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L'Enseignement Mathématique,t.39(1993),£>

CARROUSEL MONODROMY

AND LEFSCHETZ NUMBER OF SINGULARITIES

by Mihai Tibär

Introduction

Let f:(X,x)->(C, 0) be a holomorphic function on an analytic

germ (X,x). Let hf denote the monodromy of the germ of

neighbouring cycles. One defines its Lefschetz number

A (A/) to £ (- 1)'' trace *F}(Cx)*l
i > o

and its zeta-function

Cv(0 : n det[/ -t-hfi
/ > 0

We alternatively denote them by A(/), respectively C,f(t).
A theorem of Eisenbud and Neumann [EN, Theorem 4.3] asserts that the

zeta-function of a fibred multilink L is the product of the zeta-functions over
all splice components of L. If the multilink is defined by some Cerf
diagram A(/, /), then Ç/(0 becomes the zeta-function of the multilink L,
this time with coefficients in a local system. This observation of Némethi [Ne]
enables him to prove an inductive formula for Ç f(t), in terms of invariants
of the so called EN-diagram (splice diagram); compare to the one of Eisenbud
and Neumann [EN, p. 96]. Some quite strong results in the 3-dimensional link
theory are involved in the proofs.

Our approach is based on Lê's carrousel construction and is therefore more
geometric and selfcontained. It yields inductive formulae for A(/) and Ç f(t)
directly from the Puiseux parametrization of A (hf). Moreover, it clarifies the
contribution, however essential in general, of the "nonessential" terms in this
parametrization — which may be not clear from the definition of the splice
diagram of an algebraic link given in [EN, p. 53], simply because such terms
are completely omitted. One can therefore compare to our definitions 1.5 7.
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The formula for Ç f(t) will be not the same, but quite similar to the ones
before. The ingredients are zeta-functions of fibres over certain periodic points
in the carrousel disc. We show in Sections 2 and 3 how to define these points
from the Puiseux expansion of A (/,/). We end by some applications.

Aknowledgement. This work is based on a piece of the author's
disertation [Ti]. He much benefited from talks with Dirk Siersma, whose

paper [Si] incited him to do this research (see 3.8).

1. The carrousel revisited

1.1. We first briefly recall the carrousel construction, following closely [Le-l]
and [Le-3], then give the necessary definitions for our study. One regards

(X,x) as being embedded in (CN, 0), for some sufficiently large Ne N. We

assume that, unless otherwise stated, all the irreducible components of (X, 0)

have dimensions greater than 1.

Let be a small enough representative of (X, 0). Let T (/, /) be the polar
curve of / with respect to a linear function I: (X, 0) -> (C, 0), relatively to a

fixed Whitney stratification CA on which satisfies Thom condition {af).
The polar curve T(/, /) exists for a Zariski open subset Q/in the space of

linear germs /: (CN, 0) -> (C, 0). If one does not impose T(/,/) to be reduced
A

then one gets a larger set Q/ D Q/ which is sometimes useful to deal with
(see e.g. Example 2.2). (We only mention that one can enlarge even Qf:
modify its definition by allowing also nonlinear functions.)

1.2. Let / e Qf and let O : (/,/): (X, 0) (C2, 0). We denote by (u, X) the

pair of coordinates on C2.

The curve germ (with reduced structure) A (/,/): O (T (/, /)) is called the

Cerf diagram (of / with respect to /, relative to SA). We shall use the same

notation T(/,/), respectively A(/, /) for suitable representatives of these

germs.
There is a fundamental system of "privileged" open polydiscs in CN,

centred at 0, of the form (Da x Pa)aeA and a corresponding fundamental

system (Da x D'a)aeA of 2-discs at 0 in C2, such that O induces, for any
a e A, a topological fibration

Oa: DaxPa)n<S>~'{Da x D'a\(A(l,f) u {X 0}))

Da xD'a\(A(/,/)u {A. 0})
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Moreover, / induces a topological fibration

fa:n (D0 X Pa)n f~l(D'a\{0}) ->• £>„\{0} >

respectively

/;: &F n ({0} x Pa) n - ^M0}
which is fibre homeomorphic to the Milnor fibration of /, respectively to the

Milnor fibration of /|{/ o}- The disc D'a has been chosen small enough such

that A(/,/) ndD~axD'a= 0.

