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§3. Compact groups. Proof of Theorem A.

1. Let U be a compact Lie group. Then we may view U as the group G(R) of
real points of an algebraic group G defined over R [5]. Furthermore, the

maximal (topological) tori of U are the groups T(R), where T runs through the

maximal R-tori of G. They are conjugate under inner automorphisms of U.

Corollary 1 to Theorem 2 insures the existence of a non-commutative free

subgroup T of U such that every y eT — {1} is strongly regular, i.e., generates a

dense subgroup of a maximal torus of U. If now F is a closed subgroup of U,

then, by [10], /(G/F) 0 if F does not contain a maximal torus of G, and is

equal to [NV(T) : NV(T)] if F contains a maximal torus T of G. By the results just
recalled, we may write F H(R), where H is an algebraic R-subgroup of G, the

condition (*) of §2 is satisfied, and any maximal torus of G is conjugate to T
Theorem A now follows from Corollaries 1 and 3 to Theorem 2.

2. The results of this paper, specialized to compact Lie groups, can ofcourse
be proved more directly, in the framework of the theory of compact Lie groups,
without recourse to the theory of algebraic groups. For the benefit of the reader

mainly interested in that case, we sketch how to modify the above arguments.
The main point is again to prove Theorem 1, where now G stands for a non-

trivial compact connected semi-simple Lie group. In part a) of the proof, the role
of SL„ is taken by SUn. If n 2, G contains non-commutative free subgroups. If
n > 2, the argument is the same except that now we take for D, exactly as in [8], a

division algebra with an involution of the second kind and identify SU„ to

(D0 X R)1, where L is the fixed field, in the center of D, of the given involution of D.

In part b), we use the fact that if G is simple, not locally isomorphic to SU„, then it
contains a proper closed connected semi-simple subgroup of maximal rank, for
which we can refer directly to [2] (the proof of Lemma 1 was in fact just an

adaptation to algebraic groups of the one in [2]).
Then, as pointed out in section 5 of §2, a simple category argument yields

Theorem 2, whence also Corollary 1 to Theorem 2 and Theorem A.

§4. Free group actions with commutative isotropy groups

1. Let r be a non-commutative free group acting on a set X. Assume that T
acts freely, or more generally, that the isotropy groups T^xeX) are commutative
(hence cyclic), and that at least one is reduced to {1}. Then the decomposition
theorem 2.2.1, 2.2.2 of [6] implies in particular the following : given n ^ 2, there

exists a partition of X into In subsets Xt and elements yt e T(1 ^ i ^ In) such that
X is the disjoint union of yiXi and + iXn + |I g i ^ n). If we view the operations of
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T as congruences, this shows that X is equivalent to the union of n copies of itself
via finite congruences. The existence of such partitions of S2 was proved first
by R. M. Robinson [13].

This then leads to the problem of finding actions of free groups with
commutative isotropy groups in cases where free actions are ruled out. We now
prove some results pertaining to that question.

2. Consider first the case of S" SO„ + i/SO„. The problem is then to find a

free non-commutative subgroup Y of SOn+ l such that no two non-commutative
elements of Y are contained in a conjugate of SO„, i.e., have a common non-zero
fixed vector. In [6], this is shown for n ^ 2, but n ^ 4. We want to give an
alternate proof which also covers that last case. For n odd, there is even a T such

that no element ^ 1 has an eigenvector, as follows from the remark to Theorem
2. So assume n even. If n 2, then the isotropy groups of S03 itself on S2 are

commutative, hence any non-commutative free subgroup will do. Assume n > 2.

The group S03 has an (absolutely) irreducible real representation of degree n

+ 1 ; it can e.g. be realized in the space of spherical harmonics in R3 of degree n/2.
Let H be the image of S03 in SO„ + x under such a representation and let T be a

free non-commutative subgroup of H. Then any two non-commuting elements

of T generate a dense subgroup of //, hence do not have a common non-zero

proper invariant subspace of R"+1 ; in particular they have no common fixed

vector, whence our assertion.

Example. For the sake of definiteness, we indicate one explicit example in
the case n 4.

