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ON THE INVERSIVE DIFFERENTIAL GEOMETRY

OF PLANE CURVES

by G. Cairns *) and R. W. Sharpe 2)

§ 1. Introduction

In this article we study the extrinsic inversive geometry of curves in the

Euclidean plane R2 under the inversive group G PSL2(C)~ of general

Möbius transformations. This is PSL2(C) extended by complex conjugation.

PSL2(C) itself is the special, or orientation preserving Möbius transformations.

An introduction to classical inversive geometry may be found in [18].

As our model for this geometry we take the complex plane C (with
coordinate z x + iy) together with the point at infinity, oo. The underlying

topological space is of course S2 and G is the group of conformai and anti-

conformal transformations of S2, but we use the standard Euclidean metric

on C. We shall assume that all our curves are oriented and smooth.

In §2 we recall Coxeter's invariant (cf. [5]), the "inversive distance",
between two non-intersecting circles. This is the imaginary part of their

imaginary angle of intersection. Based on this idea we obtain a proof of a result

of Kneser (cf. [9], p. 48) which says that on a vertex-free part of a curve y
the osculating circles never intersect. Using the square root of the inversive
distance between neighbouring osculating circles on y we obtain an invariant
1-form co (the infinitesimal inversive arc-length). This 1-form was apparently
first discovered by H. Liebmann in 1923 [12], although the name of G. Pick
is also mentioned by Blaschke in [2]. If y is parametrized by the arc-length s

and if k (s) denotes the curvature at the point y (s), then the 1-form co can
be identified as the 1-form ]/ |k'(T)| ds (cf. our §2, or [3], p. 92), and can
be extended continuously over the vertices. It follows that the set of vertices

(points where k'(s) 0) of a curve is invariant under the inversive group. The
integral of this invariant 1-form gives the inversive arc-length, v J co, a

9 This work of this author was done in part when he was a postdoctoral fellow at the
University of Waterloo.

2) The work of this author was supported in part by National Science and Engineering
Research Council of Canada grant A4621.
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natural invariant parameter for curves in inversive geometry. We end the
section with a table for the inversive arc-length for various conics.

The classical four vertex theorem, due to Mukhopadhaya in 1909, states

that every simple closed curve in R2 has at least four vertices. Though the

standard proof is easy in the case of convex curves, Kneser's 1911 [11]

generalization to the non-convex case is strangely more complicated, and the
result is usually stated without proof in introductory texts. Simple and elegant

proofs have been given by Valette in 1957 [17] (cf. also Pinkall 1987 [15]) and

Osserman in 1985 [14]. The theorem is also known to be true for S2 but the

usual proof is again quite complicated. Furthermore it is easy to construct
simple closed curves on the torus with only two vertices. In § 3 we present a

simple new proof of the four vertex theorem for (not necessarily convex) simple
closed curves on R2 based on the conformai invariance of the vertices. The

moral is that the four vertex theorem is really a theorem in inversive
differential geometry, where the larger symmetry group is a powerful aid. In
§4 we consider a generalization of the form co to curves y on an arbitrary
Riemannian surface given by the formula:

CÛy ]/WdS
where Kg is the geodesic curvature of the curve on the surface. It turns out
that this form is invariant under maps between surfaces which preserve the

curves of constant geodesic curvature, the so-called "concircular maps". As

a consequence of this we show in §5 the following result.

Theorem. If y is a smooth, null-homotopic, simple closed curve on a

complete Riemannian surface M of constant curvature, then the geodesic

curvature of y has at least four local extrema.

The remainder of the paper continues a general study of curves in the

inversive plane. The method used throughout is the method of moving frames

in one of its simpler incarnations, systematically developed by A. Tresse [16]

called "the method of reduced equations". In fact the spirit here is much the

same as the first part of É. Cartan's beautiful book [4].

