that F' contains a normal subgroup
N such that N, F/N € EG4_1. Since F ¢ EG,—1, N is nontrivial.
Theorem 4.3 implies that [F,F] C N. Now Theorem 4.1 and Lemma 4.4
easily imply that N contains a subgroup isomorphic with F. Proposition 2.1
of [C] states that subgroups of groups in EG,_; are also in EG,—;. Thus
F € EG,—, contrary to hypothesis. This proves that F cannot be constructed
from EG,_; as a group extension.

Second consider direct unions. Suppose that F is a direct union of groups
in EG,—;. This is clearly impossible because F is finitely generated.

This proves Theorem 4.10. [

We next show that F is a totally ordered group (this also follows from
[BriS]). Define the set of order positive elements of F to be the set P of
functions f € F' such that there exists a subinterval [a,b] of [0, 1] on which
the derivative of f is less than 1 and f(x) =x for 0 < x < a. It is easy to
see that the positive elements of F are indeed order positive. It is clear that
F =P 1'U{l1}UP. It is easy to see that P is closed under multiplication
and f~'Pf C P for every f € F. This proves Theorem 4.11.

THEOREM 4.11.  Thompson’s group F is a totally ordered group.

§5. THOMPSON’S GROUP T

The material in this section is mainly from unpublished notes of Thompson
[T1].

Consider S' as the interval [0,1] with the endpoints identified. Then
T' is the group of piecewise linear homeomorphisms from S' to itself that
map images of dyadic rational numbers to images of dyadic rational numbers
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and that are differentiable except at finitely many images of dyadic rational
numbers and on intervals of differentiability the derivatives are powers of 2.
Just as we proved that F is a group, it is easy to see that T is indeed a
group.

While T is defined as a group of piecewise linear homeomorphisms of
S!, Ghys and Sergiescu [GhS] proved that there is a homeomorphism of S!
that conjugates it to a group of C*° diffeomorphisms. (Thurston had proved
earlier that 7 has a representation as a group of C°° diffeomorphisms of S'.)

EXAMPLE 5.1. The elements A and B of F induce elements of 7, which
will still be denoted by A and B. A third element of 7 is the function C
defined (on [0, 1]) by

X 3 1

2t Usx=3

Cx)=1¢ 2x—1, 3<x<3
1 3

X—Z, ZSXSI

We can associate tree diagrams and unique reduced tree diagrams to
elements of 7" almost exactly as we did to elements of F'. The only difference
is the following. Elements of F' map leftmost leaves of domain trees to leftmost
leaves of range trees. When an element of 7' does not do this, we denote the
image in its range tree of the leftmost leaf of its domain tree with a small
circle. For example, the reduced tree diagram for C is in Figure 11.

FIGURE 11

The reduced tree diagram for C

LEMMA 5.2. The elements A, B, and C generate T and satisfy the
following relations :

1) [AB~' A7'BA] =1,

2) [AB~',A72BA%1 =1,

3) C=BA~'CB),

4) (A"'CB)(A~'BA) = B(A~%CB?),

5) CA=(A"'CB)?, and

6) C*=1.
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Proof. Let H be the subgroup of T generated by {A,B,C}. Since {A, B}
is a generating set for F, F C H. Suppose f € T. Let [x] = f([0]). If
[x] = [0], then f € F and hence f € H. If [x] # [0], then there is an element
h € F with h(x) = 2 by Lemma 4.2. Then g = C™'hf fixes [0], so g € F.
Hence f =h 'Cg€ H and H=T. Thus A, B, and C generate T.

Relations 1) and 2) are proved in Section 3.

Consider relation 3). It is equivalent to the relation CBC~! = AB~!. The
reduced tree diagram for CBC~! is computed in Figure 12, the notation being
straightforward.

R o5 TR AN

FIGURE 12
Computing the reduced tree diagram for CBC™!

Referring to Figure 1 shows that AB~! has the same reduced tree diagram
as CBC~', which completes the verification of relation 3).
Consider relation 4). It is equivalent to

(B'C'A)(AB™Y)(A~'CB) = BA"'B A,

where the term A™!'CB here corresponds to the same term in relation 4). We
compute a tree diagram for the left side of this equation in Figure 13.

FIGURE 13
Computing a tree diagram for (B=!'C~!A)AB~ ')A~ CB)

Referring to Figure 1 now completes the verification of relation 4).
Relation 6) is easily verified using the reduced tree diagram for C.
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Finally consider relation 5). Use relation 6) and then relation 3) to
rewrite relation 5): CA = A"'CBA™!CB < CA = A~'C ' (C'BA~'CB) &
CA=A"'C"! & (AC)*> = 1. The reduced tree diagram for AC is computed
in Figure 14.

FIGURE 14
Computing the reduced tree diagram for AC

Hence AC acts on S' by translation by |
relation 5). [

1], and so (AC)* = 1, which gives

Let
T, = (A,B,C : [AB~!,A7'BA],[AB~',A™2BA?], C"'B(A™'CB),
((A~'CB) (A—lBA))‘lB(A—ZCBz), cA AT, ) .

LEMMA 5.3. There is a surjection Ty — T that maps the formal symbols
A, B, and C to the functions A, B, and C in T.

Proof. This follows immediately since the functions A, B, and C satisfy
the relations 1) - 6). [

LEMMA 5.4. The subgroup of T, generated by A and B is isomorphic
to F.

Proof. The results of Section 3 show that there exists a group homo-
morphism from F to the subgroup of 77 generated by A and B whose
composition with the map from T; to T 1is the identity map on F. This
proves Lemma 5.4. [

It is easier at this point to prove that 7 is simple than to prove that T
is simple. However, it is preferable to prove that 7 is simple, since then
Lemma 5.3 implies that 7" is isomorphic to 77.

