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— 1). The rest of the relations needed for the van Kampen presentation of
n,(CP?—T'; ¥) come, then, by declaring this representation trivial. One obtains a
finite presentation, of course, by choosing generators of the acting free group;
Moishezon’s problem of “normal forms™ is essentially the problem of making a
good choice. Several modernizations [Abe], [Che], [Cha] of van Kampen’s
proof have been published in recent years.

In a standard van Kampen presentation (where the generators of the acting
free group are free generators), each relation corresponds either to a singularity
of I or to a simple vertical tangent to I'; and (up to the action of the
corresponding free generator) each relation is of a certain canonical form, which
depends only on the closed braid type (§7) of the link of the branch(es) at the point
of T', through which the line in the pencil passes that gives the relation in
question, where this line itself is used to find the axis of the closed braid. In
particular, the knot group of a node curve always has a standard van Kampen
presentation in which each relation either sets conjugates of two x; equal (from
a simple vertical tangent) or says that two such conjugates commute (from a
node); if “conjugates” could be deleted, the Zariski Conjecture would be tri{lially
true.

There is also a great body of work on “knot groups” of curves in (compact,
smooth) complex surfaces other than CP? and on the related issue of
fundamental groups of surfaces; we cannot touch on these topics here.

§6. (GLOBAL KNOT THEORY IN BRIEF—THE AFFINE CASE

Little appears to be known about algebraic curves in affine space, from the
knot-theoretical viewpoint. The gross algebraic topology (even just homology
theory) of CP? is implicated with the quite rigid geometry; but affine space is
contractible, and on the other hand its geometry is “infinite” (for instance in the
sense that there are Lie groups of arbitrarily high dimension contained in the
group of biregular automorphisms of C?), so that the conspirators have fallen
out and neither can give away much about the other.

One might think, for example, to study the embedding of a curve I" in C? by
first embedding C? itself into CP2. Then the affine complement C2 — T becomes
the projective complement CP? — ('UCPL), where T U CPY, is a (reducible)
projective algebraic curve. The obstacle to this program is the unfortunate fact
that C?, just as an algebraic surface, without distinguished coordinates, is not
uniquely embedded as CP? — CP.. Any biregular automorphism of C? (in
particular, one of the vast majority which cannot be extended biregularly to CP?)
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will move I' around, and so the configuration of I' U CP} is not determined by
the embedding of I' in C2. (For instance, though the geometric number of points
at infinity on I' is determined by I', the algebraic intersection number of the
closure of I" with the line at infinity can be made arbitrarily large. Likewise the
local singularities at infinity are not determined by the affine curve.)

The main theorems known here have been proved by Abhyankar and his
collaborators [A-M, A-S]. They are unknotting theorems, in the sense that they
take this form: “Let I" be a certain curve in C? and let i: ' - C? be any
algebraic embedding; then there is a biregular automorphism of C? returning i
to the inclusion map”. Briefly, such a curve I' cannot be knotted in C2.

However, for most of the curves they deal with, these theorems are not
genuinely topological, for the reimbedding i is required to be an embedding of T’
with its given structure as a variety, and generally there might be moduli. Only in
the original theorem [A-M] (which had been stated, but not correctly proved, by
Segre) are there no conceivable moduli, when I' is a straight line. Then the
theorem 1is this. |

THEOREM. Let T < C? be an algebraic curve without singularities,
homeomorphic to C. Then there is a biregular change of coordinates A : C?
— C? so that AU is a straight (complex ) line.

A topological proof has been given in [Ru 4]. It goes like this. One shows
(Just as for a singular point) that the intersection of I' (which we can assume to be
parametrized by z = p(t), w = q(t), p,q e C[t]) with a very large bidisk
boundary is an iterated torus knot K = O{my, n;;..;mg,n,}, with m,
= m/GCD(m, n),n; = n/GCD(m, n)ym = deg p,n = deg q. By hypothesis, K is
a slice knot. This forces K = O, in particular, one of m, nis 1. Thereafter the
argument is as in [A-M]—if (say) m; = 1 and p and g are monic, then the
biregular change of coordinates (z, w) — (z, w—z™") carries I to another curve
satisfying the hypotheses, of lower bidegree ; and so we proceed until one of z, wis
linear and the other constant.

As to analytic curves in affine space, almost nothing is known. The obvious
analogue of the Theorem above is definitely false: for it is known that the unit
disk in C can be properly analytically embedded in C* [H] ; since the disk and the
line are analytically inequivalent, no analytic change of coordinates in C? could
unknot the disk to a line. It is, however, perfectly possible that every such disk is
smoothly unknotted. Presently [ am unable even to prove that an analytic line in
C? is smoothly unknotted. '
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