In §6 we show that for each non-vertex point p on a curve y there is a

unique orientation preserving Möbius transformation geG such that

g~l(p) 0 and the Taylor expansion for the curve g-1(y) at the origin has

the normal form

(1.1)
x3 x5

y ± — +Q — + 0(x6)
6 60
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where ± sgn(K'). The denominator 60 (rather than the seemingly more

natural 5! 120) represents a normalization of Q to simplify formula 1.3

below and the calculations for the loxodrome in §9. It is clear that Q is

invariant under (special) Möbius transformations and so we call it the inversive

curvature of y at p. It can be calculated in terms of the Euclidean

curvature k(s) and its derivatives with respect to Euclidean arc-length by means

of the formula

4(k'"-K2K')K' - 5K"2
(1.2) Q —

8k

We note that although the sign of Q depends on the orientation of the plane,

it is nevertheless independent of the orientation of the curve. The

curvature Q corresponds to the invariant b/2 which Blaschke ([2], end of §21)

obtains by a completely different (and roundabout) method).
The procedure described above gives rise to a Frenet lift

g:y — [vertices) -> G, which is a curve on the Lie group G parametrized by

inversive arc-length. In §7 we show that parallel translation of the tangent

vector dg/dveTg(G) back to the identity by g~l yields the formula

/ ° 1

(1-3) g~'~dN Usgn(K')(Ô-0 0

It follows that the curvature Q determines the vertex-free curve up to a Möbius
transformation.

The curves with Q constant are especially interesting as they constitute the

"lines and circles" of inversive geometry. These are studied in §9 and turn
out to be what Blaschke [2] calls "loxodromes"; that is, they are the
equiangular spirals (Bernouli's spira mirabilis) and their inversive images.
Loxodromes are the orbits of 1-parameter subgroups of loxodromic
transformations.

In § 10 we use a simple notion of contact to define and determine the
complex of smooth, local "geometric" differential forms A*eo on a vertex
free curve in R1. This is a universal complex equipped with a homomorphism
Ty: A*eo - A*(y) to the de Rham complex of y for every vertex free curve y,
and satisfying the invariance property that TY g*Tg(Y) for every g eG. It
turns out that A*eo is generated by the function Q and the form co so that
these are essentially the only interesting smooth local invariants of curves in
R2.
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§2. The infinitesimal Coxeter invariant

In his paper [5] Coxeter describes the "inversive distance" between two
non-intersecting circles (cf. H.G. Forder [8] and H.W. Alexander [1] for alternate

treatments). Starting with the standard formula

d2 a2 + b2 - lab cos 0

relating the sides and angle of a Euclidean triangle one obtains the formula:

a2 + b2 - d2
(2.1) cos 0

lab

for the cosine of the angle between two intersecting circles in terms of the two
radii a and b, and the distance d between the centres. Although the left hand
side of 2.1 makes sense only for intersecting (or tangent) circles, the right hand
side makes sense even for disjoint circles. The various cases are:

a2 + b2 - d2
[i circles

lab

|mJ < 1 intersecting

p 1 internal tangency
)ll - 1 external tangency
|fi|> 1 disjoint

Geometric Significance of jx

Coxeter defines the inversive distance ô between disjoint circles by the

formula coshô |p|. Like the ordinary angle between two intersecting circles,
inversive distance is a conformai invariant of the relative position of the two
disjoint circles.

We shall apply this formula to compute the inversive distance between the

osculating circles of two nearby points on a curve. Let y be a smooth curve
in C parametrized by arc-length z:(a,ß)->C. Let k^) be the ordinary
Euclidean curvature of y at the point z(s). The radius of the osculating circle
is 1/|k| and its centre lies at z + iz'/k. Comparing the osculating circles at

points z(>s) and z(s + h) we find that the inversive distance between them is

given by
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1 1

+ — z(s + h) - z(s) + i
z'{s + h) z'(s)

K (s + h)2 K(i')2 K(s + h)2 k(s)2
cosh 0(6-+/z, s) «

2

K (s + h)K(s)

Expanding this in a Taylor series in h gives:

(2.2)
2 4!

We note in particular that if k'(s) =£ 0, the right hand side of this expression
is larger than 1 for small /z, proving that the osculating circles of nearby points

on a curve with k' 0 are disjoint. It follows from this that the set of all

osculating circles of such a curve forms a nested family.
From 2.2 we get

It follows immediately that coY ].
' | k '(.s) | ds is a differential 1-form on the

curve which is invariant under the action of the Möbius group in the following
sense: for all inversions (p, the 1-form coY is the pull-back by cp of the 1-form
cd<p(Y) associated to the curve cp(y). We call co coY the * 'infinitesimal Coxeter
invariant".

