2. The semi-factorable families

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 36 (1990)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
29.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
certainly, as we shall see, an indecomposable EP f for which φ_{f} has a cubic factor lies in C_{4} but whether this extends is unclear. More generally, in connection with EPs two questions naturally arise.
(i) Are all indecomposable EPs over \mathbf{F}_{q} semi-factorable?
(ii) Are all indecomposable semi-factorable EPs C-polynomials?

I would tentatively suggest that the answer to (ii) might be "yes" but hesitate to speculate on the answer to (i).

2. The semi-factorable families

The classes C_{1}, C_{2} and C_{3} are described briefly (see [8], for example). More detail is given for C_{4}.
C_{1}. Cyclic polynomials. These have the form $c_{n}(x)=x^{n}$, where $p \nmid n$. Obviously c_{n} is factorable and is an EP (or PP) if and only if g.c.d. $(n, q-1)=1$. Trivially, of course, c_{n} is indecomposable over \mathbf{F}_{q} if and only if n is a prime $(\neq p)$.
C_{2}. Dickson polynomials. For any $n(>1)$ with $p \nmid n$ and any $a(\neq 0)$ in \mathbf{F}_{q}, a typical member $g_{n}(x, a)$ has the shape

$$
g_{n}(x, a)=\sum_{i=0}^{[n / 2]} \frac{n}{n-i}\binom{n-i}{i}(-a)^{i} x^{n-2 i} .
$$

As in [13], over $\overline{\mathbf{F}}_{q}$ we have

$$
\begin{equation*}
\varphi_{g_{n}}(x, y)=(y-x) \prod_{i=1}^{[n / 2]}\left(y^{2}-\alpha_{i} x y+x^{2}+\beta_{i}^{2} a\right), \tag{2.1}
\end{equation*}
$$

${ }^{\text {where }} \alpha_{i}=\zeta^{i}+\zeta^{-i}, \beta_{i}=\zeta^{i}-\zeta^{-i}, \zeta$ being a primitive nth root of unity in $\overline{\mathbf{F}}_{q}$. Since each of the quadratic factors in (2.1) is irreducible, g_{n} is not factorable. Yet it is semi-factorable. Set $R(x)=g_{n}\left(r_{a}(x), a\right)$, where $r_{a}(x)=x+a x^{-1}$. Then, by equation (7.8) of [8],

$$
R(x)=r_{a^{n}}\left(c_{n}(x)\right)=x^{n}+(a / x)^{n}
$$

and hence

$$
\varphi_{R}(x, y)=\prod_{i=0}^{n-1}\left(y-\zeta^{i} x\right)\left(x y-\zeta^{i} a\right)
$$

Thus R is factorable and g_{n} semi-factorable.
From (2.1) we can easily deduce the familiar facts that g_{n} is an EP or PP if and only if $\left(n, q^{2}-1\right)=1$ while the identity

$$
g_{n, m}(x, a)=g_{n}\left(g_{m}(x, a), a^{m}\right)
$$

((7.10) of [8]) yields the conclusion that $g_{n}(x, a)$ is indecomposable over \mathbf{F}_{q} if and only if n is a prime $(\neq p)$.
C_{3}. Linearised polynomials. These have degree $n=p^{k}(k \geqslant 1)$, a typical specimen having the form

$$
\begin{equation*}
L(x)=\sum_{i=0}^{k} a_{i} x^{p^{i}}, \tag{2.2}
\end{equation*}
$$

where $a_{0}, \ldots, a_{k} \in \mathbf{F}_{q}$ with $a_{0} a_{k} \neq 0$. Because $\varphi_{L}(x, y)=L(y-x)$, evidently L is factorable and is an EP (or PP) if and only if L has no non-zero roots in \mathbf{F}_{q}. Suppose that L is given by (2.1) but that, for some $s \geqslant 1, a_{i}=0$ unless $s \mid i$. Then, for any $\alpha \in \mathbf{F}_{p s}$ and any $\beta \in \overline{\mathbf{F}}_{q}$, we have

$$
\begin{equation*}
L(\alpha x+\beta)=\alpha L(x)+\beta, \tag{2.3}
\end{equation*}
$$