Define the elements X,, n >0, of T; by Xo =A and X, = A~ ~DpAr—!
for n > 1. It follows from Theorem 3.4 and Lemma 5.4 that X, X; = X3 X,,+1
if k < n. Define the elements C,, n>1, of T; by C, = A=®=DCB*~! For
convenience we define Cyp = 1.
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To gain some insight into these elements C,, in Figure 15 we calculate
reduced tree diagrams for the corresponding elements, still called C,, in 7.
The reduced tree diagram for C; is given in Figure 11, and the reduced
tree diagram for C, is given in Figure 13. This calculation shows that C,
permutes the images of the n + 2 intervals

0,1 27111 -27"1-277],
[1 — 2—2’ 1 — 2—3]7 e [1 . Z_H, 1 — 2—(n—|—1)]’ [1 o 2—(n+1), 1]

cyclically.
The rest of this section deals with the group 7.

O RRANE @x

NN S /\

O

FIGURE 15

Inductively computing the reduced tree diagram for C, with n > 3

LEMMA 5.5. If k, n are positive integers and k < n, then
l) Cn - XnCn—i—l,
ll) CnXk :Xk_ICnH, and
iit) ChA = Crp,
Proof.
Co=A""VCB! = A="=DpA~'CB) B!
= A" VBA" Y (AT"CB") = X,Cpy1

which proves i).

If k=1, ii) follows from the definition. If k = n = 2, 11) follows from
relation 4). If k =2 and n > 2, then by induction on #

CXo 2 X ComiXo " X X0 = XX 2 X0 Cy
If k> 3, then by induction on k
C.Xy = A~'C,_BX,

=A7'C, 1 X B " ATIX, OB = (A~'X_A4) (A"1C,B)
= Xi—1Cpy1
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Equation 111) follows by induction on n. If n =1 then it is relation 5). If
n > 1, then

C,A=A"'C,_1BA=A"'C,_AX,
induct , _ i _
A, 2 AT CBC = C . O

LEMMA 5.6. If n is a positive integer, m € {1,... ,n+ 1}, and
r,s € {0,... ,n}, then
)
Xr—mChlyq, r>m
CiX, =4 Crtl r=m-—1
Xrtar2-mCuiys 7 <m—1;
ii) _
m- —
Cot1 Xamy—nt2yy S = (n+2)—m
xler={ cn, s=(+D—m
cro Xt s<n—m;

i) Cf = Xot1)-mCpyy 5

iv) G =Gl X, Ly

v) C"2 =1,

Proof. The first line of i) follows from Lemma 5.5.i). If r = 0, the
second line is Lemma 5.5.i11); if » > 0

5.5.ii) 5.5.iii)
CiX, = CoCoX, =" GACy,, =" CoCryy = CZ:LII :
This proves 1) if r > m — 1.
o 550 et 5.5.i0)
Cnm = CZQ ]Cn = CZl XnCn—i—l — n—(m—1) 21—1-1 )

which proves iii). If r <m — 1, then

_ 5.5 -
e, = CpeHIerHy, 32 et

iif) m—(r+1) ~r+2 _ +1
= Xt 1-m—+1)Crgr Coil = Xrtnr2—mCrp1 5

which finishes the proof for i).
The first line of ii) follows from 1), with s = r+(n+2—m). The second line
of ii) follows from iii). The third line of ii) follows from i), with s = r — m.
Equation iv) follows from the second line of i). If # > 1, then
2 = ¢t 2 cact Y 2 ot = o3
Since C3 = C3 = 1, this proves v) and completes the proof of Lemma 5.6. [
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Following the terminology for F, an element of 7) which is a product
of nonnegative powers of the X;’s will be called positive and an inverse of a
positive element will be called negative.

THEOREM 5.7. If g € Ty, then g = pC"q™" for some positive elements
p, q and nonnegative integers m, n with m <n+2.

Proof. We first show that if i, j, k, and [ are positive integers, then
there are positive elements p and ¢q and nonnegative integers m and n such
that C’CA — pC"q~". Suppose that i, j, k, and [ are positive integers and

that g = CJ’.Cf‘. Since Cf“ = Cf” = 1 by Lemma 5.6.v), we can assume
that i < j+2 and k < [+ 2. Let n > max{j,/}. By Lemma 5.6.iii) and
Lemma 5.6.1v), there is a positive integer r and there are positive elements
p and g such that Ci = pC, and Cf = C,q~"'. Hence Cici =pCit'q™

Let H = {g € T1 . g = pC'q~! for some posmve elements p, q,
and nonnegative integers m, n with m < n 4+ 2}. Lemma 5.6.v) easily
implies that H 1is closed under inversion. To show that H is closed
under multiplication, suppose that g;,g» € H. Then g; = plchl—l and
g = p2C q21 for some positive elements p;, p2, g1, and ¢ and some
nonnegative integers i, j, k, and [ with i < j+ 2 and k < [+ 2. By
Corollary 2.7, there are positive elements p3 and g3 such that ql—l P2 = D345 :
Hence g1, = p1Cq1 paClq2 = plC]’:p3q3—lCqu;1. Lemma 5.6.111) and
Lemma 2.8, which states that the set of positive elements of F is closed
under multiplication, show that if i > 0 and j > 0, then we may replace Ci
by C’+1 Hence we may assume that if i > 0, j > 0, and X, occurs in ps,
then j > r. We may likewise assume that if k > 0, [ > 0, and X, occurs
in g3, then [ > s. Now Lemmas 5.6.1), 5.6.11), and 2.8 show that there are
positive elements py and g+ and nonnegative integers r, s, t, and u such
that g1g, = paC Cuq4 By the previous paragraph and Lemma 2.8, there are
positive elements ps and gs and nonnegative integers m and n such that
q192 = p5C,'1"q5_1. Since we can assume that m < n+ 2 by Lemma 5.6.v),
9192 € H. Hence H is a subgroup of 7). Since 7; is generated by A = X,
B=X;,and C=Cy, all of which are in H, H=T,. [

THEOREM 5.8. T} is simple.