Definition. A vertex of y is a zero of co.

The invariance of co means in particular that the property of being a vertex
is an inversive invariant.

We define the inversive arc-length of a curve y to be the integral

This is an inversive invariant of y. Indeed, fixing a point aey, we can
parametrize the curve by means of the natural parameter v, where

\'S(s + h3s) 12 ~1/4 ]/|K'(s)j h + 0(h2)

y

p

a

For example, the inversive arc-lengths for the conics can be calculated by
means of the integrals
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41/3a{a2- 1)
]/ cos 0 sin 0 dQ

cos20 + #2sin20
for the ellipse x2 -\ 1

and

4]/ 3 a(a2 + 1)
]/ cos 0 <70

a2 + cos20

yfor the hyperbola x2 H 1

Only in the case of a circle and a parabola do we get an elementary integral.
Here is a table of the inversive arc-lengths of various conics.

Type <? Inversive Length Type 0 Inversive Length

Circle

Ellipses

0.0 0.0 Parabola 0.0 1/6 71

0.1 0.59 Hyperbola 0.1 71 12.10
0.2 1.19 0.2 71 10.71

0.3 1.80 0.3 71 9.60
0.4 2.45 0.4 71 8.63

0.5 3.15 0.5 71 7.70
0.6 3.92 0.6 71 6.77
0.7 4.81 0.7 71 5.79

0.8 5.91 000 71 4.68
0.9 7.48 0.9 71 3.30

e - eccentricity 0 angle between the asymptotes

Table 2.3

As the reader may show, when the eccentricity approaches 1 the inversive

lengths of both the ellipses and the hyperbolas approach a common value
which is twice the inversive length of the parabola. This fact and the above
table are reminders that inversive geometry behaves quite differently than

projective or affine geometry, which don't distinguish among the various

ellipses for example. In particular it follows that the inversive arc-length is

neither a projective nor an affine invariant.
We note also that the table gives the inversive lengths of any curve

equivalent to these conics under a linear fractional transformation. For
instance, inverting the parabola with respect to its focal point yields the

cardioid which must therefore have the same inversive length as the parabola.
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§3. The four vertex theorem in R2

Let y be a closed embedded curve on R2. The Euclidean curvature k is

defined and so it must have a minimum and a maximum which give two

vertices on y. (Indeed the number of local minima must be the same as the

number of local maxima, so that the number of extrema is even.) Next we move

y by a Möbius transformation so as to send one of these extrema to oo, and

in such a way that the curve becomes asymptotic to the x-axis. Now k(s) 0

as ± oo, and the theorem of turning tangents ([6], p. 37) says that

j k(s) ds 0. It follows that k cannot have just one maximum or just one

minimum for if so it would have a fixed sign and then the integral could not
be zero. Thus y has at least 2 extrema in addition to the one at infinity. But
since the total number of extrema is even, there must be at least four of them,
and hence four vertices.

There is a subtle point which we have glossed over in this argument. The

vertices come in two types. As well as the extrema of k (the "honest" vertices)
there may also be non-extremal critical points of k. The above "proof" has

used the fact that not only are the vertices inversive invariants, but so too are
the isolated extrema. Whereas this is indeed true (as is implied by equation
4.3 of the next section), it suffices to note that the non-extremal critical points
of k are unstable phenomena and each of them may be eliminated by a

deformation of the curve with support in a small neighborhood of it. One may
thus assume that all of the vertices of y are extrema, whereupon the above

proof stands as is.

Remark 3.1. The reader may compare the above proof to that of [10],
where the four vertex theorem is obtained by using a Möbius transformation
to send a non-vertex point to infinity.