and we refer to L as a p^{s}-polynomial (cf. [8], § 3.4).
C_{4}. Sub-linearised polynomials. These polynomials (for whom a better title is requested) had their genesis in [1]. We construct a sub-linearised polynomial $S(x)$ of degree $n=p^{k}(k \geqslant 1)$ as follows. Let L in C_{3} be a p^{s}-polynomial of degree p^{k} and $d(>1)$ be an integer such that $(p \nmid) d \mid p^{s}-1$. Then $L(x)=x M\left(x^{d}\right)$ for some $M(x) \in \mathbf{F}_{q}[x]$ and we set $S(x)=x M^{d}(x)$. Thus

$$
S\left(x^{d}\right)=L^{d}(x),
$$

or, equivalently,

$$
\begin{equation*}
S\left(c_{d}\right)=c_{d}(L) . \tag{2.4}
\end{equation*}
$$

The polynomial S as defined above will also be referred to as a $\left(p^{s}, d\right)$ polynomial. We note that, by (2.4) and Theorem 1.1 of [1], $S\left(c_{d}\right)$ is factorable and hence S is semi-factorable.

We remarked in [1] that a $\left(p^{s}, d\right)$-polynomial $S(x)=x M^{d}(x)$ for which M has no roots in \mathbf{F}_{q} is an EP provided $\left(d, p^{(s, t)}-1\right)=1$. In fact, the last condition is unnecessary and we state the definitive result as follows.

Theorem 2.1. Let $S(x)=x M^{d}(x)$ be a $\left(p^{s}, d\right)$-polynomial in $\mathbf{F}_{q}[x]$, where $d \mid p^{s}-1$. Then
(i) the irreducible factors of φ_{S}^{*} over \mathbf{F}_{q} all have degree d;
(ii) S is an $E P$ over \mathbf{F}_{q} if and only if M has no roots in \mathbf{F}_{q}.

Proof. (i) Since $d \mid p^{s}-1$, then ζ, a primitive d th root of unity, lies in $\mathbf{F}_{p^{s}}$, and the non-zero roots of $L(x)\left(=x M\left(x^{d}\right)\right)$ can be arranged in the form $\left\{\zeta^{j} \gamma_{h}, j=0, \ldots, d-1, h=1, \ldots, N\right\}$, where $N=\operatorname{deg} M=p^{k}-1 / d$ and $\left\{\gamma_{h}^{d}, h=1, \ldots, N\right\}$ is the set of roots of M. By (2.3) and (2.4), we have

$$
\begin{align*}
\varphi_{S}\left(x^{d}, y^{d}\right) & =\varphi_{L^{d}}(x, y) \\
& =\prod_{i=0}^{d-1}\left(L(y)-\zeta^{i} L(x)\right) \\
& =\prod_{i=0}^{d-1} L\left(y-\zeta^{i} x\right) \\
& =\left(y^{d}-x^{d}\right) \prod_{i=0}^{d-1} \prod_{j=0}^{d-1} \prod_{h=1}^{N}\left(y-\zeta^{i} x-\zeta^{j} \gamma_{h}\right) \\
& =\left(y^{d}-x^{d}\right) \prod_{i=0}^{d-1} \prod_{j=0}^{d-1} \prod_{h=1}^{N}\left(\zeta^{i} y-\zeta^{j} x-\gamma_{h}\right) . \tag{2.5}
\end{align*}
$$

Now, for any γ in $\overline{\mathbf{F}}_{q}$, it is clear that the polynomial

$$
\prod_{i=0}^{d-1} \prod_{j=0}^{d-1}\left(\zeta^{i} y-\zeta^{j} x-\gamma\right)
$$

lies in $\overline{\mathbf{F}}_{q}\left[x^{d}, y^{d}\right]$ and therefore may be written $P_{\gamma}\left(x^{d}, y^{d}\right)$, where $P_{\gamma}(x, y)$ $\in \overline{\mathbf{F}}_{q}[x, y]$ has degree d (in both x and y). We claim that P_{γ} is irreducible. For suppose $P_{\gamma}(x, y)$ has a non-constant factor $Q(x, y)$ in $\overline{\mathbf{F}}_{q}[x, y]$. Then $Q\left(x^{d}, y^{d}\right)$ must be divisible by $\zeta^{i} x-\zeta^{j} y-\gamma$ for some i and j with $0 \leqslant i, j \leqslant d-1$. $Q\left(x^{d}, y^{d}\right)$, however, is invariant under $x \rightarrow \zeta^{u} x, y \rightarrow \zeta^{v} y$ for any u, v. It follows easily that $Q\left(x^{d}, y^{d}\right)$ is divisible by $P_{\gamma}\left(x^{d}, y^{d}\right)$ and we deduce that $Q=P_{\gamma}$, as required. Consequently, by (2.5),