1.3. One can build an integrable smooth vector field on Da x S'a — where

S'a is some circle in D'a of radius sufficiently close to the radius of dD'a

— such that, mainly, it is tangent to A (/,./) n (.Da x S'a) and it lifts the unit

vector field of S'a by the projection Da x S'a-> S'a. Lifting the former vector

field by <Da and integrating it, one gets a characteristic homeomorphism of
the fibration induced by fa over S'a, hence a geometric monodromy of the

Milnor fibre Ff of /. We call it the (geometric) carrousel monodromy.
For some fixed r| g S'ai let

(1) /a: <S>~l(Da x {ri}) Da{n}

be the restriction of Oa and notice that Ff is homeomorphic to

i;\Da X {p}).

The integration of the vector field on Da x S'a produces a "carrousel"
of the disc Da x {p}: the trajectory inside Da x S'a of some point
a e Da x {p} projects onto S'a; one turn around the circle S'a moves
the point a to some other point a' e Da x {p}. By construction, the vector
field restricted to {0} x S'a is the unit vector field of S'a, hence the centre

(0, p) of the carroussel disc is indeed fixed; the circle öDa X {p} is also

pointwise fixed.
The distinguished points A(/,/) n Da x {p} of the disc have a complex

motion around (0, p), depending on the Puiseux parametrizations of the
branches of A which are not included in {u 0}. Moreover, these Puiseux
expansions determine the motion of any "important" point in the carrousel,
as briefly described in the next.

1.4. Our notation is close to the one in [BK].
Let A:=A (/,/) and let A'= ue A/ be the union of those

irreducible components of A which are not included in {u 0}.
I
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For / e {1, r}, we consider a Puiseux parametrization of A,- with
reduced structure:

\X=tn
(2) u Z cj tJ

> f°r some m, n e Z+ Cj e C, ^ 0
I W

Notice that m n. The Puiseux parametrization enables one to formally
write m as a function of X:

/i

u akxXm^/n^ + X bUiX^ + l^/ni + ak2Xm2/nin2
(3) / i

ll
+ Ü Z?2,A(2 + /)/"i"2 + + akgXmê/ni---në + Xi &g,A(lw* + />//|i---'1«

/ -1 *
/ > o

where g is a positive integer, gcd(mj9rij) 1, Vy e {1, ...,,g} and rij 1,

Vy e {2, g}. Notice that mx/nx m/n and ak} cm.

1.5. We now define two sequences {C[y)}y-.e|i5{Cp,...g} of
successive approximation of A/, / e {1, r}:

C\J): M aklXmi/ni + X £i,/A,(#wi + />/,li + • • • + ak.Xmj/n^"nj
/ i

7

A 'l
Cz0): u aklXmi7/|i + X £i,/A/mi + /)/A*i + ••• + ak.XmJ/n^"nj

i=\ J

h

+ Xi bjjX(mJ+v/ni"-nj
i=\

and CZU) A/.

The curve C-1} intersects the carrousel disc Da x {r|} in «i points situated

on a circle and their carrousel motion is a rotation of angle Inmfni. If we

take C\l) instead, we get also ri\ intersection points but their position is a

slight perturbation of the previous one.
Each of the points Cp n (Da x {rj}) is the centre of a small disc which

contains just one point from the set C\l) n (Da x {rj}). This latter one,
called a distinguished point, becomes the centre of a new (smaller) carrousel.

Our next definition will play a central role.

1.6. Definition. We call carrousel disc of order k a sufficiently small open
disc centred at some point c e Cf] n {Da x {t|}), i e {1, r}, which

contains all the points Cf + l) n CDa x {q}), V/ > 0, Vy e {1, r) such

that Cjk) Cf\ which are close enough ("satellites") to c. If ôj, ô2 are two
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smaller carrousel discs (not necessarily of the same order), then they are either

disjoint or included one in the other.

We may and do assume that the carrousel discs of order k centred at the

points Cf} n (Da x {p}), i e{l, are of equal radii.