§4. A GENERALIZATION OF THE INVARIANCE OF CO

Let (M, h) be a Riemannian surface with metric h, and let y be a curve
on M with geodesic curvature Kg. We can ask whether the 1-form along a
curve y given by

coY V\k^\ ds
is a conformai invariant. More precisely, let T: (Mx, hx) -> (M2, h2) be a

conformai map and let yl be a curve on Mx ; is it true that

(4-1) T*(c0vp(Yl)) coYl
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A necessary condition for this is that T send curves of constant geodesic

curvature to curves of constant geodesic curvature. We show that this
condition is in fact sufficient.

Theorem 4.2. Let T : {Mx, hf) (M2, h2) be a conformai map which

sends curves of constant geodesic curvature to curves of constant geodesic

curvature. Then 4.1 holds for all curves in Mx.

Proof. Let Yi be a curve on Mx parametrized by arc-length sx and with
geodesic curvature k^Sj); similarly let y2 T(yi) be the image curve on M2

parametrized by arc-length s2 with geodesic curvature k2(s2). We must show

that

l/NtoTl*!.
We will prove this for orientation reversing conformai maps T; the general

case then follows by composition. We start with a technical lemma.

Lemma. If peYi then there exists a neighborhood Q of x in Mx

and a positively oriented orthonormal frame (x,n) of vector fields on Q

such that the following properties hold.

a) The connected component containing x of the intersection of Yi wzY/z

Q is a flow line for t.
b) The flow lines of n have constant curvature.

Proof ofLemma. It suffices to take a sufficiently small neighborhood Q

of p such that there exist on it a flow n by geodesies which are perpendicular
to the connected component of Yi n ^ containing x. Then t is chosen

perpendicular to n.

Returning to the proof of the theorem, it obviously suffices to work on
the neighborhood Q of some arbitrary point x of Mx. Since T is conformai
there exists a positive function / on Q such that (T*(/t), -T*(/n)) is a

positively oriented orthonormal framing of T(Q), where T* is the push-
forward map on tangent vectors induced by T. We get gx /2T*(g2), where

T*(g2) is the pull-back of g2 by T. Now

¥*(1/1*2(52)1^2) /"'¥*(]/1K2fe)) dst

so it suffices to show that

(4.3) ¥*(><2(52)) -/2*;(5,)
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By the lemma we can take t d/ds\ on yi so that

k;(si) x(Ki), and

T*(k2(S2)) ^*(^*(/T)K2) /t(*P*(K2))

and hence it suffices to show that

(4.4) TOF*(K2)) -/T(ki)

Now the curvature Ki is given by the standard formula K] — gi(Vin>t)

g,([n,x],t), where V is the Levi-Civita connection and [n,x] is the Lie

bracket of vector fields n and t. Similarly the curvature k2 is given by

k2 fc([-«F.(/n), ¥.(/t)], ¥.(/t)) &(^[/T,/n],V»(/T))

and therefore

¥*(k2) /_2gl([/T,/x)
(4.5) f~2g,(f2[x,n] + /x(/)n -

- /k, - n(/)

Thus, in order to prove 4.4, we will show that

t(/ki + n(/)) /t(k,)
(4.6)

i.e. k,t(/) + x(n(/)) 0

To do this write [n,x] as a linear combination of x and n

(4.7) [n, x] K)X + (Xjn

where of course fu is the geodesic curvature of the flow lines of n. If \i2 is

the geodesic curvature of the flow lines of ^*(11), then analogously to 4.5 we

have

(4.8) ¥*(H2) - /Hi + x(/)
Since the flow lines of n have constant curvature we have

(4.9) n(nO 0

Since T sends curves of constant curvature to curves of constant curvature we
also have

(4.10) n0P*(42)) ¥*(¥*(11)112) 0

Applying n to 4.8 yields, in view of 4.9) and 4.10)

n(/)n, nx(/)
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Combining this with 4.5 yields

n(x(/)) - x(n(/)) [n, x] (f)Kix(.+ |Xin(/) k,x(/) + nx(/)

which gives 4.6 as required.

§5. A GENERALIZED FOUR VERTEX THEOREM

The curves of constant curvature in the round 2-sphere S2, the upper half
plane H2 (hyperbolic space), and the Euclidean plane R2 are just the circles.