$$
\varphi_{S}^{*}(x, y)=\prod_{h=1}^{N} P_{\gamma_{h}}(x, y)
$$

is the prime decomposition of φ_{S}^{*} over $\overline{\mathbf{F}}_{q}$ and (i) is proved.
(ii) Continuing with the same notation, we have

$$
\begin{aligned}
& P_{\gamma}\left(x^{d}, y^{d}\right)=(-1)^{d} \prod_{i=0}^{d-1}\left(\gamma^{d}-\left(y-\zeta^{i} x\right)^{d}\right) \\
& =(-1)^{d}\left\{\gamma^{d^{2}}-d\left(y^{d}+(-x)^{d}\right) \gamma^{d(d-1)}+\ldots\right\} .
\end{aligned}
$$

It follows that, if γ^{d} is a root of M and $P_{\gamma}(x, y)$ lies in $\mathbf{F}_{q}[x, y]$, then both $\gamma^{d^{2}}$ and $\gamma^{d(d-1)}$ are members of \mathbf{F}_{q}, whence $\gamma^{d} \in \mathbf{F}_{q}$. This means that S is an EP unless M has a root γ^{d} in \mathbf{F}_{q}. The converse is clear and the result follows.

3. SUbStitution polynomials with a quadratic factor

Throughout, let $f(x)$ be an indecomposable polynomial in $\mathbf{F}_{q}[x]$ for which $\varphi_{f}(x, y)$ is divisible by an irreducible quadratic factor $Q(x, y)$ in $\overline{\mathbf{F}}_{q}[x, y]$. Denote by Q^{*} the factor of φ_{f}, irreducible over \mathbf{F}_{q} itself, that is divisible by Q.

Lemma 3.1. Gal $Q^{*}(x, y) / \mathbf{F}_{q}(x)$ has order $\operatorname{deg} Q^{*}$ and so is regular as a permutation group on the roots of $Q^{*}(x, y)$ over $\mathbf{F}_{q}(x)$ (see [12], p. 8).

Proof. Let $\mathbf{F}_{q^{d}}$ be the field generated over \mathbf{F}_{q} by the coefficients of Q (in $\overline{\mathbf{F}}_{q}$). Then $Q^{*}=\prod_{i=1}^{d} Q_{i}$, where Q_{1}, \ldots, Q_{d} are the distinct conjugates of Q obtained by applying the $d \mathbf{F}_{q^{q}}$-automorphisms of $\mathbf{F}_{q^{d}}$ to the coefficients of Q. Thus $\operatorname{deg} Q^{*}=2 d$. But, evidently, the splitting field of Q^{*} over $\mathbf{F}_{q}(x)$ can be constructed by adjoining the splitting field of Q to $\mathbf{F}_{q^{d}}$. Its Galois group therefore has order $2 d$ as required.

With Lemma 3.1 as a spur, we formulate some group theory in terms of polynomials (see [2]). For an indecomposable polynomial $g(x)$ in $\mathbf{F}_{q}[x]$, $G=\operatorname{Gal}\left(g(y)-z / \mathbf{F}_{q}(z)\right)$ is primitive. Moreover, the orbits of a point stabiliser G_{x} of G correspond to the irreducible factors of φ_{g} over \mathbf{F}_{q}; in particular, when $P(x, y)$ is such a factor of φ_{g} so also is $P(y, x)$ and the associated orbits are "paired" (see [12], § 16). The following result is therefore a (slightly weakened) version of [12], Theorem 18.6.

Lemma 3.2. With g and P as above, suppose that both $\operatorname{Gal} P(x, y) / \mathbf{F}_{q}(x)$ and $\operatorname{Gal} P(y, x) / \mathbf{F}_{q}(x)$ are regular. Then $\operatorname{Gal} \varphi_{g}(x, y) / \mathbf{F}_{q}(x) \cong \operatorname{Gal} P(x, y) / \mathbf{F}_{q}(x)$.

Corollary 3.3. With f and d as in Lemma 3.1, φ_{f}^{*} is a product over \mathbf{F}_{q} of irreducible polynomials of degree $2 d$, each of which is a product of irreducible quadratics over $\overline{\mathbf{F}}_{q}$. Furthermore, all these quadratics have a common splitting field over $\overline{\mathbf{F}}_{q}(x)$.