Remark. A small carrousel disc of order k may contain other carrousel

discs of the same order. In the next example:

Ai : ux V/2 + Vin C\l) * C\l\ Ax Cf
A2: u2 V/2 + X1/A C{2] « C(2l) C\l), A2 Cf

a carrousel disc of order 1 corresponding to A2 contains a carrousel disc of

order 1 corresponding to Aj.

1.7. Finally, a simultaneous parametrization of all analytic branches of
A':X tn, uk Tj>mk akjtj, for k e {1, r}, leads to the construction

of the full carrousel.

If we define the '"essential" curve associated to A/ by:

A-s: u aklXmi/ni + aklXm^/n^ + + akgXms/n* ng

then the carrousel associated to Aes U / e {i,A-s might be called an

"ideal carrousel". However, the topological type of the link A' may be not
the same as the one of Aes.

1.8. Denote by (mij, 6 o, the Puiseux pairs of A/, V/ e {1, r).
Suppose that we have the following ordering among the first Puiseux pairs
(eventually after some permutation of indices): mXA/nx^ ^ m2,\/n2, \

> ' ' ^ mrA/nr, i.
To each branch A, there corresponds an annulus — with central

symmetry at (0, p) — inside the carrousel disc, such that contains

A/ n (Da x {r|}), see [Lê-1]. We also define A0 to be an arbitrarily small

open disc centred in (0,ti). By definition, A/ Aj if and only if mit{/nki
mjA/njA.
For any i e {1, r}, there are nia carrousel discs ô/)7, j e {1, i},

of order 1, centred at the niA points C\l) n (Da x {r|}). In case of the

"ideal" carrousel, these points rotate around (0, rj) by 2nmiA/. The
annulus A/ contains all the carrousel discs 8sj such that C^1} Cj1}. Each
point of the annulus At, outside any disc 8sj, is fixed by the niAth
iterate of the carrousel. The disc A0 is just pointwise fixed by the
carrousel.
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Of course, one needs a continuous transition between two annuli. The

transition zone will be a sufficiently thin annulus connecting At to Ai+1, such

that the collection of Aï s and transition zones give a partition of the

carrousel disc.

2. Lefschetz number via the carrousel
Let mx,o denote the maximal ideal of the local ring ^x,o • A'Campo

proves via the resolution of singularities that, if / e mx 0, then A(/) 0

([A'C-1, Théorème Ibis]).
Alternatively, the carrousel construction can provide information on the

Lefschetz number. This was the idea of Lê, who showed that, if f e m2X 0,
and (X, 0) is smooth, then the carrousel monodromy has no fixed points
outside the slice {/ 0}, so A(/) 0 by induction.

We extend this result by studying the set of fixed points in case

/ e mXj0\mxi0.

2.1. Theorem. Let all the irreducible components of (X, 0) have dimensions

greater than 1. If nit { > 1, W e {1, r}, then A(/) A(/|{/ 0}).

Proof. Assume that A (f {u 0}. Since nit\ > 1, the carrousel
construction tells us that the discs 8sj (defined in 1.8), with ns>i nit x, are

cyclically permuted (by a cycle of length niA).
We may conclude that no point in the carrousel disc is fixed, except the

centre and, possibly, some subsets in the transition zones. In each transition
zone the subset of fixed points is a finite union of circles, all centred

at (0, r|).
One can decompose the Milnor fibre Ff into suitable pieces on which the

geometric monodromy acts and such that the Mayer-Vietoris exact sequence

can be applied. Actually, we first cover the carrousel disc by some annuli like
those defined in 1.8, then lift this patching to the Milnor fibre. If A0 is small

enough, then /"1 (0, rj) is a deformation retract of l~l(A0).
We may conclude: A(/) A(/q/ 0}), provided that the Lefschetz

number of the restriction of the monodromy on any piece of Ff which is the

lift by Ia of some pointwise fixed circle is zero. This fact is emphasized in the

next lemma, whose proof is left to the reader. The case AC{w 0) leads to
the same conclusion.

Lemma. If the carrousel disc Da x {r|} contains a circle S of
fixed points, all of them regular values for the map la, then
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2.2. Example. Let (X, 0) be a 2-dimensional isolated cyclic quotient

singularity, where X is the algebraic quotient of C2 by a cyclic group of

order 5, usually denoted by X5;2: if £ is a primitive 5-root of 1, then a

generator of our group acts on C2 by (x, y) (&x, £2y).