Moreover, the stereographic projection p:S2~+ R2 and the inclusion
i:H2-^ R2 both preserve these circles. Thus theorem 4.2 says that our form

co \/\k\s)\ ds

along a curve y in R2 pulls back via p or i to the form

CO ]/1 Kg(s) I ds

along the corresponding curve y', where here kg(s) and s refer to the geodesic

curvature and arc-length of y' in the metric for S2 or H2. Thus we obtain the
four vertex theorem for S2 and H2. It follows that the four vertex theorem
holds for all complete simply connected Riemannian surfaces of constant
curvature. Finally if y is a null-homotopic smooth simple closed curve on an

arbitrary complete Riemannian surface M of constant curvature, then y lifts
one-to-one to a smooth simple closed curve with the same number of vertices

on the simply connected universal cover of M. Once again it follows that the

number of vertices is at least four.

Remark 5.1. Interestingly, simple closed homotopically non-trivial curves
in the real projective plane always have at least three vertices [17]. Note that
in non-orientable surfaces the number of honest vertices of a closed curve need

not necessarily be even, since here geodesic curvature is only defined up to a

sign.

§6. Normal form and inversive curvature

Let p be a non-vertex point of an oriented curve y. Since the subgroup of
Euclidean motions in G acts transitively on the points of R2 and the unit

tangent vectors at these points, we may assume that the point pe y which



INVERSIVE GEOMETRY OF PLANE CURVES 185

interests us lies at the origin with tangent vector in the positive x-direction.

Then the curve has the following Taylor series at the origin

(6.1) y Ax2 + Bx3 + Cx4 + Dx5 + 0(x6)

The coefficients in 6.1 can be expressed in terms of the Euclidean curvature

atpey and its derivatives with respect to Euclidean arc-length according to

the following formulas.

1

A - K
2

1

B — K
6

C — (k" + 3K3)
24

D (k'" + 19K2K')
120

Next we use the non-Euclidean motions of G to further normalize the

equation for y at p. Writing

F(z) - y + Ax2 + Bx3 +

we have

Y [zeC\F(z) 0], so that g_1(Y) 0]

[z\F(g(z)) 0}

It is rather tedious to calculate the following sequence of transformations of
the equations and so we suppress the algebraic work. Since we assume that

p is not a vertex we have B kV6 0. The substitution

z
Zi->

1 - iAz

replaces 6.1 by a new series, which when solved for y yields the Taylor series

(6.2) y Bx3 + (C-A3)x4 + (D-4A2B)x5 + 0(x6)

Next the substitution

C-A>
1 + z

B
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applied to 6.2 yields, after solving for y9

((C-A3)2\D-4A2B — -—-J x5 + 0(x6)

Finally the substitution

V\6B\

applied to 6.3 yields

(6.4) y ± — + Q— + 0(x6)
6 60

where ± is the sign of k', and

5

e=i
D — 4A2BB2Expressing Q in terms of the Euclidean curvature we have

4(k"'— K2K')K'- 5K"2
ß J ri8k

In particular our calculation shows that there exists an orientation preserving

group element g~l moving an arbitrary oriented non-vertex point to the

origin in such a way that the image curve has for its Taylor expansion the

normal form

x3
y ± —+ 0(x5)

6

and is oriented in the positive x-direction. The uniqueness of g~l follows by
showing the stabilizer of this normal form to be the identity. We omit this
calculation. It follows that Q, the inversive curvature of y, is invariant under the

group of orientation preserving Möbius transformations.
At a vertex things work out somewhat differently. Assuming that a vertex

is non-degenerate3 in the sense that k" =£ 0 there, one finds, on attempting to
imitate the above reduction, that the fourth order term cannot now be

eliminated whereas the fifth order term can be removed. One finds that the

normal form at a non-degenerate vertex is

1
4 fK"" 7 „

1 K"
— x4 + i k2k
24 I 720 1440 800 k'

k" x6 + 0(x7)
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The stabilizer of the expression y x4/24 4- 0(x6) has order 2 and is

generated by

z i-> - z •

It follows that the non-degeneracy of a vertex is an invariant of inversive

geometry.

