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ABOUT THE PROOFS OF CALABTS CONJECTURES

ON COMPACT KÄHLER MANIFOLDS

by Ph. Delanoë and A. Hirschowitz

Abstract

The main part in the proof of Calabi's conjectures consists in a priori
estimates of order zero, two, three. We explain how a reduction to these

estimates may be performed in the framework of C00 functions and how

higher order estimates may be derived without Schauder's elliptic theory.
The main tool is an "elliptic" inverse function theorem [22] [11].

0. Introduction

T. Aubin [1, 2, 3] and S. T. Yau [23, 24] have brought positive answers

to the so-called Calabi's conjectures [6], namely,

Theorem 0.1. (Aubin, Yau). On a compact (connected) Kähler manifold
with negative first Chern class, there exists a unique Kähler-Einstein metric g'

satisfying : Ricci (g') —g'.

Theorem 0.2. (Yau). On any compact (connected) Kähler manifold, given
a cohomology class c g H2(X, R) which contains a Kähler form, every
2-form in the first Chern class is the Ricci form of some Kähler form of c.

Mathematicians from several fields are concerned with these results,
whose main consequences are listed in [23] and in [5] sections 2 and 3.

Unfortunately, the proofs are quite technical, they involve rather "irregular"
mathematical objects such as elliptic equations with non smooth coefficients,
and they make a decisive use of Schauder theory. The aim of the present
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note is to analyze how far these tools are necessary for the proof. It turns
out that it is possible to reduce the contribution of elliptic theory mainly
to a suitable local inverse function theorem for nonlinear elliptic operators
acting on smooth functions [22] [11].

The proof presented below deals only with the reduction to the crucial
estimates of order zero, two and three, already obtained by Aubin and Yau.

Although it is not so clear in [21] [24] these estimates were performed
essentially through coordinate free tensor calculus. We show how higher order
estimates may be obtained in the same way.

The whole approach applies as well to the corresponding real elliptic
Monge-Ampère equation on compact Riemannian manifolds [9] and to
various generalizations of it. We shall freely use arguments of Calabi [6, 7, 8],
Aubin [1, 2, 3], Yau [23, 24], Bourguignon et al [5] [21].

Acknowledgements. The second author thanks Otto Forster for
drawing him into the subject and François Rouvière for stimulating conversations.

Both authors thank Jean-Pierre Bourguignon who originally suggested
that they get in contact together.

1. The Monge-Ampère equation

Let Y be a compact connected finite-dimensional Kähler manifold,
co denotes the original C°° Kähler form, g the corresponding Kähler metric,
(p g C°°(Y) denotes a C00 real-valued function on Y, and we set

co' co + y/— 1 dd(p

where d and d are the usual first order differential operators. Let g'
denotes the Kähler metric corresponding to co'. In the sequel, "smooth"
means C00.

If g and g' are viewed as morphisms from the antiholomorphic tangent
bundle into the holomorphic cotangent bundle T*, then (g'g-1) is an endo-

morphism of T* the determinant of which, det (g'g~1) is a smooth function

on X. The function (p is said to be admissible if and only if det (g'g'1) is

strictly positive on X. One proves easily that if cp is admissible, then g'
is again a (positive definite Kähler) metric e.g. [2], p. 119.

Let X g [0, + oo). It is convenient to denote by Ax the subset of C^fY)
consisting in all admissible real-valued smooth functions cp on Y, satisfying,

in case X 0 the further zero average condition

I <pdXg 0,
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where dXg denotes the volume form associated with g. When X > 0, Ax is an

open subset of Cœ(X): indeed, the natural injection C*{X) C2(X) is

continuous, with respect to the Fréchet and Banach topologies; Ax is the pull

back, by this injection of the open set

{cp e C2(X), det (g'g ~l) > 0}

Definition 1.1. Let X be a smooth compact manifold, V a smooth vector

bundle on X, C°°(2f, V) the Fréchet space of smooth sections of V. A

LCFC submanifold of C°°(X, V), is a locally closed finite codimensional

Fréchet submanifold of Cœ(X, V).