Proof.  Suppose N is a nontrivial normal subgroup of 7;, and let
0: Ty — T;/N be the quotient homomorphism. Then there is an element
g€ T, with g #1 and 6(g) = 1. By Theorem 5.7, g = pC"q~" for some
positive elements p, g and nonnegative integers m, n with m < n+ 2. Then
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0p~'q) = 6(C)
and  4((p~'g)"?) = 6((CTy ) = o((CtHy™) TE (1) = 1.
By Lemma 5.4, there is a homomorphism «: F — T;/N defined on generators
by a(A) =6(A) and a(B) = 0(B). If p~lqg # 1, then (p~'¢)"t? £ 1, and so

a(F) is a proper quotient group of F. Since every proper quotient group of
F is Abelian by Theorem 4.3, 6(AB) = O(BA). If p~l¢ = 1, then m,n > 0

and 1 = 6(C™) ~= g(C™) (X1 ) and hence (X7T) = ((Cr)y+3)
= 0((CiIy™*1) = 6(1) = 1. It follows as before that §(AB) = O(BA).

Hence 6(A~'BA) = 0(B), so 8(A~'C) = H(BA~2C) by relation 4). Hence
O(BA™!) = 1, and so 6(B) = 1 by relation 3). This implies that 6(A) = 1.
It now follows from relation 5) that 6(C) = 1. Thus N = T}, and so T is
simple. [

COROLLARY 5.9. Tj is isomorphic to T.

§6. THOMPSON’S GROUP V

As with the previous section, the material in this section is mainly from
unpublished notes of Thompson [T1]; [T1] contains the statements of the
lemmas (except for Lemma 6.2) and the statement and proof of Theorem 6.9,
but does not contain the proofs of the lemmas.

Let V be the group of right-continuous bijections of S' that map images
of dyadic rational numbers to images of dyadic rational numbers, that are
differentiable except at finitely many images of dyadic rational numbers, and
such that, on each maximal interval on which the function is differentiable,
the function is linear with derivative a power of 2. As before, it is easy to
prove that V is a group.

We can associate tree diagrams with elements of V as we did for F and
T, except that now we need to label the leaves of the domain and range trees
to indicate the correspondence between the leaves. For example, reduced tree
diagrams for A, B, and C are given in Figure 16.

Using the identification of S! as the quotient of [0, 1], define 7 : S' — S
by

X 1 1
2ty 0sx<j3
o) =14 2x—1, 1<x<?
X, %§x<l
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@\ ’ /<\ ’ A\ />\ - />\
1 =2 3 7 > 1 1 >3
2 3 1 2 2 /< y
3 4 2 3

FIGURE 16
Reduced tree diagrams for A, B, and C

We define elements X, and C, of V as before. That is, Xo = A,
X, = A"+ BA"! for an integer n > 1, and C, = A~"T!CB"~! for an integer
n> 1. Define m,, n>1, by m = C;'mC, and m, = A" 'mA™"! for
n > 2. Reduced tree diagrams from mg, 7, m, and 73 are given in Figure 17.

Ty T,
1 2 ] ]
2 3 1 3 2 3
3 4 2 4

FIGURE 17
Reduced tree diagrams for m;, 0 <i <3

It is easy to see for every positive integer n that mg,...,m,_; generate a
subgroup of V isomorphic with the symmetric group of all permutations of
the n+ 1 intervals [0,1 —271], [1 =271, 1-272], [1 —272,1—-273],...,
[1—27"1—2"@+D] Furthermore m,...,m,_; and C, generate a subgroup
of V 1isomorphic with the symmetric group of all permutations of the
n+ 2 intervals [0,1 —271], [1 —271 1 —-272], [1 —=272,1—-2773],...,
[1—27"1—2"0tD] [1 —2=0+D 1] for every positive integer n.

LEMMA 6.1. The elements A, B, C, and my generate V and satisfy the
following relations :

1) [AB~1.X,]=1;
2) [AB71. X3]1=1;
3) C; =BGC,;

4) CoX, = BCs;
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5) ClA=C3;
6) Ci=1;

7) le =1;

8) mmy = MMy,
9) (mm)’ =1;

10) X3m = mX3;
11) m X, = Bmoymy ;
12) m™B

13) mC3z = C3my; and
14) (mCy)® = 1.

Proof. Let H be the subgroup of V generated by A, B, C, and 7. To
prove that H = V, it suffices to prove that if R and S are 7 -trees with n
leaves labeled by 1,... ,n, then there is an element of H with domain tree
R and range tree S which preserves labels. Since H is a group and A and
B generate the subgroup F of V, we can assume that R =S = 7,_;. So
assume that R = S = 7,_;. Each element of the subgroup of V generated by
7o and C,_, has a tree diagram with domain tree and range tree 7,_;, and
this subgroup is isomorphic to the symmetric group 2,, acting on the leaves
of 7,_1. Hence there is an element of V with domain tree R and range tree
S which preserves labels, and H = V.