§7. The canonical map g:y-+G

The considerations of the last section allow us to define a canonical map

gy: y -> G for vertex free curves y by mapping a point pey to gy(p) e G, which

is the unique group element such that gy (p) ~1 sends p to the origin and

gy(p)~lM has oriented contact of order 4 with the standard curve y x3/6

at the origin. We note that if y' h(y) for some heG, then obviously

gy (h(p)) h(gy(p)). Of course altering the initial choice of the origin and

the axes used there to describe the model will alter gy, but only by right

multiplication by some fixed element of G. If o : (a, ß) - C is a parametrization
of the curve by Euclidean arc-length s, and o'(y) el9(s\ then the curvature

of the curve at o(y) is Q'(s) k(y), and we have the following explicit formula
for g.

(I o\ (ei9/2 0 W1 OW Ik'I -1/4 0 \
y J e~iQ/2) \ (k"-2/kk,)/4k/ 1 j \ 0 |ka|1/4]

The first two factors are Euclidean motions whose inverse puts y into oriented
first order contact with the oriented x-axis. The rest improve the order of
contact to 4 as in §6. It is convenient to regard g as a function of the inverse

arc-length v. Now g(y) is a curve on the Lie group G, with tangent vector dg/dv
at g(v). Left translation by g(v)-1 moves this tangent vector to the origin to
yield

(7.1) c(v) g(v)-'~
dv

which is a vector in the Lie algebra sl2(C) of 2 by 2 complex matrices of trace
zero. As v varies c(v) inscribes a curve on this Lie algebra. Indeed it is well
known (e.g. [13], p. 71) that this curve determines the original curve g(v) up
to left translation by an arbitrary constant element of G. Here is an explicit
formula for the curve c(v). It is easy but rather tedious to verify it.
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/0 1\ 1

c(v) where T -sgn(K') (Q-i)
\T 0 J 2

and Q is as in § 6. It follows that the inversive curvature Q determines the curve

up to an orientation preserving inversive automorphism.

§8. Relation with Cartan's moving frames

Let us sketch a more usual way of obtaining a Frenet lift. The connection
with the Schwartzian described here can be found, for example, in Cartan's
book [4] and very succintly in [7]. The canonical line bundle

p: 2, -> P'(C)

has a pedestrian description (away from the zero-section) as:

(Z\, Z2) £~ {zero section} C2 - {0}
I p I

z=~++ [zl>z2]eP'(C)
z2

Let ö:(a,P)-^R2CP1(C) be a curve; we choose an arbitrary lift
a (zi(t),z2(t))and set Xa,f2 i + where •

— Thus C/1,/2) is a frame in C2. We try to choose X so that this
dt

frame has area 1. The condition on A, is:

1 Area(/i,/2) Area(X(z,(0,?z(0). K'z\/z2))

X2(ziZ2-z2Z\),or1 - (Xz2)2z

i
Thus A, — will do, and we have

z2Vz

Vz

and f2-'f\--iz z ~3/2(z, 1) + _1/2(z,0)
2

3 1

Finally a calculation shows that f2 Sfj, where S - z2z-2- - u_1.

Of course S is the Schwartzian derivative which this calculation interprets

as a 4'curvature" of o. Now the Schwartzian S depends on the particular
parametrization which is used for the curve. For our purposes we wish to use
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inversive arc-length as the parameter, so that the "curvature" S becomes an

intrinsic invariant of the curve in inversive geometry. And in this case it turns
out that S has constant imaginary part. To see this we describe S in terms of
the more familiar Euclidean curvature and its derivatives with respect to
Euclidean arc-length.

The Euclidean and inversive arc-lengths are related by the equation:

I I
d

dv k \U2ds, where ' — Thus:
ds

Z — Z K -1/2

I
1 k" K

z sgn(K')e'e { 2 + i ~
2 k' Kf

-a I ,\ 1 /4 f 1 K'" K" K2 / 3 KK
z sgn(K )e k - \ 2 + —r + / 1

1 2 K K K' \ 2 K/

Using these expressions we can calculate the Schwartzian as:

3 / \ 1 z f - 5k" i} 1

ï(Ï) 2hs!,M«
Regarding the vectors f{ and f2 as column vectors, we obtain a 2 by 2 matrix
h (/2,/i)eG, and according to the calculation above we have:

(hJ i) {fufù
0 1

5 0

Thus h(y) and g(v) (cf. §7) are equal up to left multiplication by a constant
element of G. This interprets Cartan's canonical frame (/i,/2) as the unique
frame (up to a constant element of G) forming the columns of a matrix in G
which moves the standard curve y ~ x3/6 to the given curve with contact up
to 4th order at the given point.

