§10. The complex of geometric forms on a curve in \$R^2\$

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 36 (1990)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
29.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
and are linear fractional images of the equiangular spiral with angle $\pm \pi / 4$ given by

$$
\sigma(v)=e^{(1 \pm i) v}=e^{v} e^{ \pm i v}
$$

We note in particular that the inverse length of "one loop" of the inversive geodesic is 2π. Figure 9.1 is a picture of one such loop.

Equiangular spirals have two accumulation points, the poles, one at the origin and the other at infinity. These poles determine the family of circles through them (straight lines in this case) as well as a second family of circles orthogonal to the first. The equiangular spiral meets each family in fixed angles. The same is true for linear fractional images of this configuration, and with the same angles.

The connection between Q and the angle $\varphi \in(0, \pi / 2)$ between the loxodrome and its first family of circles is given by

$$
\tan \varphi=Q+\sqrt{Q^{2}+1} .
$$

In figure 9.2, we show the inversive geodesic with poles at ± 1 together with its first family of circles.

In figure 9.3 we see the loxodrome again, in a perspective view this time, thrown up onto the two-sphere by the inverse of stereographic projection, along with its second family of circles.

We remark that it seems to be impossible to show the inverse geodesic in such a way as to allow more than one or two loops to appear to the eye, while at the same time allowing no distortion of the figure. This may account for a number of distorted diagrams of this loxodrome which have appeared in the literature. Of course one can picture many loops of some equiangular spirals, say with $Q \gg 0$. At the other extreme with $Q \ll 0$ we have a circumstance for which, in any scale, the corresponding equiangular spiral appears to the eye to be a straight line issuing from the origin. However as one "zooms" in or out this "straight line" appears to rotate about the origin.

§10. The COMplex of geometric forms on a curve in \mathbf{R}^{2}

Among the various forms on a curve in \mathbf{R}^{2}, some, such as ω and Q, can be thought of as arising from the local way in which the curve is embedded in \mathbf{R}^{2}; that is they arise from the local geometric nature of the embedding and are invariant under Möbius transformations. These are the "smooth local
geometric forms" of inversive geometry, or "geometric forms" for short. To be more precise, suppose that $p_{j} \in \gamma_{j}(j=1,2)$, where at p_{j} the germ of γ_{j} has a local description of the form $\gamma_{j}=\left\{z \in R^{2} \mid F_{j}(z)=0\right\}$. We say $\left(\gamma_{1}, p_{1}\right)$ and $\left(\gamma_{2}, p_{2}\right)$ have contact of order at least r if for some choice of the F_{j} there is a Möbius transformation $g \in G$ moving p_{1} to p_{2} in such a way that the Taylor series in x and y for $F_{2}(x, y)$ and $F_{1} \circ g(x, y)$ are equivalent in total degrees $\leqslant r$. We define a geometric form η of dimension d and order r to be an assignment $\gamma \mapsto \eta_{\gamma}$ which attaches to each vertex free curve γ a d-form η_{γ} on it such that the assignment satisfies:
i) Invariance. If $p_{j} \in \gamma_{j}(j=1,2)$ have contact of order at least r via the element $g \in G$, then

$$
\eta_{\gamma_{1}}\left(p_{1}\right)=g^{*}\left(\eta_{\gamma_{2}}\left(p_{2}\right)\right)
$$

ii) Smoothness. If $\gamma\left(t_{1}, t_{2}, \ldots t_{k}\right)$ is a smooth k-parameter family of curves with parametrization $\sigma\left(t, t_{1}, t_{2}, \ldots t_{k}\right)$, then the function

$$
\eta_{\gamma\left(t_{1}, t_{2}, \ldots t_{k}\right)} \text { if } d=0, \quad \text { or } \quad \eta_{\gamma\left(t_{1}, t_{2}, \ldots t_{k}\right)}\left(\frac{\partial \sigma}{\partial t}\right) \quad \text { if } \quad d=1
$$

depends smoothly on $t, t_{1}, t_{2}, \ldots t_{k}$.
The following lemma relates inversive curvature to contact.
LEMMA 10.1. There are universal polynomials $P_{r}\left(v_{0}, v_{1}, v_{2}, \ldots v_{r-5}\right)$ $\in \mathbf{Q}\left[\nu_{0}, \nu_{1}, \nu_{2}, \ldots v_{r-5}\right]$ for every $r \geqslant 5$ with the property that at any nonvertex point p on a curve γ with inversive curvature function Q, the pair (γ, p) has contact of order $\geqslant r$ with the curve

$$
\begin{equation*}
y=\frac{x^{3}}{6}+t_{5} x^{5}+t_{6} x^{6}+\ldots+t_{r} x^{r} \tag{10.2}
\end{equation*}
$$

at the origin, where $t_{k}=P_{k}\left(Q, Q^{(1)}, Q^{(2)}, \ldots Q^{(k-5)}\right)(p)$ for $k=5,6, \ldots, r$.
Proof. We regard the coefficients t_{k} as functions on the curve γ; that is, for each non-vertex point p on the curve, there is a unique inversive transformation sending p to the origin and throwing the curve into the form 10.2 (cf. §6) and so the coefficients $t_{k}(p)$ are uniquely determined by the curve γ and the point p. Thus the t_{k} 's are functions on the curve; for example $t_{5}=Q / 60$ by the results of $\S 6$. By the formula 6.1 we see that $\kappa^{\prime}=1$ at the origin for the curve 10.2 which implies that

$$
\frac{d t_{k}}{d v}=\frac{d t_{k}}{d x}
$$

so that x can be used as inversive arc-length parameter to first order for the curve at the origin. Given the t_{k} 's at the origin we can try to calculate them at a nearby point on the curve $(h, 0)+O\left(h^{2}\right)$. Displacing this point to the origin yields the following expression for the translated curve

$$
y=\frac{(x+h)^{3}}{6}+\sum_{k=5}^{r} t_{k}(x+h)^{k}+O\left((x+h)^{r+1}\right) .
$$

