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We need only to prove that SL,(Q) contains a non-commutative free subgroup F.
If Q has characteristic zero, we may take any torsion-free subgroup of SL,(Z).
Let now p = char Q be >0. Then, by the arithmetic method, using division
quaternion algebras over global fields, we can construct a discrete cocompact
subgroup of SL,(L), where L is a local field of characteristic p (cf. A. Borel-G.
Harder, Crelle J. 298 (1978), 53-74). The latter has a torsion-free subgroup F of
finite index (H. Garland, Annals of Math. 97 (1973), 375-423) which is then free,
since it acts freely on a tree, namely the Bruhat-Tits building of SL,(L).

2) For any non-zero n € Z, the power map g +— ¢”" 1s dominant (because it 1s
surjective on any maximal torus [1: 8.9]), hence Theorem 1 is obvious if the sum
of the exponents of one letter in the word w is not zero. (See [11] for a similar
remark in the context of compact groups.)

3) If U and V are non-empty open subsets in a connected algebraic group H,
then H = U - V [1: 1.3]. It follows then from Theorem 1 that if w, w’ are two
words in two letters, say, then the map G* — G defined by

f91, 92, 93, 94) = w(g1, 92) " W(gs, ga)

is surjective. For instance, every element of G(Q) is the product of two
commutators. However, the map f,, itself is not always surjective; for instance
x — x? is not surjective in SL,(C), as pointed out in [11].

4) If K = C,then Theorem 1 implies that Im f,, contains a dense open set in
the ordinary topology. If G is defined over R, then Theorem 1 also shows that
/.{G(R)) contains a non-empty subset of G(R) which is open in the ordinary
topology. However it may not be dense. For instance, it is pointed out in [11]
that for SU,, the image of the map defined by [x?, yxy~!] omits a neighborhood
of —1; however this map is surjective in SO,.

It seems thatlittle is known about the image of f,,, even over R or C. A general
fact however is that the commutator map is surjective in any compact connected
semi-simple Lie group [9].

§2. FREE SUBGROUPS WITH STRONGLY REGULAR ELEMENTS

1. In the sequel, K is a field of infinite transcendence degree over its prime
field. We shall need the following lemma :

LEMMA 2. Let X be an irreducible unirational K- -variety. Let L be a
finitely generated subfield of K containing a field of definition of X, and
V{ieN) a sequence of proper irreducible algebraic subsets of X defined over an
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algebraic closure L of L. Then X(K) is not contained in the union of the
Vi n X(K), (ieN).

By definition of unirationality, there exists for some n € N a dominant K-
morphism ¢ : A" - X, where A" denotes the affine n-dimensional space.

This map is already defined over some finitely generated extension of L.
Replacing L by the former, we may assume ¢ to be defined over L, hence ¢~ (V)

to be defined over L. It is a proper algebraic subset since ¢ is dominant. This
reduces us to the case where X = A" But then any point whose coordinates

generate over L a field of transcendence degree n will do.

THEOREM 2. Assume G tobedefinedover K. Let ¥ = {V) (ieN) bea

family of proper subvarieties of G, all defined over an algebraic closure L of a
finitely generated subfield L of K over which G is also defined. Then G(K)
contains a non-commutative free subgroup I such that no element of I’ — {1}
is contained in any of the V/s. Given m = 2, the set of m-tuples which freely
generate a subgroup having this property is Zariski dense in G™.

We may (and do) assume that the identity element is contained in one of the
Vi's.
Let w and f,, be as in §1. Then f,, is defined over L hence 1, *(Z) is defined
over L for every Z € ¥~ and is a proper algebraic subset by Theorem 1. The sets
/' 1(Z), as wruns through all the non-trivial reduced words (in m letters and their

inverses) and Z through ¥, form then a countable collection of proper algebraic

subsets, all defined over L. But G, hence G™, 1s a unirational variety over any field
of definition of G [1: 18.2]. Lemma 2 implies therefore the existence of g
= (g;) € G(K)™ not belonging to any of these subsets. Then the g;’s are free
generators of a subgroup which satisfies our conditions. In fact, we see that we

can take for g any point of G(K)™ which is generic over L and, sincewi has finite
transcendence degree over the prime field, such points are Zariski-dense. This
establishes the second assertion. '

Remark. 1If G = SO,, (resp. SO,, . ;), this shows for instance the existence
“of a free subgroup I', no element of which except 1 has the eigenvalue 1 (resp. the
eigenvalue 1 with multiplicity > 1).

2. Any semi-simple element x of G 1s contained in a maximal torus [1:
11.107; x is called regular if it is contained in exactly one maximal torus. We shall
say that x is strongly regular if it is not contained in any non-maximal torus, i.e., if
the cyclic group generated by x is Zariski-dense in a maximal torus.