§9. Loxodromes

To calculate the curves with Q constant we solve the equation:

0

- 6(0-0 0 ' where £ sgn(K')d\
I 2
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and use the fact that o(v) g(v) • 0 to obtain the curve (where • refers to the

action of Sl2(C) on C by Möbius transformations).

Now

|ie(e-„

where
1

£, +-— (l+Q2)l/i]/ze2\Q>
1/2

and

l'^2tU -il
dgA /Ç 0 \ /e^ 0 \

Thus gA I and hence gA C where C is an
dv \0 -U \0 e-^j

invertible constant 2 by 2 matrix. Since A • - 1 0 we have

g-0 - C-(e2*v)

which is a linear fractional image of an equiangular spiral.

Figure 9.1

In particular, curves for which Q 0, which we may call inversive

geodesies, have

i %

2î, ±]/2ee22'
± 1
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Figure 9.2

Figure 9.3
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and are linear fractional images of the equiangular spiral with angle ± n/4
given by

o(v) e(1±/)v eve±iv

We note in particular that the inverse length of "one loop" of the inversive
geodesic is In. Figure 9.1 is a picture of one such loop.

Equiangular spirals have two accumulation points, the poles, one at the

origin and the other at infinity. These poles determine the family of circles

through them (straight lines in this case) as well as a second family of circles

orthogonal to the first. The equiangular spiral meets each family in fixed
angles. The same is true for linear fractional images of this configuration, and

with the same angles.
The connection between Q and the angle (pe (0,71/2) between the

loxodrome and its first family of circles is given by

tancp Q + ]/ Q2 + 1

In figure 9.2, we show the inversive geodesic with poles at ± 1 together
with its first family of circles.

In figure 9.3 we see the loxodrome again, in a perspective view this time,
thrown up onto the two-sphere by the inverse of stereographic projection,
along with its second family of circles.

We remark that it seems to be impossible to show the inverse geodesic in
such a way as to allow more than one or two loops to appear to the eye, while

at the same time allowing no distortion of the figure. This may account for
a number of distorted diagrams of this loxodrome which have appeared in the

literature. Of course one can picture many loops of some equiangular spirals,

say with Q> 0. At the other extreme with Q < 0 we have a circumstance for
which, in any scale, the corresponding equiangular spiral appears to the eye

to be a straight line issuing from the origin. However as one "zooms" in or
out this "straight line" appears to rotate about the origin.

§10. The complex of geometric forms on a curve in R2

Among the various forms on a curve in R2, some, such as co and Q, can

be thought of as arising from the local way in which the curve is embedded

in R2; that is they arise from the local geometric nature of the embedding

and are invariant under Möbius transformations. These are the "smooth local
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geometric forms" of inversive geometry, or "geometric forms" for short. To

be more precise, suppose that PjEyjU= 1» 2), where at pj the germ of y,- has

a local description of the form yj {zeR2\Fj(z,) - 0}. We say (yx,P\) and

(y2f pi) have contact of order at least r if for some choice of the Fj there is

a Möbius transformation ge G moving px to p2 in such a way that the Taylor

series in x and y for F2(x,y) and Flog(xfy) are equivalent in total degrees

^ r. We define a geometric form p of dimension d and order r to be an

assignment y\~* r|Y which attaches to each vertex free curve y a d-ïoxva riY on

it such that the assignment satisfies:

i) Invariance. If pjeyjU« 1,2) have contact of order at least r via the

element geG, then
TlYl(Pi) §(t\i2(P2))

ii) Smoothness. If y (tuh,...tk)isa smooth ^-parameter family of

curves with parametrization o(t, tut2,... tk), then the function

depends smoothly on t, tx, t2,... tk.