Let /:(C2,0)^(C,0),/=x5+T5 and let /: (X, 0) ^ (C, 0) be the

induced function on the quotient. Take a function /: (C2, 0) —^(C, 0),

/ xy2 and let / be the induced linear function on (X, 0). Then /$/, but

/ e Q/. Notice that / e mX)0\niX)0.
We get that Ax(7, /) is irreducible and has a 1-term Puiseux parametrization

with Puiseux pair (3, 5). There follows A(/) A(/|{/ 0}).

The Milnor fibre of /|{/ o} has two components: each of them is the

Milnor fibre of a linear function on (C, 0). This implies that A(/|{/ 0}) 2,

hence A(/) 2.

2.3. Corollary [A'C-1, Théorème Ibis]. Let (X, 0) be an analytic

germ of dimension ^ 1. If f e then A(/) 0.

Proof. Let (X, 0) (Xi, 0) u (X2, 0), where (X2, 0) is the union of the

irreducible components of (X, 0) which are of dimension ^ 2 and (Xi, 0) is

the union of the 1-dimensional branches of (X, 0).

We slice (X2, 0) by a general hyperplane defined by some / e Q/ and treat
separately the 1-dimensional components of the slice. If f e mx 0 then each

component of the Cerf diagram A(/,/) is tangent to the axis {X 0},
provided that I is general enough. The proof of this fact is similar to the proof
of [Lê-4, Proposition 1.2], but this time the underlying space may be not
smooth (see [Ti] for details).

Tangency to {X 0} means exactly that miA/niA< 1, in particular
niti > 1, V/ e {1, r). Thus, our proof relays on a decreasing induction:
at each step, we may apply Theorem 2.1. The assertion for 1-dimensional
branches is proved by the next easy lemma.

Lemma. If (X, 0) is \-dimensional, irreducible and if f e mx 0 then
there is a geometric monodromy of f without fixed points.

As a complement to Theorem 2.1, we have the following precise
determination of the Lefschetz number in case dim(X, 0) 1:

2.4. Proposition. If (X, 0) u / e r (Ci, 0) is a curve and its decomposition

into irreducible components, then, for any f e mX Û\m2x 0, we have:

A(/) # {/e Ä I (C/, 0) is smooth and fe mC/i 0\mJL 0}
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Proof. Let // : f\(ch o) • Then the Milnor fibre of / is a finite set, the

disjoint union of the Milnor fibres of //, i e R. Hence, A(/) Z/6jRA(//).
If (C/,0) is smooth, then one has: A(/,) 1 if and only if

/, e mc,.,

If (Ci, 0) is not smooth, let nr. (C /, at) (C/, 0) be its normalization. It
follows fi o m e m~ a, hence the geometric monodromy of /; is fixed-

point-free and A(/,) 0.

2.5. Define P(1) : {/ e {1, r} | ni%ï 1}.
For i e P(1), let Bt be the union of all carrousel discs of order 1 included

in At. Then the carrousel construction tells us that the set At\Bi is pointwise
fixed.

Further, let 8(y) C At be a carrousel disc of order 1 defined in the

next 2.6. If there are no carrousel discs of order 1 included in ô(/), then the

only fixed point of h(ï) is its centre. If 8(i) contains some carrousel disc of
order 1 (see Remark 1.6), then we decompose 8(i) into annuli, since S(i) is

itself a carrousel. For those annuli that contain some carrousel disc of
order 1, we may adapt the present argument, from the beginning of 2.5.

It is easily seen that the set Af\Bi, for i e P(1), retracts to the subset:

(4) (SA U 5) u U 08
8 e 8 e

where is the set of carrousel discs of order 1 in At which are not
included in other carrousel discs of the same order and S, is a closed curve

homotopic to a circle which intersects all the discs 8 e

The picture shows a possible shape of the

retract of the set of fixed points inside

AfBji the "thick" curves are fixed. (The

situation in the picture corresponds to

ft/, 1/mit i njA/mjA nkA/mkA).