Let a, ß g (0, 2k) be two angles such that the rotations of angle a and ß of R3

around two perpendicular axes freely generate a free subgroup Fa ß of S03. We

may take e.g. a ß, where a is such that cos a is transcendental [7]. Let

{eu £5} be the canonical basis of R5. Let Aa e S05 be the transformation
which is a rotation of angle 2a in the plane [e4, e5~\ spanned by e4 and e5 and

which is the rotation of angle 4a around the axis spanned by (31/2, 0, 1) in

[el9 e2, e{\. Let Fß the element of S05 which fixes e3 and is a rotation of angle 2ß

(resp. 4ß) in the plane [e2, e4] (resp. [el9 e5J). Then Aa and Bß freely generate an

irreducible subgroup of S05, whose closure is isomorphic to S03 and which is

therefore locally commutative on S4.

In fact, in suitable coordinates, this group is just the image of the group Fa ß

under the five-dimensional irreducible representation of S03. The easy

computations showing this are left to the reader.

3. The above argument extends in the general case to the following
sharpening of Theorem A in the case of non-zero Euler characteristic.
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Theorem 3. Let U be a compact connected non-trivial semi-simple Lie

group. Then U contains a non-commutative free subgroup V whose elements

y # 1 are regular and such that, for any proper closed subgroup V ofmaximal

rank of U, the isotropy groups Fx(xeU/V) of F on U/V are commutative

and any yeT — {1} has exactly %{U/V) fixed points.

Proof : First we carry an easy reduction to the case where U is simple and V

connected. Let V be the quotient of U by its center, n : U - U' the natural

projection and V n(V). The isotropy groups of U on U'/V' contain the

isotropy groups on U/V, hence we may assume that U has center reduced to the

identity. Let V° be the identity component of V Any isotropy group of F on U/V
contains an isotropy group on U/V° as a subgroup of finite index. Both are

therefore simultaneously commutative or not commutative. So we may assume

V to be connected. Now U is a direct product of simple groups and V, being of
maximal rank, is the direct product of its intersections with the simple factors of
U [2], whence our reduction.

We now prove the theorem in this case except for the last assertion on the

number of fixed points.
If U — S03, then any proper closed subgroup has a commutative subgroup

of finite index, and any element ^ 1 is regular. Therefore we may take for F any
non-commutative free subgroup. Assume now that U ^ S03, hence dim U

> 3. Then U has a closed subgroup H, isomorphic to S03, which contains

regular elements of U and is not contained in any proper subgroup of maximal
rank [15 : §12]. (This subgroup is called "principal" in [15].) Then any element of
infinite order in H is regular in U. In particular any element y ^ 1 in a free non-
commutative subgroup T of H is regular. Moreover any two non-commuting
elements of F generate a dense subgroup of H. If they were contained in a

conjugate of V, then so would H, whence a contradiction.
There remains to see that every y eF - {1} has exactly %(U/V) fixed points

on U/V Let Sy be the closure of the subgroup of H generated by y. It is a one-
dimensional torus, almost all of whose elements are regular in U. Fix a maximal
torus T0 of V, hence of U. If x, y e U are such that XS, yS c T0, then the inner
automorphism by x • y~ \ which brings ySy onto xSy, must leave T0 stable since
xSy contains regular elements, i.e., x • y~1 e From this we see again that
there is a natural bijection between the fixed point set of y and A^Ty/A^CTo),
and our assertion follows as in section 4 of §2.

4. The same argument is valid for a complex semi-simple Lie group, using a
principal three-dimensional subgroup, or also over any algebraically closed
groundfield. Over a field K of infinite transcendence degree over its prime field,
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one would have to assume the existence of a principal three-dimensional

subgroup which is defined over K.

5. We note finally that if T c= G(K) satisfies the conditions of Corollary 1 to
Theorem 2 and if H is a subgroup of maximal rank of G whose identity
component is solvable, then for any x e G(K)/H(K), the isotropy group Tx is

commutative, since its intersection with the isotropy group of x in G{K) is on one
hand free, as a subgroup of T, and on the other hand contains a solvable normal

subgroup of finite index, since H{K) does.
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