It follows from Lemma 5.2 that relations 1)-6) are satisfied. Relations 7), 8),
9), 13), and 14) follow easily from the viewpoint of permutations. Relation 10)
is true because the supports of m; and X3 are disjoint. Relations 11) and 12)
can be established by verifying that the reduced tree diagrams for the two ele-
ments are the same; the tree diagrams are computed in Figures 18 and 19. [

The group V) will be defined via generators and relators. There will be four
generators, A, B, C, and my. We introduce words X,, C,, and 7, as before.
That is, Xo = A, X, = A~"T!BA""! for an integer n > 1, C, = A~""1CB"!
for an integer n > 1, m = C;'mC,, and 7, = A7 ImA"! for
n>?2.

Let

Vi=(A,B,C,m: [AB™', X1, [AB™!, X3], BC,(C)) ™', BC3(CrX2) ™!,
CHC1A) L, C L 7w mymy (myms) 7L ()}, T X (X)) 7
2 1 1

By (mX2) ™!, By (maB) ™!, Cama(m C3) ™, (1 C)?)
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FIGURE 18

Reduced tree diagrams for 7 X, and Bmpm

FIGURE 19

Reduced tree diagrams for mB and B3

We will prove that V; is simple. Since there is a surjection from V, to
V by Lemma 6.1, it will follow that V; 2V and V is simple.

Lemmas 6.3-6.8 contain the relations we need among the 7;’s, the X;’s,
and the C;’s. Lemma 6.2 1solates some parts of them that will be needed in
the proof of Lemma 6.3.

LEMMA 6.2. Let i be a positive integer and let j be a integer.
) If 0<j<i, then mX; = Xjmiq.

i) If j > i+2, then mX; = X;m;.

ii) If i >j >0, then Cimj = mj_;C;.
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Proof. We begin the proof of i) by proving that AB~! commutes with X,
and 7, for every integer n > 2. For this let H be the centralizer of AB~! in
V1. Theorem 3.4 easily implies that H contains X,, for every integer n > 2. We
prove that 7, € H for every integer n > 2 by induction on n. For n =2 we
have m3 = A~'mA, and the relator Bms(mB)~!' gives m3 = B~ !mB. Hence
my € H. Now let n be an integer with n > 2, and suppose that m, € H. Since
H contains m,, X,, and X,;, A" 'HA™"*! contains 7y, X;, and X,. Thus
the relator Bmym (mX,)~! easily gives m € A" 'HA="*!, and so m,. 1 € H.
This proves that AB~! commutes with X, and 7, for every integer n > 2.

We now prove i) by induction on j. If j = 0, then 1) is clear. Suppose
that j = 1 and that i is an integer with i > 1. We have A7'mA = mip1,
and the previous paragraph shows that AB~'m;BA~! = 7;. These identities
imply that B~!m;B = w41, which gives ii) when j = 1. Now suppose that
j > 1 and that i is an integer with i > j. We have m_; 1 Xy = Xymi_j12,
and so A7 ATIATTIXAT = ARG ATT AT oy, AT Hence
mX; = Xjmi41. This proves 1i).

Since mX3 = Xzmy, mXy = A_17T1X3A = A_1X37T1A = Xumy. BmymiXy
= ’/T1X2X4 = 7T1X3X2 = X37T1X2 = X3B7T27Tl = BX47T27T1 = B7T2X47T1, and so
miXy = Xymy. f n > 4 and mX, = X,m, then Xs3m X, = 1 X3Xn+1
= 7T1XnX3 = Xn7T1X3 = XnX37T1 = XgX,H_ﬂTl and so 7T1Xn_|_1 — Xn—i—l'ﬂ'l . Hence
it follows by induction that 7 X; = X;m; if j > 3. If i,j are positive integers
and j > i +2, mX; = AT ATIATIHIX AT = AT L X AT
= A~HX;_ 1 ym AT = Xjm;. This proves ii).

We prove iii) by induction on j and i. We have Ciymp, = mCs. If
2 < i and Cymy = mC;, then X;Ciyym = Cimp = mC = mXiCiyq
= X;mCiy1 and hence C;pjm = mCiry. It follows by induction on i
that Cim, = mC; if i > 2. If 1 < j < i and C[ﬂ'j = 7Tj_1C,', then
Cinmiy1 = CiB™'Bmjyy = CB™'mB = AT'CBB™'mB = A™'Cm;B
= A, B = A”'1;_1AATIC;B = m;Ciy1. It follows by induction on j
that Cl"]Tj = 7I'j_1Cj if 1 <j<i.

To finish the proof of iii), it remains to show that Cim; = moC; if 1 <.
Since m = C2—17T0C2, Cymy = mpCy. Suppose i > 2 and Cymp = mpC;. Since
CA = C% | and mA = Am, Cr m = CAm = CmA = mCA = mChy .
But 7T1C,'_|_1 = Cj_l._lﬂ'z , SO C,-+17r1Cl-+1 = Cl-2+17T2 = 7T0Cl-2+1 and hence
Ciyimy = moCiyyp. It follows by induction that C;m; = moC; if 1 < Q. L]

LEMMA 6.3. If i is a nonnegative integer, then

i) =1,
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i) (7ri+17ri)3 =1, and
lll) T — TG lfj Z i+ 2.

Proof w3 =1 from the definition of V|, and since the ;s are conjugate
to each other, 7r,-3 =1 for i > 0.

(mom)? = 1 is one of the defining relations. Lemma 6.2.111) shows
that 7,7 is conjugate to mym for every nonnegative integer . Hence
(mig17;)° = 1 for every nonnegative integer i. This proves ii).