Let I_{k} be the ideal generated by $t_{5}, t_{6}, \ldots t_{k-1}, x^{k}, h^{2}$, so that this equation implies

$$
y=\frac{h}{2} x^{2}+\frac{x^{3}}{6}+h k t_{k} x^{k-1} \bmod I_{k} .
$$

Then the substitution

$$
z \mapsto \frac{z}{1-i \frac{h}{2} z}=z+i \frac{h}{2} z^{2}+O\left(h^{2}\right)
$$

throws the equation into the form

$$
y=\frac{x^{3}}{6}-\frac{5}{72} h x^{6}+h k t_{k} x^{k-1} \bmod I_{k} .
$$

Since there is no quartic term $\bmod I_{\mathrm{k}}$, this is already the normal form we seek, and we have shown that

$$
t_{k-1}(h)=h k t_{k}(0)+A+B h+O\left(h^{2}\right), \quad \text { where } \quad A, B \in \mathbf{Q}\left[t_{5}, t_{6}, \ldots, t_{k-1}\right] .
$$

Thus

$$
\frac{d t_{k-1}}{d \nu}=k t_{k}+B
$$

and hence

$$
t_{k} \in \mathbf{Q}\left[t_{5}, t_{6}, \ldots, t_{k-1}, \frac{d t_{k-1}}{d \nu}\right] .
$$

Since $t_{5}=Q / 60$ it follows inductively that

$$
t_{k} \in \mathbf{Q}\left[Q, Q^{(1)}, \ldots, Q^{(k-5)}\right]
$$

This completes the proof of the lemma.
Now we describe the universal construction for the geometric forms. Fix an infinite sequence of real variables $x_{0}, x_{1}, x_{2}, \ldots$ and let A be the algebra of
smooth real valued functions in these variables such that each function depends on only finitely many of them. We set:

$$
\Lambda_{g e o}^{d}= \begin{cases}A & \text { for } \quad d=0,1 \\ 0 & \text { otherwise }\end{cases}
$$

Then we define

$$
\begin{gathered}
d: \Lambda_{g e o}^{0} \rightarrow \Lambda_{g e o}^{1} \\
\text { by } \quad d f=\sum_{i} x_{i+1} \frac{\partial f}{\partial x_{i}} .
\end{gathered}
$$

Given a specific vertex free curve γ, let $\Lambda^{*}(\gamma)$ denote the DeRham complex. The map

$$
\Psi_{\gamma}: \Lambda_{g e o}^{d} \rightarrow \Lambda^{d}(\gamma)
$$

is defined by:

$$
\begin{array}{lll}
f \mapsto f\left(Q^{(0)}, Q^{(1)}, \ldots\right) & \text { for } & d=0 \\
f \mapsto f\left(Q^{(0)}, Q^{(1)}, \ldots\right) \omega & \text { for } & d=1 .
\end{array}
$$

This map is clearly a chain map. Moreover it is clear that for any form $\eta \in \Lambda_{\text {geo }}^{*}$, the assignment $\gamma \rightarrow \Psi_{\gamma}(\eta)$ is a geometric form. We claim that in fact every geometric form arises in this way. Since every geometric 1 -form Ω is a multiple of the non-vanishing geometric 1 -form ω, we may write $\Omega=R \omega$, where R is a geometric function. Thus it suffices to show that every geometric function H is of the form $\gamma \rightarrow \Psi_{\gamma}(\eta)$ for some function $\eta \in \Lambda_{\text {geo }}^{0}$. To see this we first consider the smooth $r-4$ parameter family of curves P given by the equation

$$
y=x^{3}+t_{5} x^{5}+t_{6} x^{6}+\ldots+t_{r} x^{r} .
$$

Set $t=\left(t_{5}, t_{6}, \ldots t_{r}\right)$. These curves are all vertex free at the origin, and by the result of §4 we know that for an arbitrary curve γ and an arbitrary point $p \in \gamma$ on it, (γ, p) has contact of order $\geq r$ with some member of this $r-4$ parameter family of curves. It follows from the invariance property (i) that we need only find $\eta \in \Lambda_{g e o}^{0}$, such that $\Psi_{\gamma}(\eta)=H_{\gamma}$ at the origin for all γ in the family P. By the smoothness property (ii) we can write $H_{\gamma(t)}(0)=L(t)$, for some smooth function L, and by the lemma above $t_{5}, t_{6}, \ldots t_{r} \in \mathbf{Q}\left[Q, Q^{(1)}, \ldots, Q^{(r)}\right]$. Thus $L(t)=\eta\left(Q^{(0)}, Q^{(1)}, \ldots, Q^{(r)}\right)$ for some smooth function $\eta \in \Lambda_{\text {geo }}^{0}$, and we are done.

We remark that although $\Lambda_{\text {geo }}^{*}$ gives all the smooth local invariants of curves in \mathbf{R}^{2}, it certainly does not give other, more global, invariants like $v=\int \omega$.