The set A0 is an open subset of the LCFC submanifold

{cp e C"(X), J cp 0}.
X

We define the map Px, from Ax to C^iX), by

i\(cp) Xcp - Log det

The proofs of theorems 0.1 and 0.2 have been reduced to the solution,
when X > 0, of the following complex Monge-Ampère equation (e.g. [21],
(lecture n° V), [4] p. 143):

(1) A(<p) /.
where / g Cco(X) is given, and in case X vanishes, has to satisfy the natural
constraint (e.g. [1] p. 403, [24] p. 361, [21] p. 85),

{ e-'dX, J dXt
X X

In any case, / ranges in a connected LCFC submanifold Bx of Cco(X).
To see that B0 is connected, notice that 0 e B0 and that given any f eB0,
the following path connects / to 0 in B0 :

£ 6 [0, 1] —>• ft: tf + Log (j e~tfdxg) - Log tfdXg).
X X

The derivative of the map Px at (p g Ax is given by

(2) dPx(cp,ôcp) (À' + X) Ôcp

where A' stands for the Laplace operator on functions in the metric g'
[21] p. 96. Classically, it follows from the Maximum Principle [20], the
Fredholm Alternative theorem and from the elliptic regularity theory, that
dP-fi(p, *) is invertible Vcp e Ax, either from C°°(A:) to itself when X > 0, or
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from {u g CGO(X), §udXg 0} to {v e C^iX), $vdXg, 0} (<dXg, denotes the

volume form in the metric g') when X 0.

For completeness, let us indicate how, for instance theorem 0.2, can be

reduced to equation (1) with X 0. It is quite straightforward. First of all

we are given a cohomology class c g H2(X, R) such that there exists a Kähler
form co in c; let p be the Ricci form of oo: p e C^I), the first Chern
class of X.

Then we are given y e Cx(X) and hence / g C{X) a real function
(defined up to an additive constant), which measures the' deviation for co

from satisfying 0.2 :

Y - P ddf

Now we look for another Kähler form co' g c, i.e. we look for a smooth
real function cp (also defined up to an additive constant), where

co' — co y/— 1 dd(p

such that the Ricci form p' of co' coincides with y.

In other words, we want cp to satisfy

p' - p ddf>

or equivalently, if g and g' are the Kähler metrics respectively associated

with co and co',

dd {- Log det (d'g1)}s
which immediately yields equation (1) with X 0:

- Log det (g'g1)/,
since anyway / is only defined up to an additive constant.

As co and co' are cohomologous and closed, so are the corresponding
volume forms, therefore X has same volume measured with the metrics g

and g' ; this defines completely /, subject to the natural constraint mentioned
above.

2. A Topological Lemma

In our setting, the continuity method becomes a "surjectivity method"
since it is based on the following
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Lemma 2.1. Let A, B be metric spaces, with A ^ 0 and B

connected. Let P: A -> B be a continuous map. Assume :

(i) P is open,

(ii) P is proper, that is, for any compact subset K in B, P 1(K) is

compact. Then P is surjective.

Proof. We only need to prove that P(A) is closed. Let b0 be a point

in P(A). Since B is a metric space, there exists a sequence (£>;).>0 in P(^4)

converging to b0. The subset K {b0,bl7b2> —} is compact, hence so is

PP_1(K). The latter contains bl7..., bi7..., hence b0, and it is obviously

contained in P(A). Q.E.D.

In order to make use of this lemma, we shall need some inverse

function theorem for (i), and some a priori estimates for (ii).

3. Local inversion

Theorem 3.1. Let X be a smooth compact manifold, V and W

smooth vector bundles on X, U an open set in Cœ(X, V), and

P:U -+ C°°(X, W\ a smooth nonlinear elliptic partial differential operator.
Let A and B be LCFC submanifolds of U and of C°°(X, W) respectively,
such that the restriction PA of P to A, sends A into B. Then

the Jacobian criterion holds for PA, namely, if the derivative of PA : A —> B

is invertible at (p0 e A, then PA is a local diffeomorphism near cp0.

This is a convenient variant of the Nash-Moser theorem (e.g. [14])
regarding suitable restrictions of elliptic operators. It is established in a

separate paper [11] (see also [22]). It relies only on the classical (Banach)
inverse function theorem combined with elliptic regularity.

Remark 3.2. The Nash-Moser theorem has been studied by many authors,
see the bibliography below and further references in [14] [15] [25].

4. Properness

In view of (2), theorem 3.1 implies that Px is open. We want to apply
lemma 2.1 in order to prove that Px is surjective from Ax to Bx. Since

pi(Ax) # 0 (it contains 0), and since Bx is connected, this amounts to
proving that Px is proper. Let us explain why a priori estimates imply
properness.