We may likewise use Lemma 6.2.111) to reduce the proof of 1i1) to the case
in which i = 1. Since w73 = m3m). M7y = A*]ﬂ'ﬁn’_v\ = /) ]T.;T"]A T4

Since mm3 = mm., mmX> = mamXs., mXomy = mXimm . Xymmny
= X mymm = X mmy7m . and hence w7y = mymy . W > 4 and 77, - 7.
then X;TF]?T,,_H = W]X3T,,+] = ”T|T,,X3 = T,,’T]X_z = TT,,X_:TU = X;F,,.]TT]. It
follows by induction that w7, = 7w if j > 3. This proves ).

LEMMA 6.4. If i and j are nonnegative integers, then
) mX; = Xjmi if j>i+2,

i) miXip = Ximi 7,

iii) miX; = Xjy\mimwiey, and

v) miXj = Xmip 1if 0 <) <L

Proof. If i > 0. then 1) 1s Lemma 6.2.11). For i = 0 suppose that
n is an integer with j < n. Then 7 X;C,.; = 7C,X, ., - CimiX, .
= CXjr1m = X;Chp1m = X;m0Ch1 by Lemmas 5.5.1). 6.2.111), and 6.2.11).
Hence moX; = Xjmp 1f j > 2. This proves 1).

For 11), the case i = | is one of the defining relations. Since 7 X> = Bxaa) .
Lemmas 5.5.11) and 6.2.ii1) give that 7BC; = 7yC-X> = ComX> = CaBaam
= AC3mym) = AmmyCs. This implies that myB = Am 7. which gives ii) when
i =0.1If i > 1, then conjugating the relation 7 X> = X ;77 by A" ! gives
miXir1 = X;miy 7. This proves ii).

1i1) follows immediately from ii) since each #; has order 2.

iv) is Lemma 6.2.1). [

LEMMA 6.5. Let n and k be positive integers with n > k. Then
1) Cymp = mp—1 Gy,
i) Cymg =g~ Wrz—lc,?;,

o)

iii) Cymg = mp_y - m9C,, and
. 3 o

ZV) Cn’/To = /t,,_1C,37.
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Proof. 1) is Lemma 6.2.iii).

We prove ii) by induction. Since (m,C;)> =1, (Cym;)? = 1. This implies
that ComC, = mCy'my, and hence that CimC;' = ComCy'mC3 by
Lemma 5.6.v). Hence Comg = Co(ComiCy') = (Com Cy DmiC3 = momi C3,
which proves ii) when n = 2. Suppose that n > 2 and C,mp = 7o« - - Tp— IC%.
Then

2
XnCn_i._l?TO — Cnﬂ-o —_ 7TO st 7Tn_1Cn - 71—0 ttt Wn_ICanCn_i_l
_ 2 _ 2
— 7TO et Wn_an_l Cﬂ+1 — 7T0 ctt Wn_ZXn’ﬂ_n_lTrnCn_{_l

- 2
- Xnﬂ-O T 7Tn—27rn—17rncn+1 )

and hence C,y1m = 7o+ m,Cay ;. ii) now follows by induction.

n

ii1) follows from ii) :
Cp = (Cymo)mo = (79 - - - Mu_1CH)mg

2 — —] —
SO Cn7TO _(WO"'Wn_l) Cn _Wn_l"'WOCn_.

iv) follows from 1), 11), and iii):

C3my = Co(C3mg) = Co(Mu_1 - oCp) = Tp_z - - ToCr(moCh)

2 3
= Tp—o - mo(mo -+ M1C)Cp = m G, . [

LEMMA 6.6. Let k, m, and n be integers with 0 < m < n+ 2 and
0<k<n. Then

i) if m<k, Clmp=Tr—mCy,
ii) if m= k+1, CZan = 7" ‘7Tn—1CZZ+1,
i) if m=k+2, Cl'my = mp—1--- WQC,’?_I, and

v) lf m>k+2, CTWk = 7Tk_{_(n+2._m)CZl.

Proof. 1) follows from Lemma 6.5.1) by induction.

Now consider ii). If » > 2 and m = k + 1, then by Lemmas 6.6.1)
and 6.5.11) Cl'my = CnCﬁﬂk = anoCﬁ =70 - - -Wn_lC,%C,’ﬁ =g - -7rn_1C,T+1,
which proves ii) if » > 2. By Lemmas 5.6.i), 6.3.i), and 6.5.iv), C?’B = C%
= W%C% — 7T1C%7T0. Hence CZB’/TQ = chg = 7T07T()7T1C% - 7TOC27TOC2
= myC3m; by Lemmas 6.3.i), 6.5.ii), and 6.5.1). Hence C*Bmom; = mC3, and
so C2myA = myCA by Lemmas 6.4.iii) and 5.5.ii). This gives C*my = mC,
and hence Crmy = C(mpC)C~! = C(C?*mp)C~! = moC?. This completes the
proof of 1i).
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If n = 1, then the assumptions of iii) imply that k = 0 and m = 2,
and so iii) becomes C?mp = mC), hence C*my = moC. This was proved
in the above paragraph. If n > 2 and m = k + 2, then by Lemmas 6.6.1)
and 6.5.iii) C"my = C2Chmy = ClmpCl = Ty -+ moCuCh = ey - - - w0 Cy 1,
which proves ii1).

To prove iv), suppose that m > k + 2. Then by Lemmas 6.6.0)) and
6.5.iv) C'my = C"*3C3Chm, = O3 CRCh = O il G =

Tn—1—m—k—3)Ch, Which proves iv). [

n?

