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Of course, one needs a continuous transition between two annuli. The
transition zone will be a sufficiently thin annulus connecting 4;to A4;,, such
that the collection of A;s and transition zones give a partition of the
carrousel disc.

2. LEFSCHETZ NUMBER VIA THE CARROUSEL

Let mx o denote the maximal ideal of the local ring Zx . A’Campo
proves via the resolution of singularities that, if fe m;o, then A(f) =0
([A’C-1, Théoréme 1bis]).

Alternatively, the carrousel construction can provide information on the
Lefschetz number. This was the idea of L&, who showed that, if fe mi,o,
and (X, 0) is smooth, then the carrousel monodromy has no fixed points
outside the slice {/ = 0}, so A(f) = 0 by induction.

We extend this result by studying the set of fixed points in case
fe mx,o\mi,o-

2.1. THEOREM. Let all the irreducible components of (X, 0) have dimen-
sions greater than 1. If n; > 1, Vie{l,...,r}, then A(f) = A(flu=0)-

Proof. Assume that A ¢ {u = 0}. Since n; ; > 1, the carrousel cons-
truction tells us that the discs &, ; (defined in 1.8), with ns ; = n; ;, are
cyclically permuted (by a cycle of length n; ;).

We may conclude that no point in the carrousel disc is fixed, except the
centre and, possibly, some subsets in the transition zones. In each transition
zone the subset of fixed points is a finite union of circles, all centred
at (0, n).

One can decompose the Milnor fibre F,into suitable pieeces on which the
geometric monodromy acts and such that the Mayer-Vietoris exact sequence
can be applied. Actually, we first cover the carrousel disc by some annuli like
those defined in 1.8, then lift this patching to the Milnor fibre. If A4, is small
enough, then /; '(0,n) is a deformation retract of I, '(A4,).

We may conclude: A(f) = A(fjy=0;), provided that the Lefschetz
number of the restriction of the monodromy on any piece of F, which is the
lift by /, of some pointwise fixed circle is zero. This fact is emphasized in the
next lemma, whose proof is left to the reader. The case A C {u = 0} leads to
the same conclusion. [

LEMMA. If the carrousel disc D, X {n} contains a circle S of
fixed points, all of them regular values for the map [I,, then
Ay H (' ®) = 0. O
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2.2. Example. Let (X,0) be a 2-dimensional isolated cyclic quotient
singularity, where X is the algebraic quotient of C? by a cyclic group of
order 5, usually denoted by Xs ,: if & is a primitive 5-root of 1, then a
generator of our group acts on C2? by (x, y) = (Ex, £2).

Let f:(C2,0) - (C,0), f—x5+y and let f:(X, O) (C,0) be the
induced function on the quotient. Take a function [ (C?,0)— (C 0),
| = xy? and let / be the induced linear function on (X 0). Then / QEQ s, but
[ € Q. Notice that f € mx o\ mX q-

We get that A’(/, f) is irreducible and has a 1-term Puiseux parametrization
with Puiseux pair (3, 5). There follows A(f) = A(fly=0))-

The Milnor fibre of fj - has two components: each of them is the
Milnor fibre of a linear function on (C, 0). This implies that A(fj;1-0}) = 2,
hence A(f) = 2.

2.3. COROLLARY [A’C-1, Théoréme 1bis]. Let (X,0) be an analytic
germ of dimension > 1. If f € mi’o then A(f) = 0.

Proof. Let (X,0) = (X, 0) u (X;,0), where (X5, 0) is the union of the
irreducible components of (X, 0) which are of dimension > 2 and (X, 0) is
the union of the 1-dimensional branches of (X, 0).

We slice (X, 0) by a general hyperplane defined by some / € Q(and treat
separately the 1-dimensional components of the slice. If fe miz, o then each
component of the Cerf diagram A(/, f) is tangent to the axis {A = 0},
provided that / is general enough. The proof of this fact is similar to the proof
of [Lé-4, Proposition 1.2], but this time the underlying space may be not
smooth (see [Ti] for details).