Concerning subsets in Ax we have
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Proposition 4.1. A subset S in Ax is relatively compact in Ax

iff its closure S in Cc0(.X) lies inside Ax and S is bounded in C°°P0.

This readily follows from Ascoli theorem which implies the well-known
fact [12] (p. 231) that in C°°(X) (and in any closed LCFC submanifold
of C^pQ, such as Bx, as well) bounded subsets are relatively compact and

vice-versa; hence, compact subset of Ax are nothing but bounded closed

strictly interior subsets of Ax. Explicitely, let us state the

Corollary 4.2. A closed subset S in Ax is compact if and only if
there exists a sequence (Q), i e N, of positive numbers, such that for any cp

in S the following estimates hold:

II g'Y1II =: suplteT1 I < c0,
V

Vz e N || Dlcp || : sup | D1 cp | ^ Ct
x

where | » | denotes some natural norms of tensors in the original metric g,

and D : (V, V) is the total covariant differentiation with respect to the

metric g.

Proof Indeed S is closed and bounded. Moreover, since for cp e S,

II (gT1II < c0

all the eigenvalues of (g'ff1 (which are positive) are uniformly bounded from
above, hence those of g' are uniformly bounded from below, in other words:

> 0 Vcp g S g' ^ zg

or equivalently S lies strictly inside Ax. Q.E.D.
In the next sections we will show that if / belongs to some compact

(i.e. bounded and closed) subset K of Bx, defined by a sequence (Xf),

ie N, such that || Dlf || ^ Kt, then for cp e Ax satisfying Px(cp) /, the

following a priori estimates hold :

|| <p ll< C0, VieN, fl^VVcpll < Ci + 2.

These estimates imply that Px is proper, i.e. that S Pf1^) is compact,
according to the following

Proposition 4.3. Let S be a closed subset in Ax Suppose that there

exists a sequence (Cffie N, such that for any cp in S, the following
estimates hold:
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11 (p I < Co II Px(CP) D < Co Vie N, II D'VVq) || Q + 2

Then S is compact.

Proof. The first two estimates imply a uniform estimate

i Log det (g'g~')I < E-

The estimate on || VVcp || yields another one:

Il g' II

These two estimates yield

II (gr1 \\<G.
Now from || DlVV(p || ^ Ci + 2 we infer

|| DlA<p || < Ct+ 2

since D and g~x commute (A denotes the Laplacian in the metric g).

As À performs a continuous linear automorphism of the Fréchet space of
smooth functions with zero average (by Fredholm theory), the Closed Graph
Theorem implies the missing estimates. Q.E.D.

Remark 4.4. Actually we have been considering two gradings of C°°(I)
[14]. The usual one, namely the one defined, Vu e C°°(X), by

II W II 0 sup I w I

II «II» II uiIIi_! + llß'ull, i> 1,

and another one, well-adapted here since the true unknown is a Kähler
metric, defined by

II « II8 II « II o, II « Il î II « II i,
II « II f - II « II T~i+ II II i 3s 2.

Although it is unnecessary for the purpose of proposition 4.3, it can be
shown globally (without Schauder theory) that these two gradings are tamely
equivalent [14] of degree 2 and base 0 [10] (section 5). Hence, they
define the same topology.
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5. A PRIORI estimates: the original way

According to proposition 4.3 we must prove now that, given any
sequence of positive real numbers (Kf), i e N, there exists a sequence (CJ
such that

VïgN, || DT^fo) || < K,

implies

II cp ||< C0, VieN, II^VVcpll < Ci + 2

These are a priori estimates of order zero, two, three, and so on
In case X > 0, the C° estimate is straightforward [2]. In case X 0, it
becomes very tricky; proofs simpler than Yau's original one [24] (p. 352-359),
based on the idea of uniformly estimating the Lp(dXg) norms of 9, may be

found in [16] (dimension 2), [3] [21] and [4] (p. 148-149).
Estimates of order two and three are carried out by means of tensor

calculus and of the Maximum Principle (for elliptic equations) [20] applied
to suitable test functions. Though it is not everywhere clear in [21] [24],
it is worth noting that the computations can be written intrinsically, i.e.

without any reference to a particular system of coordinates (e.g. [2]), or even
coordinate free (see section 6 below).