For each positive integer n, let TI(n) be the subgroup of V| generated by
{mo,...,mu—1}, and let IT = U,enIl(n).
Let ¥ be the group of permutations of N with finite support. Then

T = (s0,51,52,... :(s;)* for all i,
(s;5i11)° for all i,
(s;s;)* for all i and all j > i+2).

Furthermore, in every proper quotient group of X, the image of sy 1s the
image of s;. Since Il is a quotient group of ¥ and my # m in V, I is
isomorphic to X.

Following the terminology for F, an element of V| which is a product
of nonnegative powers of the X;’s will be called positive and an inverse of a
positive element will be called negative.

LEMMA 6.7. If p is a positive element of V| and w € I1, then np = p'=’
for some positive element p’' and some 7' € I1.

Proof. Lemma 6.7 follows from Lemma 6.4. []

LEMMA 6.8.

i) If m, n are positive integers with m < n+2 and if © € Il(n), then
Cym =7'Cy for some 7' € Il(n) and some positive integer m' with
m <n+2.

ii) For each n € N, the subgroup of Vi generated by TI(n) and C, is
finite.

Proof. 1) follows from Lemmas 6.6 and 5.6.v). ii) follows from 1) and
Lemma 5.6.v). [
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THEOREM 6.9. 'V is simple.

Proof. Suppose N is a nontrivial normal subgroup of Vi, and let
0: Vi — Vi/N be the quotient homomorphism. Then there is an element
g € Vi with g # 1 and 60(g) = 1. By Lemmas 5.6.ii), 5.6.iv), 6.7,
6.8.i) and Theorem 5.7 we have g = prC"g~! for some positive elements
p and ¢, some integers m,n with 0 < m < n + 2, and some element
7 € II(n). Then O(wC™) = O(p~'q). Lemma 6.8.ii) implies that mC has
finite order, say, k. Furthermore the subgroup of V; generated by A and B
is torsion-free because it maps injectively to F C V by Theorem 3.4. Hence
either (p7'g)* # 1 and 0((p~'g)*) =1 or 7C™ # 1 and O(xCT) = 1.
Suppose that 7C7" # 1 and O(nC?) = 1. If m = 0, then © # 1 and
0(m) = 1. This implies that 6(my) = 6(m;), and hence by Lemma 6.5 that
0(moCa) = O(Cymry) = O(Camop) = O(mom1C3). But then (w;Cy) = 1, so we may
assume that m > 0. Next suppose that m > 0. Then 7wCI' = TXnt1-mCriy 1
by Lemma 5.6.ii1). Lemma 6.4 implies that there exists a nonnegative integer
i and 7" € Il(n + 1) such that 7C;} = X;n'C}" ;. Thus we are in the above
case in which (p™'¢)* # 1 and 6((p~'g)*) = 1.

In each case there is an element £ € V| such that h £ 1, 8(h) = 1, and h
can be represented as a word in A*!, B!, and C*!. Let a: T; — V;/N be
the homomorphism defined by a(A) = 6(A), a(B) = 0(B), and «(C) = 6(C).
Then there is an element A € T; with A’ # 1 and «(h’) = 1. Since
T, is simple by Theorem 5.8, 0(A) = 6(B) = 6(C) = 1. Because 7; and
7; are conjugate via a power of A, 0(m;) = 0(m;) for all nonnegative
integers [ and j. By Lemma 6.6.11) with £k = 1, m = 2 and n = 2,
0(1) = 0(C3my) = O(mom C3) = O(momy), and hence O(mp) = 1. This implies
that the quotient group is trivial. [

§7. PIECEWISE INTEGRAL PROJECTIVE STRUCTURES

The definition of piecewise integral projective structures is due to
W. Thurston. These structures arise naturally on the boundaries of Teichmiiller
spaces of surfaces. The interpretations of F and T as groups of piecewise
integral projective homeomorphisms are also due to Thurston; we learned this
from him in 1975. Greenberg [Gr] used this interpretation in his study of
these groups.

Fix a positive integer n.
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The symbol /A, denotes the n-simplex {(x1,...,%n41) € R+
E?;Lll x; =1 and x; > 0 for all i}. The n-simplex /\, is an orientable n-
manifold with boundary. A rational point of A\, is apoint (x, ... ,Xn+1) € Py
with each x; € Q.

Set RV = {(x1,... ,xp1) € R iy > 0 for i = 1,...,n+ 1},
One defines p : R%\ {0} — A, using the projective structure of R™™1;
that is, p(x) = 77, where |x| = S x|, Let U € A,. A function
f: U — A, is integral projective if there exists A € GL(n + 1,7Z) such
that UC {xe A, :Ax) e RT'} and f=p oAlU. It is easily seen that an
integral projective map is a homeomorphism onto its image.

A rational subsimplex of /\, is a subsimplex of A, in which each vertex
is a rational point; a rational subdivision of A\, 1s a simplicial subdivision in
which each n-simplex is a rational subsimplex. An integral subsimplex of A,
is a subsimplex of A\, which is homeomorphic to A, by an integral projective
map. Similarly, an integral subdivision of A, is a simplicial subdivision of
/\, in which each n-simplex is an integral subsimplex of A,.