Then some neighbourhood of the set of fixed points after one turn of the big

carrousel retracts to a set with a finite number of connected components, each

of which being either:

(a) a circle centred at (0, ri) or at a centre of some carrousel disc of order 1, or
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(b) a set defined as in (4) or — if case — a similar one in a carrousel disc

of order 1, or

(c) a centre of a carrousel disc of order 1 inside for some i e /5(1), or

(d) the centre (0, t|) of the big carrousel disc.

2.6. Definition. Let be a maximal set of indices e P'A> such that, if
Û, i2 e ./"(D, then * c£\

For any i e ^(1>, denote by 8(0 the carrousel disc of order 1 centred at

the point c(z) : C\l} n (Da x {r\}). Let a(i) be an arbitrarily chosen point

on the boundary 65(0; it is, by definition, a regular value for la.

Definition. Let a e (Da\0) x {rj} and let F'a be the fibre of la over a.

If a is fixed by the carrousel, then the monodromy hf restricts to an action

on H*(F'a), denoted by h'a.

With these notations, we may formulate the following:

2.7. Theorem. If f e mx,o and leDf, then:

A(/) A(/|{/ 0}) + E [A(/i^(/)) - A(h'a{i))]

Proof. The Lefschetz number A (/) splits into a sum, following the

decomposition of the set of fixed points into connected components, see 2.5.

We use a suitable open covering of a set defined as in (4) and then apply the

Mayer-Vietoris exact sequence. The reason of considering the set relies

on the above discution. By a straightforward computation, using also

Lemma 2.1, we get our formula.

Notice that carrousel discs of order ^ 2 do not enter in the above formula.
For the computation of A(h'c{i)), A(h'a{i)), we refer to Remarks 3.6. There
will be an example at the end.

3. Zeta-function and carrousel monodromies

3.1. Loosely speaking, each ''important point" of the carrousel disc is fixed
after a finite number of turns of the carrousel. We have seen that the set of
fixed points after one turn determines the Lefschetz number A (hf). So the
set of fixed points after k turns is the one responsible for the number A(hkf).
It may contain a finite number of circles consisting of regular values for the
map /a. Actually, these circles do not count, as shown by Lemma 2.1 (where
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hf has to be replaced by hkf). By examining the proof of Theorem 2.1, we get

a slightly more general result:

Proposition. Let 1. If niA J( k, Vz e {1,..., r}, then A (hk)

A (hkfw__0}).

3.2. Definition. Let U C Da x {r|} and let kv: min{A:| U is globally
fixed by the kth iteration of the carrousel}. Then kku restricts to an action on
H* (l~l (U)), which we denote by hWe call such actions carrousel
monodromies.

3.3. The zeta-function is determined by the set of Lefschetz numbers

A(hf), k ^ 1, as follows (see e.g. [Mi, p. 77], [A'C-2, p. 234]). If the

integers S\, s2, are inductively defined by A(hk) k ^ 1, then the

zeta-function of / is given by:

(5) $/(')= na -t'y«".
i ^ 1

On the other hand, if .^{k) denotes some small enough neighbourhood of the

set of fixed points of the kth power of the carrousel, then hkf acts on the

cohomology H* (l~l and, with the definition above, we get A(hk)
A(h'^{k)).
Let's consider the annulus Ai9 as before, in the big carrousel disc. Denote

by hA. the restriction of hf to H* (Z"1 (v4/)).

If x e At is fixed by some power k of the carrousel, then this power has

to be a multiple of niA. This remark and formula (5) yield the relation:

(6)

Definition. For any i e {1, ...,r}, denote by ô(/)(1) the carrousel disc

of order 1 centred at an arbitrarily chosen point of C-1} n (.Da x {r|}), but
fixed once and for all.

Let i?(1) : {8 ô(/)(1) | i e {1, r}, ô(z)(1) is not contained in any
other carrousel disc of order 1}. For 8 e i?(1), denote by a(8) an arbitrarily
chosen point on the boundary 68.

Then we have the next recursive formula:

3.4. Theorem. Ç/(0 (0 • ü Cä;('"'••) • W-«"'" 0 •

6e^<"

Proof. We apply Mayer-Vietoris exact sequences to the covering of the

carrousel disc described before. Since the fixed circles do not count for the
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Lefschetz numbers, we get that the zeta-function is a product over all different

annuli, each factor being of the form (shA,(t).