Further regularity is then recovered by Schauder theory e.g. [5]
(lemma 1). In the sequel, we show how further estimates can be carried out
instead, just going ahead with coordinate free tensor calculus. This occurs

actually for any fully nonlinear second order elliptic equation on a compact
Riemannian manifold, via a straightforward imitation of the device below.

Remark 5.1. It follows from the C2 a priori estimates that the metrics g'

are a priori uniformly equivalent to the original metric g (see e.g. [3],
p. 75).

6. Coordinate free tensor calculus

Even coordinate free tensor calculus needs indices. Usually these indices

refer to a local frame. Another way is to view these indices globally as

labelling copies of the holomorphic and antiholomorphic tangent and

cotangent bundles. From this point of view, a tensor written with indices

is a section of the tensor product of a family of bundles indexed by an
unordered set of indices (disregarding those indices subject to the summation

convention).
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We extend the summation convention as follows: we will be concerned

only with lower indices. If a letter occurs twice, it refers to a contraction,
which is taken with respect to g or to g' according to whether the letter

occurs with a bar or with a prime. So,

stands for ga*T a i ^
while

T...a...a'... stands for g'abT_a_i... •

As usual if Ta j is a tensor, further lower indices refer to covariant
differentiation (with respect to g) ; so,

Ta_lm stands for while

Ta...im stands for VmTa...i •

Our indices will be latin letters; greek letters will denote multi-indices.
If a is a multi-index, ä will denote the conjugate multi-index (for instance

if a abc, then ä äbc), while | a | denotes its length. We shall say that a
is mixed if its length is at least two and, among the first two letters,
exactly one has a bar.

The notations D, V, V, || ||, were introduced in section 4.

Remark 6.1. Since covariant differentiation (with respect to g) and
contraction with respect to g' do not commute, we observe that, for instance,
the difference (recall g' g -f VVcp)

(^) tyaa'ab (^Paa'a)b ^Paca ^Pa'c'b

does not vanish.

7. Higher order a priori estimates: generalities

We want to prove by induction,

Proposition 7.1. Given n>4, a sequence e N, and a finite
sequence C0,..., C„_.,, there exists Cn suchthat:

imp

J 9 || < C0 Vi 0,..., - 3 ]| D'VVcp || < Ci + 2

and VieN,|| D'Pfi9)\\*ZKt,
implies

II D"-2VV9 H < C„.
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Actually one needs || DlPx((p) || ^ Kt only for 0 ^ i ^ n, hence Cn

depends only upon (C0,Cn_ 1, K0,Kn).
Hereafter, by "a constant", we will mean a constant which depends only

upon the given constants (C0,..., C„-l9K0,..., Kn).
T -et us explain a further convention.

Convention 7.2. We will have to consider sums of tensors obtained via
contractions of tensor polynomials in the variables VV(p,..., D'VVcp,...
The present convention helps describing the variables occuring in (still)
uncontrolled expressions.

First of all, given (pedx and an integer n > 3, we denote by En-X
the (finite dimensional complex) vector space generated by all contracted
tensor polynomials, with degree of homogeneity at most 2n, in the variables

(g')~1, VVcp DVVcp,..., D"_3VV9 * i 0,..., n

In order to prove 7.1, we will compute modulo En_1.
Given integers p,..., s, all of them ^ n, we will say that mod. F„_1 a

tensor T is "of the form Tp whenever mod. it is a sum of
contractions of tensors

A (g) Dp-2VVcp 0 0 Ds_2VVcp

where the ^4's are in En _ 1.
Furthermore for s ^ n, under the assumptions of 7.1, we will say that

a sca/ar term Ts s
is coercive, if for any other term of the form T's

(resp. T^s) there exists a constant C such that:

\rs\^C(TsJ (resp. I I <CTa,J.

We present now three lemmas which illustrate the previous convention.

Lemma 7.3. Gz'perc integers s ^ n ^ 3, the covariant derivative (in
metric g) of a term of the form Ts mod. En-1} is of the form
(Ts+ + Ts) mod. En.

Proof This is just because the derivative D[(g')~x] is a contracted tensor

polynomial (of degree 3) in (jg')~x and DVVcp.