The following result contains Theorem C of the introduction.
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COROLLARY 1. Assume G tobedefined over K. Then G(K) containsa
non-commutative free subgroup T all of whose elements # 1 are strongly
regular. Given m = 2, theset of m-tuples (g;) € G(K)" which generate freely a
subgroup with that property is Zariski dense in G™.

The field K contains a field of definition L of G which is finitely generated
over its prime field. Let L be an algebraic closure of L in our universal field Q.

Then the subfield generated by L and K has infinite transcendence degree over L.
Let S be the set of singular elements of G (i.e., of elements g € G such that Ad ¢

has the eigenvalue one with multiplicity > rk G). It is algebraic, defined over L.
Fix a maximal L-torus T of G [1: 18.2]. Every proper closed subgroup of T is
contained in the kernel of a rational character [1: 8.2]. The characters are all
defined over a finite separable extension L' of L [1:8.11] and form a countable
set. For e X*(T),x # 1,let T, = ker A, and V, the Zariski-closure of °T,.
The V, and S form a countable set ¥~ of proper algebraic subsets of G which are

all defined over L.
Our assertion is now a special case of the Theorem.

3. We can now prove the Corollary in the introduction. Let Q be an
algebraically closed extension of K. Since G(K)/H(K) may be identified to an
orbit of G(K) in G(Q)/H(Q) it suffices to show:

COROLLARY 2. Assume K to be algebraically closed. Then every vyeTT
— {1}, operating by left translations on G(K)/H(K), has exactly (G, H)
fixed points. .

Forye' — {1}, let F, be the fixed point set of y in G(K)/H(K), and let T, be
the maximal torus in which the cyclic group generated by y is dense. Clearly, F.is
also the set of fixed points of T(K). Thus, if F is non-empty, then T, is conjugate
to asubgroup of H, and H has maximal rank. Assume this is the case and let T, be
a maximal K-torus of H. Since the maximal tori of H (or G) are conjugate, it is
clementary that F, may be identified with Tr(Tj,, T,)/N x(Tp). But, if x € Tr(T,, T),
then Tr(75, T,)) = x - Ng(Ty), whence the Corollary.

4. We now generalize slightly the Corollary in case H contains a maximal

torus of G, dropping again the assumption that K is algebraically closed. Assume
instead

(*) The maximal K-tori of H are conjugate under H(K).
If T, is a maximal K-torus of H, we then set

x(G(K), H(K)) = [NG(K)(TO) ! Nuy(To)] .
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If K is algebraically closed, then (*) is fulfilled and x(G(K), H(K)) is our previous
x(G, H). We again set x(G(K), H(K)) = 0 if H does not contain any maximal
torus of G.

COROLLARY 3. Let T be as in Theorem 2. Let H be a closed K-
subgroup of maximal rank and assume (*) to be satisfied. Then yeI — {1}
acts freely if T, isnot conjugate under G(K) to T, and has yx(G(K), H(K))
fixed points otherwise.

The argument is the same as before : F, is also the set of fixed points of T.. The
latter is defined over K. If F, # (D, then there exists x € G(K) such that *T, € H,
hence by (*),

Trow(To, T,) # OF

and we have, as above, bijections

F, = Trew(To, T)/Nuw(To) = New(To)/Nuw(To) -

5. (1) If K = R, C or also is a non-archimedean local field with finite
residue field, then G(K), endowed with the topology stemming from K, is a Lie
group over K, and in particular is a locally compact topological group. In that
case, we can use in Theorem 2 a category argument instead of Lemma 2: the
f-1(Z), being proper algebraic subsets, have no interior point, the intersection of
their complement is then dense by Baire’s theorem, whence the last assertion of
Theorem 2 with “Zariski-dense” replaced by “dense in the K-topology”.

(i1) In [4] it is asked whether the hyperbolic n-space admits a non-
commutative free group of isometries which acts freely. More generally, one has
the

PROPOSITION. Let S be a connected semi-simple non-compact Lie group
with finite center, U a maximal compact subgroup of L and X = L/U the
symmetric space of non-compact typeof S. Then S containsanon-commutative
free subgroup which acts freely on X.

If rk § # rk U, this could be deduced from Corollary 2. However, the
_existence of one such subgroup can be proved much more directly in all cases : if
S = SL,(R) or PSL,(R), then we may take for I" a free subgroup of finite index in
SL,(Z) or SL,(Z)/{+1}. If S is of dimension >3, then it contains a copy of
SL,(R) or of PSL,(R), and therefore a discrete non-commutative free subgroup
[.Noelementy e I' — {1} iscontained in a compact subgroup of S, hence I" acts
freely on X.

A similar argument would be valid over a non-archimedean local field K for
the Bruhat-Tits buildings attached to semi-simple K-groups.
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