We employ the notations in 2.5. Notice that the set is well defined

for any / e {1, ...,r}. One can easily show that At retracts to the subset

^: 5f u U6e .rfö, hence

If ô e .'// J0, then notice that there are nlA carrousel discs in At of the

same radius as ô; if 52 are any two of them, then

An open covering of and a Mayer-Vietoris argument lead to the

conclusion:

n - KnoW"'1 •

§6^(1)

Using (6), our formula is now proved. Notice that the factor Ç/|{/ 0}(0
corresponds to the disc A0 defined in 1.8.

It is not hard to figure out how the process started in the proof above may
continue. We apply Theorem 3.4 with hf replaced by h'h and get a formula
for the zeta-function ÇÂ/(0, f°r anY S e ^(1). In a finite number of steps,

going through the carrousel discs of order 1,2, where

m : max {g/1 / e {1, r}}, we get a formula for Ç f(t). To write it down,
we need just the following notations.

Definition. Let 8(i)ik) denote the carrousel disc of order k centred

at a fixed (arbitrarily chosen) point of the set C\k) n (Da x {rj}). (This
later set contains exactly nifl ••• niyk points). Denote A'):= {ô(/)(/c)|z
e {1, r}, k e {1, m}}.

For any ô e ^(A'), denote by c(6) its centre and by a(5) an arbitrarily
chosen point on 65.

Let ô e ^(A'), where ô ô(/)(A'), for some indices i and k as above.
Then define n(&) : nit \ ' ni>k.

Thus we get the following general zeta-function formula:

3.5. Theorem. C/|{/ 0((0 ' U C^(6)(?"(S)) • )(^<6))
ô e #(A')

By using a decreasing induction, L,f{t) will become finally a product of
integer powers of cyclotomic polynomials.

3.6. Remarks, (a) The points a(6),ôe ?(A') may also be defined as
follows (the precise details are left to the reader):
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Let ô 8(/)(A:) and let C{k) be (formally) defined by the equation
(see (3)): ut akXm'^/nui + ••• + ibk,i^mk + l)/ni'1 "'ni>k. Then define
a curve Gi>k, by slightly perturbing in this equation just the last coefficient
bkJk, such that Gitk Cf\ Vy e {1, r}. For k gh we cut the Puiseux

expansion at a sufficiently high power of X and modify the last coefficient.

It follows that a(8(i){k)) may be identified to the point in Giyk n (Da x {r|})
which is in the closest neighbourhood of c(8(i)(k)).

(b) Let 8 : 8(i)(k). Then c(ô) is a regular value for the map la if and

only if, for any j e {1, r} such that Cjk) C\k), we have gj > k. It is

possible that a(8) cannot be chosen arbitrarily close to c(5), see also

Remark 1.6.

(c) The carrousel monodromies h'c{b), h'a{b) may be defined as

monodromies of functions. This remark was used by Lê in his proof of the

Monodromy Theorem [Lê-1], see also [Lo]. For instance, if 8 8(i){k) and

(;u{k\t), X(tj) is the parametrization of C{k) defined in 1.5, then the

pull-back diagram:

(Xj*\0) - (X, 0)

(7) Ak) i
{u\k), X)

(C, 0) - (C2,0)

defines a space (X^},0) and a function f{k) on it. Then h'c{b) is the

monodromy of f{k).

3.7. We illustrate the formula on the following particular case: any
component Ä/ has just one Puiseux pair, i.e. gt - 1, V/ e {1, ...,r}. We

assume, for the sake of simplicity, that the sets of components of T (/, /) and

A (I, f are in one-to-one correspondence.
In this case, we have Cz-1} A/ and a carrousel disc 8(/)(1) is an

arbitrarily small disc centred at c(ô(/)(1)) e À/ n (Da x {r|}), which is

pointwise fixed by the niAih iterate of the big carrousel. It follows that the

point a(8(i)(1)) can be chosen arbitrarily close to c(8(/)(1)). The centres

c(8), ô e ?(A') are critical values for the map /a. Let c(i) denote a fixed,
arbitrarily chosen point of the set At-n (Da x {r|}). Then cé(A') can be

identified to the set {c(0 j i e {1, r}}. With these notations, the

zeta-function formula becomes

(8)
i e {!,...,/}
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where h[%: H'(t;1 (c(&)),/0"1(«(«))) is the relative monodromy and its

zeta-function is Ca£(S)(0CajJS5{0• ®ne a^s0 ®ets A/) A(/|{/ o|)

^ y\.