Lemma 7.4. If a and ß are two distinct mixed multi-indices of length

(n + 2) obtained from each other by permutation, then the difference of
covariant derivatives (cpa — cpp) is of the form Tn mod. En^x.
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Proof. On the Kähler manifold (.X, g\ commuting two consecutive

covariant derivatives yields curvature terms only if the couple of derivatives

concerned is mixed (for general commutation rules on Riemannian manifolds

see e.g. [21], exposé XI, proposition 3.2). If so, say k and I are the

permuted indices, the result will involve

Rqpû (curvature tensor of g)

with p and q of the same type. Explicitely :

9u7^i — 9T/cM — X Rpqkï 9\qx
P

for all p, v, T, such that vpx X\i. Hence the types of all the remaining
non-permuted covariant derivatives (pvqx are identically preserved. In particular
if y and 5 denote two multi-indices of length n obtained from each other
by permutation, necessarily

((pfjy — tPiß) is of the form Tn mod. En^1

since two mixed derivatives will keep bearing in first place on q> in the

process of permutation.
The proof of lemma 7.4 is therefore reduced to the following two cases

for the multi-indices a and ß :

either a ijkX ß kjiX | X \ n — 1

or a ijklp ß klijp | p | n — 2

In the first case, one has identically on a Kähler manifold :

9a - <Pß 0

In the second case, the same reasoning as above holds for (cpa —cpß) since
it can be written as

(9ijklp ~ 9ikjlp T (tykiljp ~ tyklijp

each of these two commutations being clearly of the form T„ mod. En_1.
Q.E.D.

Remark 7.5. The fact that commutation formulae involve only mixed
derivatives was already a crucial detail in the proofs of the second and
third order a priori estimates.

Lemma 7.6. The tensor cpaa,a where a is a mixed multi-index of length
!1 is, mod. En_l, of the form :
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when n 2

when n 3

when n — 4

when n ^ 5

Proof. The cases n 2, 3, 4, 5, must be checked bare-handed. There is no
difficulty. Then, for n > 5, one can proceed by induction on n. Indeed assume,

(Paa'a + 1 + Tn m0(l. En~ 1 > f°r SOm « | OC | ^ 5

Recall formula (3) and lemma 7.3; differentiating once the above equality
yields '

tyaa'aib (Tn+1 + Tn)b + (paca (pa'c'b ^n + 2 + Tn +1 mod.

since | aca | n + 2. The same is true with h instead of b. Q.E.D.

Remark 1.7. The preceding lemma offers a perspective which brings some

light on the type of difficulties to be expected for carrying out a priori
estimates of each order. In particular, one may anticipate that a special

step should be required for n 4 (in order to kill the effect of the term

T4 4) and that the same (simpler) procedure should then apply, arguing by

iteration, for any n ^ 5.

Notice also that the hardest case appears to be n 3. Indeed, following
Calabi [8] one must guess the very special coercive functional [1] [24]

perform a careful calculation of A'(S3j3) and use either the Maximum

Principle [24] or a recurrence on Lp(dXg,) norms of S3>3 [1]. The approximate

tensor calculus which we may conveniently use hereafter would not be

effective for the case n 3.

It is enough to estimate S4 4 since it is coercive. Let us compute
— À'(S4>4). One readily obtains:

^3,3 — tyab'c tya'bc' >

8. A PRIORI ESTIMATES OF ORDER FOUR

In order to prove 7.1 with n 4, we consider the functional:

^4,4 tyabcd tyäbcd T tyabcd tyâbcd •

— A,(S4>4) — T6 4 + T5 5 (mod. E3),
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where T5 5 is coercive, while the sixth order derivatives in T6 4 occur
through cpaiacc, with | oc [ 2.

In view of 7.4 and 7.6, after bringing the indices cd in first position,
we get

(4) — À\S4 4r) — T5<5 + 7*5,4 + 7"4 4>4 + T4>4 + T4 (mod. E3)

where T5 >5 is the coercive term from above.
As expected in remark 7.7, in order to control the term T4 4 4, we need to

consider instead of S4 4 another functional, namely :

0 S4> 4 exp (s (p5te),

where s is a constant to be chosen later on. Then we compute the
quantity

Q - (A'0)exp(-e<pÄ(pä(>i;);

and we easily find

Q - A'($4>4) + bT4)4 4 4 + s2T4j4>4j4 + sT5 4 4 (mod. E3),

where r4 4 4 4 is a square and where

T4,4,4,4 ^4,4(9«^ + (poöcrf' •

So there exists a constant cA such that (see remark 5.1),

(S4,4.)2 ^ Cx T4 4 4)4.

