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i.e. mod Yy(s) and for s = 0, e, = .. = ¢, = ¢,,; = 0 but ¢; # 0 and for
s = ,¢e; =..=¢, = 0ande,,; # 0. It follows that the vectors

81(\1’2(5))’ e 81(1(\]:’2(5))7 En+ 1(“12(5))

span a one-dimensional subspace of &,((s)) for all s so that E(Z) ~ &,
contains a line bundle L, which admits at least k; + 1 linearly independent
holomorphic sections viz. the g, ..., €, €, ;. Similar relations hold for

K2
8K1+...+Ki_1+l’ ) 8}(1 +.. otk 8n+1

foralli = 1, .., m giving us subbundles L, i = 1, .., m which admit at least x;
+ 1 linearly independent holomorphic sections. This exhausts the g, and
because the g,(x), ..., €,. ,(x) span £, (x) for all x e G,(C"*™) it follows that E(X)
= @ L, Asthe pullback of the bundie &, E(Z)itselfis a subbundle of an (n + m)-
dimensional trivial bundle. Because P*(C) is projective it follows (as before) that
E(X)hasatmostn + mlinearly independent holomorphic sections. But L; has at
least x; + 1 linearly independent sections, hence @ L, has atleast X(x;+ 1) = n
+ m linearly independent sections which proves that L; has precisely k; + 1
linearly independent sections and hence identifies L; as the bundle IL(k;)
described above in (8.5). We have reproved the theorem of Hermann and
Martin [14].

8.12. Theorem. Keeping the notationsintroduced above in(8.10)and (8.5)

we have E(Z) ~ @ L(k,).
Still another proof of this theorem, using the Riemann-Roch theorem is

found in Byrnes [33].

8.13. The Correspondence B. (cf. the diagram in section 5 above). The

mapping X — E(X) is obviously continuous. Thus the result U(x) = U(A) & «

.> X can be deduced from Shatz’s theorem (cf. 2.9). Inversely Shatz’s theorem for
positive bundles over P!(C) can be deduced from the result on feedback orbits
because every positive bundle arises as an E(X). By tensoring with a suitable L(r),
. .r high enough, the result is then extended to arbitrary bundles over P!(C).

9. VECTORBUNDLES, SYSTEMS AND SCHUBERT CELLS

9.1. Partitions and Schubert-cells. Let x be a partition of n. To x we
associate the following increasing sequence of n numbers (k).
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(9.2) €) = (2,3, .6, + 1, & 4+ 3, .,k + Ky + 2,
. ~ /. N\ v /
K, K,

Ky + o + Koy +m+ 1L, + . + %, +m)

\y -
N

K

m

Let t/x),j = 1, ..., n, be the j-th element of this sequence. It is an easy exercise to
check that

(9.3) K > A e 1(k) = 1(A) for all i=1,..,n.

Thus the specialization order is a suborder of the inclusion ordering between
closed Schubert cells, because

SC(t)y o SC(t) 1, =21,i=1,..,n.

And in turn, as we saw above in section 4, the Schubert-cell order is a quotient of
the Bruhat order on the Weyl group S, . ,,.

9.4. Systems and Schubert Cells. Let (A, B) € L;; , be a system and as in
section 8.8 consider the associated holomorphic morphism Vs : P!(C)
— G,(C""™). Suppose that (A4, B) are in Brunovsky canonical form. Then simple
inspection of the matrix (sI—A; B) (cf. the example below proposition 8.11)
shows that Im \; = SC(t(k)), where x = x(4, B). Now let (4, B) be any system
in L;; ,. Then it is feedback equivalent to one in Brunovsky canonical form so
that (sI —A4; B) = P(sI—Ay; By)Q for certain constant invertible matrices P, Q
where (A4, By) 1s a canonical pair. Premultiplication with P does not change
and postmultiplication with Q induces an automorphism of G, (C"*™) taking
Schubert-cell SC(t(k)) into another Schubert-cell of the same dimension type.
Thus we have shown:

9.5. Theorem. Let T elL; ,x =«x(Z) and let Vy:PYC) > G, (C"*™)
be the Hermann-Martin morphism of X. Then there is a Schubert-cell SC(A),
A = (4, .., A4,) such that Im\yy = SC(4) and dim A; = t,(x), where ‘Ci(—K)
1s defined by (9.2).

We will now show that the Schubert-cell SC(A4 ) obtained in 9.5 is the smallest

possible in the sense of the associated sequence of dimension numbers. We first
prove a technical lemma.
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9.6. Lemma. Let X(s) be the matrix, defined by a partition
Ki 2K, 2 .. 2K,,Ky +...+K, =n,

consisting of blocks X (s) where

s 1 0 |
s —1 0
2£KQ = : - K; X (k;+1)
—1
0 0 S 1_
and )
o [x9 . 0
X(s) = o : X | n x (n+m)

Let B be an (m+n) x 1 matrix of rank t. Then X(s)B has rank greater than or
equal to T — ¢ for almost all s where ¢ is the largest number such that

Kig + K F o + Kgpzy =T £ 1.