By standard arguments, //* (/"1 (c(ô)),/a
1 (a(ô))) is isomorphic to

the direct sum of reduced cohomologies © „ e/~1 (C(ô)) n tH (Fv), where

F'u:= Bv E n
1

(a (ô)) is the local Milnor fibre and Buz is a Milnor ball of

the isolated singularity at v. Let d} : # /a
1 (c(/)) n T.

A point u e /"1 (c(0) n r g°es> after complete turns of the carrousel,

to v' e l^l(c(0) n L and v' F u if w/fi ^ 2. After exactly W/.id/ turns, the

point u is fixed.
It becomes clear how the relative monodromy acts on the above direct sum;

by similar arguments as those in [Si, p. 192], one shows that the matrix

of h[d(i) may be assumed to have the following block decomposition

~0 0 0 V/Tf'.^r
I 0 0 0

0 1. 0

0

_0 0 I 0

where, at some fixed v(i) e /"1 (c(z)), I is the identity matrix on FF(F'u{i)),
T/ is the horizontal monodromy of the transversal singularity and V/ is the

vertical monodromy of the local system on F/\{0}, with fibre H* (F'u{i)).

Then - II ?;,det|I - td>VjT"Finally, our
formula looks as follows:

(9)
Cl^o,(0 • n n det[I -

i e {1, 0

3.8. This latter one may be easily specialized to the Siersma's formula
[/oc. cit.]. Let Am be the most exterior annulus and assume that the

components of A which cut Am are Ai, A5 and they have just one Puiseux

pair. Denote i : Da x {ri}\Am. By our approach we get C,f(t)

UB,„_,(?)• n/e{1,...,slcAr,,(r'..).
Let then g be a function with 1-dimensional singular locus

£ u/6{i,...,*}£/ and let / := g + lK, for some / e Qg, with K e N large
enough. Then / is an isolated singularity and, as shown in [Si], one may
identify the monodromy of the Milnor fibre Fg to hDfn_l. The degree of the

covering Lz\{0} - A,A{0} is dt. Then one gets [Si, p. 183]:

(10) ^f(t) Çgit) • I] det [I - tKd'Vi -

i e{ 1,
fci-
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3.9. Example. Let X:={x3+/ + z3 0}CC3 and let / g mx,o be the

function induced by femc\o)f=x. Consider the linear function /
induced by I - y. Then / g Qf. We get that À (/, /) is irreducible and has

the Puiseux parametrization: / au3, X u4, where a is a nonzero constant,

easy to determine.

Let c g A(/, /) n (.Da x {r|}) and let a $ A(l, f) n (Da x {r|}) be a

neighbour point of c.

The monodromy h'a can be identified to the monodromy of the function

fa: (Xa, 0) -> (C, 0) induced by fa u, where Xa : {x u4, y u3,

z ]X2yv4} and y is a 3-root of - 1. We get t) (1 - t)~3, hence

W -d-02.
By using (8), the final result is Ç,f(t) (1 - 0~30 - I4)2- We also get

A (/) 3.

Notice that there is another way of computing the zeta function
in this example, by using the usual C*-action on X, which fixes the

zero set {/ 0}. It follows that the monodromy hf of / is equal to
the 3rd power of the monodromy hg of the function g: (C2, 0) (C, 0),

g y4 + z3 and can be computed from the eigenvalues of
hg. If we change the above function / into f\:=x + y, then the set

{fx 0} is no more invariant under the above-mentioned C*-action.
The computations for the zeta-function of h fl are slightly more
complicated, since we get two Puiseux pairs, with ni,i « 1, ft 1,2 3.

This time, the result is C/i(0 - (1 — ^)_1(1 — ^3)_1(1 — t9).
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