Furthermore we may choose constants ct such that,
1 1

I T5,4,4 I < C2S4>4(T5,5)2 I T5j4 I ^ C3(T5>5S44)2,
1 1

I t4i4j4 I < C4(S4>4)2, I t4>4 I < c5s4,4, I r4 i ^ C6(S4,4)2.

By splitting T5,5 in its two halves and by putting each half together with
A,4,4 and T,4 respectively, one obtains:

0 ^ Ï 82 Cl)(S4'J2 ~ - (C* + J Ci) S4,4 ~ C6(S4,j

Now £ must be chosen small enough in order for the coefficient of (S4 4)2
to be strictly positive: s e (0, (2/ci c|)).

To complete the proof, one argues that Q(z0) < 0 at a point z0eX
where 0 assumes its maximum on X, which implies
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£4,4-(Zo) ^ C1 s

for some controlled constant c7, and anywhere else on X, since 0 ^ 0(zo)

and II DVVcp || ^ C3, one infers that:

£4,4 < c7 exp (2sC3)

9. A PRIORI ESTIMATES OF ORDER FIVE AND MORE

Here, in order to prove 7.1 with n ^ 5, we consider the functional:

^n, n ^ ^ tyaba. tyäbä
1

|a| fi — 2

(the coefficient - appears for both definitions of S4> 4 to agree).

Again SHt n
is coercive and we compute in a similar way,

Tn + 2fn + Tn + Un + 1 (mod. En_1),

where Tn + 1^n + 1 is coercive. As for Tn + 2)„, proceeding as in the previous
section, we find :

Tn + 2,n Tn + lt„ + Tn n + Tn (mod. En_1).

Hence,

— Tn+1>n + 1 + T„ + 1„ + Tn n + Tn (mod. E„_x),

with Tn + ln + 1 coercive. Changing n into (n— 1), for n ^ 6, yields sti//
modulo 1

— A'(S„-i,»-i) ^ n (mod.£„M).

In view of formula (4) of the preceding section, this holds for n 5 as

well. From the coercivity of T'n n we may choose constants ct > 0, such that

y
— A'(S„— l,w-l) ^ C1 Sn,n ~~ C2(Sn,n)2 ~ C3'

Moreover we may choose constants ct such that

1 1
I Tn+i,n I < 2c4(Tn + Un+1 Sn>n)2 |Tn,J<c5^n, |TJ ^ c6(S„,„)2,

and c1c7 > c| + c5.



CALABPS CONJECTURES 121

We obtain,

— A'(Sn>n + c7iS„_ i) ^ {cici c\ — Cs)iSn w — (c6 4- ^2^7) (Sn>„) — C3C7

and the proof may be easily completed.

10. The analytic point of view

Since equation (1) is elliptic and g, as a Kähier metric, is real analytic
for the underlying real (analytic) structure of X, by the general elliptic
regularity theory e.g. [17], p. 266-277 if i\((p) *s rea^ analytic so are cp

and g'. Hence a purely analytic proof would be desirable.

Real analytic inverse function theorems are available since the work of
J. Nash [19] who made a decisive use of smoothing operators (see also [13]).
A theorem of H. Jaccbowitz [15] (p. 203) (see also [25], p. 94-101, 137-138)
is available, the proof of which is purely analytical and does not use

smoothing operators. This approach was first initiated by A. Kolmogorov
(1954) and developed by V. Arnold (1961) (see references in [18]), and by
J. Moser [18] (p. 513-533). Unfortunately, the application to nonlinear elliptic
operators is not achieved.

A further trouble arises from the fact that the space of analytic functions
is not metrizable.

Last but not least, we could not carry out analytic a priori estimates.

REFERENCES

[1] Aubin, T. Métriques Riemanniennes et Courbure. J. Diff. Geom. 4 (1970)
383-424.

[2] Equations du type Monge-Ampère sur les Variétés Kâhlériennes Compactes.
C. R. Acad. Sei. Paris 283 (1976), 119-121.

[3] Equations du type Monge-Ampère sur les Variétés Kâhlériennes Compactes.
Bull. Sc. Math., 2e série, 102 (1978), 63-95.