The following lemma relates inversive curvature to contact.

Lemma 10.1. There are universal polynomials Pr(v0, vx, v2,... vr_5)

eQ[vo, V!, v2,... vr_5] for every r ^ 5 with the property that at any non-

vertex point p on a curve y with inversive curvature function Q, the pair
(y,p) has contact of order ^ r with the curve

at the origin, where tk Pk(Q, Q(l), Q(2), ••• Q(k 5))(p) for k 5, 6, r.

Proof. We regard the coefficients tk as functions on the curve y; that is,

for each non-vertex point p on the curve, there is a unique inversive transformation

sending p to the origin and throwing the curve into the form 10.2

(cf. §6) and so the coefficients tk{p) are uniquely determined by the curve y
and the point p. Thus the tk s are functions on the curve; for example
t5 Q/60 by the results of §6. By the formula 6.1 we see that k' 1 at the

origin for the curve 10.2 which implies that

^ d — 0, or 2, if d 1

(10.2)

dh_dh
dv dx
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so that x can be used as inversive arc-length parameter to first order for the

curve at the origin. Given the tks at the origin we can try to calculate them
at a nearby point on the curve {h, 0) + 0(h2). Displacing this point to the

origin yields the following expression for the translated curve

(x + h)3 r

y h Y, tk(x + h)k + O((x+/0r+1)
6 k 5

Let Ik be the ideal generated by t5, t6,... tk-\ ,xk, h2f so that this equation
implies

h x3
y - x2 H (- hktkxk~l mod Ik

2 6

Then the substitution

z h
zi-> — z + i ~z2 + 0(/?2)

1 - / - z
2

throws the equation into the form

x3 5

y — - — hx6 + hktkxk~l mod Ik
6 72

Since there is no quartic term mod 7k, this is already the normal form we

seek, and we have shown that

tk-i(h) hktk(0) + A + Bh + 0(h2), where A, BeQ[t5it6, ...,tk_i\

Thus

dtk-1

dv

and hence

— ktk + B

tke Q t5,t6,...,tk^u
dtk 1

-dv

Since ^ Q/60 it follows inductively that

tk^QlQ, Q(l\ Q{k~5)]

This completes the proof of the lemma.

Now we describe the universal construction for the geometric forms. Fix

an infinite sequence of real variables x0, xx, x2,... and let A be the algebra of
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smooth real valued functions in these variables such that each function depends

on only finitely many of them. We set:

d (A for d 0,1
geo jo otherwise

Then we define
d'A° -»A1w * geo geo

i irV*9/
by df}_,x/+i—

; 9

Given a specific vertex free curve y,let A*(y) denote the DeRham complex.

The map
Ty:A^Ad(Y)

is defined by:

for 0

/^/(Ô(0)»Ô(1). •••)« for 1

This map is clearly a chain map. Moreover it is clear that for any form
r| eA*0, the assignment y - T^Oi) is a geometric form. We claim that in fact

every geometric form arises in this way. Since every geometric 1-form Q is a

multiple of the non-vanishing geometric 1-form co, we may write Q Rod,

where R is a geometric function. Thus it suffices to show that every geometric
function H is of the form y -a Ty('n) for some function q e A°geo. To see this
we first consider the smooth r — 4 parameter family of curves P given by the

equation

y X3 + t5 X5 + t6X6 + + trXr

Set t (t5, t6,... tr). These curves are all vertex free at the origin, and by the
result of §4 we know that for an arbitrary curve y and an arbitrary point pe y
on it, (y,p) has contact of order > r with some member of this r — 4 parameter
family of curves. It follows from the invariance property (i) that we need only
find r| g A°geo, such that Ty(ti) Hy at the origin for all y in the family P. By
the smoothness property (ii) we can write Hy{t)(0) L(t), for some smooth
function L, and by the lemma above t5, t6,... tr e Q[Q, Q(1),..., g(r)]. Thus
L(t) ri(<2(0), <2(1),..., Q(/"}) for some smooth function rjeA^0, and we are
done.

We remark that although A*eo gives all the smooth local invariants of
curves in R2, it certainly does not give other, more global, invariants like
V =| CO.
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