A piecewise integral projective (PIP) homeomorphism of A, is a home-
omorphism f: A, — /\, such that there is an integral subdivision & of
A, with f |U integral projective for each simplex o of S. Define PIP(A,)
to be the set of all PIP homeomorphisms of A,. We wish to prove that
PIP(/,) is a group by proving that it is closed under inversion and com-
position. It is easy to see that PIP(A,) is closed under inversion. It is
not immediately obvious that the composition of two PIP homeomorphisms
is a PIP homeomorphism. The stumbling block is whether two integral
subdivisions of 74\, have a common refinement which is an integral sub-
division. According to Exercise 5 on page 15 of [RS] their intersection
is a cell complex which is a common refinement of both, and it is easy
to see that the cells of this intersection complex have rational points as
vertices. Proposition 2.9 of [RS] states that such a cell complex can be
subdivided to a simplicial complex without introducing any new vertices.

Hence to prove that PIP(/\,) is a group it suffices to prove the following
theorem.

THEOREM 7.1.  Every rational subdivision of A, has a refinement that is
an integral subdivision.

Proof. We define the [ift of a rational point x in A, to be the unique
point X in Z"t1 N R’fg“ such that p(x) = x and the greatest common divisor
of the coordinates of x is 1. We define the index of an n-dimensional
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rational subsimplex o of A, as follows. Let vy,... ,v,11 be the vertices of
o. Then the subgroup of Z"™! generated by ;,...,7,4; has finite index
in Z""!'. The index ind(c) of o is by definition this index. Equivalently,
ind(o) = |det(vy,... ,Uy11)|, the absolute value of the determinant of the
matrix whose columns are vy,...,v,r1. It is easy to see that ind(c) = 1 if
and only if o is integral.

The argument will proceed as follows. Let S be a rational subdivision of
A, . Suppose that ¢ is an n-simplex in & with ind(c) > 1. A rational point
v in o will be suitably chosen. We will let 'R be the simplicial complex
obtained from & by starring at v as on page 15 of [RS]. If 7 is an n-simplex
in R which does not contain v, then 7 € §. If 7 is an n-simplex in R
which contains v, then we will prove that ind(7) is less than the index of the
n-simplex in S which contains 7. From this it easily follows that performing
finitely many such starring subdivisions yields a rational subdivision of A,
all of whose n-simplices have index 1, and so this subdivision is integral, as
desired.

So let & be a rational subdivision of A,, and let ¢ be an n-simplex in
S with ind(o) > 1. Let the vertices of o be vy,...,v,+1. Since ind(o) > 1,
there exists ¥ € Z"*! and an integer m > 1 such that mu lies in the subgroup
of Z"t! generated by ¥),...,7,4; but u does not. Let aj,...,a,41 be
integers such that mu = ZH'H a;v;. For every integer { with 1 <i<n+1

i=1

let b; be an integer such that 0 < @; + mb; < m. Then

n+1 n+1
m (l/t 4 Z b,‘/’l\)/,'> = Z(di + mbi)ﬁi ‘
i i=1

Because u is not in the subgroup of Z"*! generated by ¥1,..., V41, it is
impossible that a; + mb; = 0 for i = 1,... ,n+ 1. Reindex if necessary so
that a; +mb; # 0 if i <k and a; +mb; =0 if i > k for some integer k with
1 <k<n+1. The vector w = u + Z?;I b/v; is a positive rational linear
combination of v1,..., v, and so v = p(w) is a rational point of A, which
lies in the open simplex with vertices vy, ... ,v;. Since w € Z"! ﬂR’fl, w
is a positive integer mulitple of v. It follows that v = ZJ].;I c;v; for rational
numbers ci,...,c with 0 <¢; <1.

Now let R be the simplicial complex obtained from S by starring at v.
Let 7 be an n-simplex in R which contains v. Let ¢’ be the n-simplex in
S which contains 7. Then vy,... , v, are vertices of ¢, and so the vertices
of ¢’ have the form vy,... , v, vy, v, . Hence the vertices of 7 have
the form vy, ..., 0% .. Uk, Vpprs--- > Upyp, v for some i € {1,... k}. Thus
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A~

. ~ ~ ~ o~y
ind(7) = |det(vy, ... , Vi, » Uks Ugg1s -+ » ,hL],v)l
= = pe ot o= 5
= [det(V1, .. , Uiy -+ s Uky Vg1 - - Unt1s 2 iV
k
~ = el 5 Nl )
= E c;det(Vy, ... Uiy e v s Uky Vg1 - -+ 9 Upt 15 U
j=1

In the last expression we have a linear combination of k determinants of
which all but one are 0 because the corresponding matrices have two equal
columns. Hence ind(7) = ¢;ind(¢’) < ind(c¢”). This completes the proof of
Theorem 7.1. [

We denote by PIP1(/\,) the subset of PIP(A,) of orientation-preserving
piecewise integral projective homeomorphisms of A,. Then PI PT(A,) is a
group, and is a subgroup of PIP(A,) of index 2.

We next investigate PIPT (/). Let A} be the 1-simplex in R? consisting
of points (¢, 1) with ¢ in the closed interval [0, 1]. The linear automorphism of
R? which maps (1,0) to (1,1) and (0,1) to (0, 1) induces a homeomorphism
from A; to Af. This linear automorphism is given by a matrix in SL(2,Z).
Thus we can “conjugate” the above discussion leading to the definition of
PIPY(A)) to A}: we get a group PIPT(A}]) which is isomorphic to
PIPT(/A}). In so doing, p is replaced by the map p’ that sends (x,y)
to (;%, 1) if y#£0 and to (0,1) if y = 0. An integral projective map for A}
is the composition of p’ and a function induced by a matrix in GL(2,Z). An
integral subsimplex of A} is a subsimplex of A} which is homeomorphic to
A} by a A]-integral projective map.