[4] Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer-Verlag
Berlin, Heidelberg, New York (1982).

[5] Bourguignon, J. P. Premières formes de Chern des variétés Kâhlériennes
compactes. Séminaire Bourbaki, (Nov. 1977), n° 507.



122 PH. DELANOË AND A. HIRSCHOWITZ

[6] Calabi, E. The space of Kähler metrics. Proc. Intern. Congress Math. Amsterdam, 2

(1954), 206-207.
[7] On Kähler manifolds with vanishing canonical class. Algebraic Geometry

& Topology, A Symp. in honor of S, Lefschetz, Princeton Univ. Press
(1955), 78-89.

[8] Improper affine hyperspheres and a generalization of a theorem of
K. Jörgens. Mich. Math. J. 5 (1958), 105-126.

[9] Delanoë, P. Equations du type Monge-Ampère sur les Variétés Riemanniennes
Compactes. J. Funct. Anal. (3) 40 (1981), 358-386.

[10] Delanoë, P. and A. Hirschowitz. About the proofs of Calabi's conjectures on
Compact Kähler Manifolds (preliminary version), preprint M.S.R.I. 044-83.

[11] Delanoë, P. Local inversion of elliptic problems on compact manifolds, Preprint
(1987), to appear.

[12] DieudonnÉ, J. A. Eléments d'Analyse, vol. 3. Gauthier-Villars, Paris/Bruxelles/
Montréal (1974).

[13] Gromov, M. Partial Differential Relations, Springer-Verlag, Berlin, Heidelberg,
New York (1986).

[14] Hamilton, R. S. The Inverse Function Theorem of Nash and Moser. Bull. Am.
Math. Soc. (1)1 (1982), 65-222.

[15] Jacobowitz, H. Implicit function theorems and isometric embeddings. Ann.
of Math. (2) 95 (1972), 191-225.

[16] Kazdan, J. L. A remark on the preceding paper of Yau. Comm. Pure Appl.
Math. 31 (1978), 413-414.

[17] Morrey, C. B. Multiple integrals in the Calculus of variations. Springer-Verlag,
Berlin, Heidelberg, New York (1966).

[18] Moser, J. A rapidly convergent iteration method and nonlinear differential
equations II. Ann. Scuola Norm. Sup. Pisa (3) 20 (1966), 499-535.

[19] Nash, J. F. Analyticity of the solutions of implicit function problems with analytic
data. Ann. of Math. (2) 84 (1966), 345-355.

[20] Protter, M. H. and H. F. Weinberger. Maximum Principles in Differential
Equations, Prentice-Hall (1967).

[21] Première Classe de Chern et Courbure de Ricci: preuve de la conjecture de Calabi.
Séminaire Palaiseau 1978. Astérisque n° 58, Soc. Math, de France.

[22] Sunada, T. Nonlinear Elliptic Operators on a Compact Riemannian manifold
and an implicit function theorem. Nagoya Math. J. 56 (1975), 175-200.

[23] Yau, S. T. On Calabi's conjecture and some new results in algebraic geometry.
Proc. Nat. Acad. Sc. U.S.A. 74 (1977), 1798-1799.

[24] On the Ricci curvature of a compact Kähler manifold and the complex
Monge-Ampère equation I. Comm. Pure Appl. Math. 31 (1978), 339-411.

[25] Zehnder, E. Generalized implicit function theorems with applications to some
small divisors problems I. Comm. Pure Appl. Math. 28 (1975), 91-140.

(Reçu le 16 juillet 1987)

Ph. Delanoë
A. Hirschowitz

CNRS, Mathématiques
Université de Nice
Parc Valrose
06034 Nice Cedex (France)


	ABOUT THE PROOFS OF CALABI'S CONJECTURES ON COMPACT KÄHLER MANIFOLDS
	Abstract
	0. Introduction
	1. The Monge-Ampère equation
	2. A Topological Lemma
	3. Local inversion
	4. Properness
	5. A PRIORI ESTIMATES: THE ORIGINAL WAY
	6. Coordinate free tensor calculus
	7. HIGHER ORDER A PRIORI ESTIMATES: GENERALITIES
	8. A PRIORI ESTIMATES OF ORDER FOUR
	9. A PRIORI ESTIMATES OF ORDER FIVE AND MORE
	10. The analytic point of view
	...