Proof. Wefirst consider the case that thereisonlyonek,1.e,m = 1. Wecan
assume that B is in column echelon form by postmultiplying by a nonsingular
matrix if necessary. So B has the following form:

0 . 0 B Iy
I, 0 0 Ay
x 0 0 r,
X x0..0
0 .0 1 |
X X Fu+1

i ol [ o -1 0 |

X(s) = s + = sA, + A,
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b, ]
and write B = : where b, is the i-th row.
| bn+1 _
— —
Sbl - bz
Now X(s)B = :
Sbn— 1 bn
sb, + bn+y

We need to prove that X(s)B has the required rank. Assume that B has rank tTand
1 < n. Let x be a t vector and assume that

X(s)Bx = 0

We will show that either x = O or the equation only holds for finitely many
values of s. We first note that

b2X = Sblx

_ n—1
bx = 5" "bx
bn+1x — ——S"blx

Thusif b;x = Othen b,x = 0 for all x. But since B has full rank this implies that
x = 0.Thus we may assume that b;x = 1andthusthatr, = 0.So we have that

. I,
X; =1, X, =8 .,%, = s LIfr, = 0, Bis of the form ( ) and the result
X

is obvious, so we can assume r, # 0. Then we have

belx - bxl_;_lx
so that

Ao A1—1
s = by 41,1 F i1, 28+ + by g a,S

and this question is satisfied for only finitely many s. Therefore we have shown
that if there is a nonzero solution of X(s)Bx = 0then b;x # 0 and the solution
can exist only for finitely many values of s. Thus in this case the rank of X(s)B is
equal to t for almost all s. If B is invertible (rank of B equal to n + 1) then the
rank of X(s)B is equal to n = rank X(s) = (rank B) — 1.

Now let m be greater than or equal to two. Again put B into column echelon

form and partition B in such a way that the pieces B, ..., B,, are still in column
echelon form.
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B, 0 . 0 Ky + 1
x B, .. 0 K, + 1
x x .. B, Km + 1

X,s)B, 0 0
7 X,(5)B, 0 0
¥ X u(8)B

It follows that the rank of X(s)B is equal to the sum of the ranks of the X (s)B,.
From before we have that rank X(s)B; = rank B; for all but finitely many s
unless B; is invertible in which case X ,(s)B; = rank B; — 1. This proves the
proposition. We can now prove the theorem that relates the ordering on the
Schubert cells to the ordering on the orbits of the feedback group.

9.7.  Theorem. Let(F, G)be a controllable pair and let \y be the associated
 morphism from P*(C) into G,(C"*™). Let A, ... A, be a sequence of subspaces of
C"*™ such that y(P'(C)) is contained in the Schubert cell SC(44, ..., 4,). Let
Ky - K, D€ the Kronecker indices of (F, G) and for each i let p(i) = j iff

Ki + o K <I<Kp + o+ Ky
Then dim A; = i + p(i) = 14(x).
Proof. Itis a simple matter to check that t,(x) (cf. (9.2) above) is equal to i

+ p(i). We can assume that (F, G) is in Brunovsky canonical form. Suppose that
dim A4; = t < i + p(i). Then

Ay ={xeC""™:<b,x>=0,j=1,.,n+m—t}

for certain linearly independent b;. Let B be matrix whose columns are the b/’s.
Let P(s) be the space spanned by the rows of X(s). Since y(P'(C)) is contained
in SC(A,, .., A,) we must have that dim(4; n P(s)) = i. Thus the dimension
of P(s)B is less than or equal to n — i which is the same as

rank X(s)B < n —i.

Now by the previous proposition rank X(s)B > n + m — t — [ where [ is the
largest number such that '

Km+Km_l+...+Km_l+1+l<n+m—t.
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So we have the following

()t <i+ p(i) (by hypothesis)
2)n—iz2n+m—t—1[orequvalently i<t + [ —m
(B)Km+...+Km_l+1+l<n+m*t

4) x; + o+ Ky < IS Kp 4 o+ Kpgyeg -
Using (2) and (3) we have that
Ky + o + Kppyoy SN —1 =K+ .. +%x,, — 1
so we have i < x, + ... + x,,_; which implies m — | > p(i) + 1 thus
pi)+i<m—-Il—-1+i<(m—-I-1)+({t+l-m=1t—-1
which contradicts (1). This proves the theorem.

9.7. Vectorbundles and Schubert cells. Because every positive
vectorbundle over P}(C) arises as the bundle E(X) of some system X one has the
obvious analogues of theorems 9.5 and 9.6 for positive bundles over P*(C). Here
the morphism sy must, of course, be replaced by the classifying morphism (cf.
section 3.2 above) of a positive vector bundle E,and n + m and m are determined
respectively as dim I'(E, P!(C)) and dim E.

10. DEFORMATIONS OF REPRESENTATION HOMOMORPHISMS
AND SUBREPRESENTATIONS

10.1 On proving Inclusion Results for Representations. Suppose we have
given a continuous family of homomorphisms of finite dimensional
representations over C of a finite group G

(10.2) MoV

Suppose that Im n, ~ p for t # 0 (and small) and that Im =, ~ p,. Then the
representation p, is a direct summand of the representation p. This is seen as
follows. Because the category of finite dimensional complex representations of G
is semisimple there is a homomorphism of representations ¢ : Im n, - M such
that ty o ¢y = id. Then &, o &y : Im by — Im =, is still injective for small ¢ (by
the continuity of w,) which gives us p, as a subrepresentation and hence a direct
summand of p.

It is almost equally easy to construct a surjective homomorphism Im x,
— Im m,. |
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