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132 P. DE LA HARPE

In 1914, this example allowed Hausdorff to show that there does not exist any
finitely additive rotation-invariant measure defined on all subsets of the sphere
S2. See [H], and [DE] for subsequent history. While discussing this, let us

mention the following open problem (brought to my attention by M. Keane) :

does there exist a finitely additive probability measure on the Borel subsets of S2,

vanishing on meagre sets, invariant under rotations? (The answer for countably
additive measures is no, and follows from the unicity of Haar measure on a

compact group; see e.g. §9 in [Wi].)

Remark. Let G be a connected real Lie group. Then G contains at least one

subgroup isomorphic to the free group on two generators F2 if and only if G is

not solvable, as results from standard Lie theory as follows.
To check the non trivial implication, we assume that G is not solvable, so that

G contains a semi-simple subgroup S by a theorem of Levi and Mal'cev.
Consider a Cartan decomposition s f © p of the Lie algebra of S. If f ^ {0},
root theory shows that the semi-simple compact algebra f contains a subalgebra

isomorphic to su(2), so that G contains a subgroup isomorphic to one of SU(2),

SO(3). If f (0], then s is split and root theory again shows that 5 contains a

copy of sl(2, R), so that G contains a subgroup isomorphic to a covering of

PSL(2, R). In all cases, examples above show that G contains a copy of F2.

So, let G be a connected Lie group containing a copy of F2.Fov w e F2 — {1}
and g, h e G, let w(g, h) be the element of G obtained when replacing the two

generators of F2 by g and h in w. Then

xw { (g, h)cGXGI }

has empty interior (think of analytic continuation). It follows from Baire's

theorem that the set G x G — y Xw (union over weF2 — {1}) of those

(g, h) e G x G such that g and h generate a free group is dense and has full
measure in G x G [E]. (If G is moreover semi-simple, it follows from a note by
Kuranishi and from Tits' theorem that there exist g, h e G generating a subgroup
of G which is both free and dense [Ku].)

2. Statement of Tits' theorem

Recall that, given a group T, its derived group DT is the subgroup generated

by elements of the form ghg~1h~1 and that T is solvable if D(... D(T)...) {1} for

sufficently many D's. We say that T is almost solvable (other people say virtually
solvable) if it contains a solvable subgroup of finite index. For example, groups of
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triangular matrices are solvable and non abelian free groups are not almost

solvable. By "free group", we mean hereafter non abelian free group.

A linear group over a field K is a group which has at least one faithful finite

dimensional representation over K, namely a group isomorphic to a subgroup of

GL(n, K) for some n. Groups are far from being all linear, even under the

hypothesis of finite generation. Famous examples of non linear groups are the

quotients F2/F? for m odd and large enough, where F2" is the subgroup of the

free group F2 generated by elements of the form gm. (Novikov's negative solution

to the Burnside problem; in the original paper, m large enough means

m ^ 4381.)

Easier examples are provided by finitely generated infinite simple groups

(there is such a group, discovered by G. Higman, which is described in [S], n°

1.1.4). They are not linear, because it is a result of Mal'cev that a finitely generated

linear group T is residually finite [M]. (This means that, for any y eV — {1},
there exists a homomorphism cp of T onto a finite group with cp(y) ^ 1 ;

instructive and easy exercice : check that SL(n, Z) is residually finite.)

Also, any finitely generated non hopfian group cannot be linear (T is non

hopfian if there exists a non injective homomorphism of T onto itself); an

example of such a group is that generated by two elements g, h submitted to the

relation _ 1 2= g3 (see [LS], page 197).

Tits' theorem. A linear group T over a field K of characteristic 0

which is not almost solvable contains a free group.

This theorem has been conjectured by Bass and Serre, and proved in [T]
together with other results, some concerning positive characteristics.'

The following precision has been added by Wang [Wa] : there exists for each

positive integer n a constant X(n) such that any subgroup of GL(n, K) without
free subgroup contains a solvable subgroup of index smaller than A(n).

Let T be a group having a finite set of generators S which is a subgroup of
GL(n, K) for some n. If k is the subfield of K generated by entries of elements of 5,

then F c GL(n, k). As k is finitely generated of characteristic zero, there exists an

embedding of k in C and one may assume that V lies in GL(n, C). For finitely
generated groups (and also in the general case by [Wh]), it is consequently
Sufficent to prove Tits' theorem for K C (or K R because GL(n, C) is a

subgroup of GL(2n, R)). But this apparent simplification is deceptive, because
the proof does require other fields than fields of complex numbers.

It follows from the theorem that a linear group over a field of characteristic
zero which is not amenable contains a free group ; this answers for linear groups
a question formulated by J. von Neumann [vN]. Another famous result whose
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proof requires Tits' theorem is due to Gromov: a finitely generated group has

polynomial growth if and only if it is almost nilpotent [G].
The analogue of Tits' theorem for division rings does not hold as such [LI],

but conjectural statements have been formulated [L2]. Another generalisation
of the theorem is proposed as a research problem in remark 1.4.2 of [BL].

3. Digression on hyperbolic geometry

Let n be an integer, n ^ 1. The hyperbolic space Hn+1 of dimension n + 1 is

the open unit ball of the euclidean space Rn+1. Hyperbolic lines (called lines

below) in Hn+f are traces on Hn +1 of circles and euclidean lines in Rn +1 which
are orthogonal to S". Two distinct points P, Q e Hn + 1

are on a unique line
which determines two points Pœ, Qœ e S", say .with P, ß, ß^, arranged in
cyclic order on the euclidean circle defining this line. The (hyperbolic) distance
between P and ß is given by a cross-ratio of euclidean distances; more
precisely, it is defined to be

HP. 0 - Log,,, ft J -k, (j££j : ||^i)
The proper Mœbius group GM(n)0 is the group of orientation preserving
isometries of R" + 1 for this distance. Any g e GM(n)0 extends to a

homeomorphism of the closed ball Hn + 1 u Sn. One may check that GM( 1)0 is

isomorphic to PGL(2, R) and GM(2)0 to PGL(2, C).

There is an equivalent description with Hn +1 the half space R" x R^. The set

of "points at infinity" is then R" u {oo} rather than S".

For all this, see e.g. [A] or [Si].
An isometry g g GM(n)0 is said to be

elliptic if there is some point in Hn + 1 fixed by g,

parabolic if there is in S" exactly one point fixed by g,

hyperbolic if there is a line in Hn +1 invariant by g on which g has no fixed point.

(Following Thurston [Th], we call "hyperbolic" elements which are

"loxodromic" ih classical littérature, such as in [Gr].)

Proposition. Elliptic, parabolic and hyperbolic elements define a partition of
the proper Mœbius group in three disjoint classes.

Proof Let us first check that the three classes do not overlap in GM(n)0. If g

is hyperbolic, it has two fixed points in S" and thus cannot be parabolic; if g was
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