Now we identify [0,1] with A{ via the map 7 — (#,1). Let a be a
nonnegative integer and let b,c,d be positive integers such that a < b and
¢ < d. Then ged(a,b) = 1 = ged(e,d), 7 < 5, and [%g] is an integral
subsimplex of [0, 1] if and only if ad — bc = —1. Suppose a,b,c,d are as
above such that [4,<] is an integral subsimplex of [0,1]. By definition the
left part of [§,5] is [§, 45| and the right part of [%,5] is [, ¢]. The
left and right parts of [%, ﬂ are integral subsimplices of [0,1]. The tree
of integral subsimplices of [0,1] is the tree 7' with vertices the integral
subsimplices of [0,1] and with edges the pairs (I,J) where I and J are
integral subsimplices of [0, 1] and I is either the left part of J or the right
part of J. An edge (I,J) of 7' is a left edge if I is the left part of J and

is a right edge if I is the right part of J. If we replace each vertex [¢,<]
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of 7’ by the Farey mediant Zj:fl of 7 and 5 and keep the same incidence

relation, then 7’ becomes the Farey tree.

To see that 7' is connected, let a be a nonnegative integer and let b,c,d
be positive integers such that ged(a,b) = 1 = ged(c,d), [§,<] # 10,11,
and [%, 5] is an integral subsimplex of [0, 1]. First suppose that a < c. Let
r=c—a andlet s =d—b. Then —1 = ad—bc = a(b+s)—b(a+r) = as—br,
so as = ar + (b — a)r — 1, which implies that s > r. Furthermore, [%, ﬂ
is an integral subsimplex of [0,1] and [%,<] is the left part of [4,%].
Now suppose that a > c. Let r = a —c and let s = b — d. Then
—1l=ad—-bc=(c+rd—(d+s)c=dr—cs,so cs=rd+1 and s > r.
Furthermore, [g, g} is an integral subsimplex of [0, 1] and [%, 5] is the right
part of [£, €] . If a=c,then a=c=1, b=d+1, and [§,%] is the right
part of [%, %} It follows that 7’ is connected and hence 7’ is an ordered
rooted binary tree.

[0,1]

T

[0,1/2] [1/2,1]

/

[0,1/3] [1/3,1/2] [1/2,2/3] [2/3,1]

)N NS

[0,174] [1/4,1/3] [1/3,2/5] [2/5,172] [1/2,3/5] [3/52/3] [2/3,3/4] [3/4,1]

AWANAWAWAWANAYE

FIGURE 20
The tree 7’ of integral subsimplices of [0, 1]

Now we consider integral projective maps for [0, 1]. It is easy to see that
they are given by linear fractional transformations corresponding to matrices in
GL(22,Z). Let [%, 2] and [%,%] be integral subsimplices of [0,1] as above.
There is a unique integral projective map f: {% 2] — [4,5] with f (%) =1
and f(3) = $. The function f is defined by

_ (eB—ad)+ (ay —ca)
~(df — bt + (by — da)

f®
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as a linear fractional transformation and is given by the matrix

, GG
G- = GHE)-GH)

it follows that f(%FY) = £, and hence f([%,%}g]) = [$, 4] and

B+é b+d’
C\(-"’}’ 1 a+c c . . . . ma
f ([——5 ) 5]) [b T d}. This shows that an integral projective p

B
o a+y a a+c ety a) | Jate E}
A F s s | I = R et

The converse is also true; if

a o+ a a+c nd ‘{a—i—'y 7] . [CH—C c}
‘2 2<% . ' ¢ y
N3 B+rs) b b+d 2 15%5°5|  |pb+ad

are integral projective maps, then they are the restrictions of an integral
projective map ¢ : [%,%] — [4,<]. It follows as in §2 that there is a
bijection between PIP*(/\;) and the set of reduced tree diagrams.

Suppose f,g € PIPT(A), and let (P,Q) and (R,S) be reduced tree
diagrams for f and g. Let Q' be a 7'-tree such that Q C @’ and R C Q'
Then there are 7'-trees P’ and § such that P C P/, S C S, (P',Q)) is
a tree diagram for f and (Q',S’) is a tree diagram for ¢g. Then (P’,S’) is
a tree diagram for gf. This implies that the group structure for PIPT(/\;)
can be determined by the tree diagrams. Since the tree 7 of standard dyadic
intervals is isomorphic, as an ordered rooted binary tree, to the tree 7', this
proves the following.

THEOREM 7.2. F = PIPT(/\)).

We still view S' as [0, 1] with the endpoints identified. A piecewise integral
projective (PIP) homeomorphism of S! is a homeomorphism f: S — S!' such
that there is an integral subdivision S of [0, 1] with f |O integral projective
for each simplex o of S. We denote by PIPT(S') the group of orientation-

preserving PIP homeomorphisms of S'. The proof of Theorem 7.2 also
proves Theorem 7.3.
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THEOREM 7.3. T = PIPT(S").

The three functions in PIPT(S') corresponding to A, B, and C are the
following.

[Ban]
[BieS]

[Bri]
[BriS]
[Brol]

[Bro2]

[Bro3]

[BroG]
[C]

[Da]
[DeV]

A(t) =

( 1
t 0<tr< 5
t 1 ’ - — 2
10 0 S 4 S 2 3r—1 1 <t < 2
—t+1 1 2 J 4t—17 2 — S 3
a0 2 >t< 5 Bl)= —6145 2 3
2r—1 2 —11149° 3 St 4
T :<t< 1
t 3 \ 2[;—]’ % S t S 1
=342 1
—5t+3 0<t< 2
CH=¢ 2= <<
5t=3 2
-1 = =tx|
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