Tangency to {A = 0} means exactly that m; /n; , < 1, in particular
niy>1,Vie{l,...,r}. Thus, our proof relays on a decreasing induction:
at each step, we may apply Theorem 2.1. The assertion for 1-dimensional
branches is proved by the next easy lemma. L]

LEMMA. If (X,0) is 1-dimensional, irreducible and if f e mi,o then
there is a geometric monodromy of [ without fixed points. L]

As a complement to Theorem 2.1, we have the following precise deter-
mination of the Lefschetz number in case dim(X, 0) =

2.4. PROPOSITION. If (X,0) = U, x(C;,0) isa curve and its decompo-
sition into irreducible components, then, for any fe mx \m% ,, we have:

A(f) = #{i e R|(C;,0) is smooth and feme, o\m¢ ,}.
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Proof. Let fi:= f|«, oy- Then the Milnor fibre of f is a finite set, the
disjoint union of the Milnor fibres of f;, i € R. Hence, A(f) = Z;crA(f)).

If (C;,0) is smooth, then one has: A(f;))=1 if and only if
fiemg, o\m¢. .

If (C;, 0) is not smooth, let n;: (C ;, a;) = (C;, 0) be its normalization. It
follows f; o n; e mzé,-,a,.’ hence the geometric monodromy of f; is fixed-
point-free and A(f;) = 0. [J

2.5. Define PO :={ie{l,..,r}|n;,, =1}.

For i € P, let B; be the union of all carrousel discs of order 1 included
in A;. Then the carrousel construction tells us that the set 4\ B; is pointwise
fixed.

Further, let &(j) C A; be a carrousel disc of order 1 defined in the
next 2.6. If there are no carrousel discs of order 1 included in & (i), then the
only fixed point of &(7) is its centre. If (i) contains some carrousel disc of
order 1 (see Remark 1.6), then we decompose & (i) into annuli, since & (i) is
itself a carrousel. For those annuli that contain some carrousel disc of
order 1, we may adapt the present argument, from the beginning of 2.5.

It is easily seen that the set A;,\B;, for i € P, retracts to the subset:

) SN U Hu U 08,
se 4V se M

where 7% ¢! is the set of carrousel discs of order 1 in A; which are not
included in other carrousel discs of the same order and S; is a closed curve
homotopic to a circle which intersects all the discs & € 2% (V.

The picture shows a possible shape of the
retract of the set of fixed points inside
A \B;: the ““thick’’ curves are fixed. (The
situation in the picture corresponds to
nia/mg = n;/mj = R/ My 1)

Then some neighbourhood of the set of fixed points after one turn of the big
carrousel retracts to a set with a finite number of connected components, each

of which being either:

(a) acircle centred at (0, n) or at a centre of some carrousel disc of order 1, or
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(b) a set defined as in (4) or — if case — a similar one in a carrousel disc
of order 1, or

. o . )
(c) a centre of a carrousel disc of order 1 inside A4;, for some i € P, or

(d) the centre (0,n) of the big carrousel disc.

2.6. Definition. Let .# () be a maximal set of indices i € PV such that, if
i\, iye 7 M, then CV = CV.

For any i € .# (), denote by & (i) the carrousel disc of order 1 centred at
the point c(i): = éﬁ” A (D, X {n}). Let a(i) be an arbitrarily chosen point
on the boundary 88 (); it is, by definition, a regular value for /,.

Definition. Let a € (D \0) x {n} and let F, be the fibre of /, over a.
If ¢ is fixed by the carrousel, then the monodromy #, restricts to an action
on H*(F}), denoted by #,.

With these notations, we may formulate the following:

2.7. THEOREM. If fewmx, and [ € Qy, then:

A = A(flu=o) + X [N — AT
i€ f(l)

Proof. The Lefschetz number A(f) splits into a sum, following the
decomposition of the set of fixed points into connected components, see 2.5.
We use a suitable open covering of a set defined as in (4) and then apply the
Mayer-Vietoris exact sequence. The reason of considering the set .7 (D) relies
on the above discution. By a straightforward computation, using also
Lemma 2.1, we get our formula. [

Notice that carrousel discs of order > 2 do not enter in the above formula.

For the computation of A(h,;), A(h,;), we refer to Remarks 3.6. There
will be an example at the end.

3. ZETA-FUNCTION AND CARROUSEL MONODROMIES

3.1. Loosely speaking, each ‘‘important point’’ of the carrousel disc is fixed
after a finite number of turns of the carrousel. We have seen that the set of
fixed points after one turn determines the Lefschetz number A(4,). So the
set of fixed points after k turns is the one responsible for the number A (4 J’f).
It may contain a finite number of circles consisting of regular values for the
map /,. Actually, these circles do not count, as shown by Lemma 2.1 (where
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