9. Vectorbundles, systems and Schubert cells

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 29 (1983)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
i.e. $\bmod \psi_{\Sigma}(s)$ and for $s=0, e_{2} \equiv \ldots \equiv e_{\kappa_{1}} \equiv e_{n+1} \equiv 0$ but $e_{1} \neq 0$ and for $s \doteq \infty, e_{1} \equiv \ldots \equiv e_{\kappa_{1}} \equiv 0$ and $e_{n+1} \neq 0$. It follows that the vectors

$$
\varepsilon_{1}\left(\psi_{\Sigma}(s)\right), \ldots, \varepsilon_{\kappa_{1}}\left(\psi_{\Sigma}(s)\right), \varepsilon_{n+1}\left(\psi_{\Sigma}(s)\right)
$$

span a one-dimensional subspace of $\xi_{m}\left(\psi_{\Sigma}(s)\right)$ for all s so that $E(\Sigma) \simeq \psi_{\Sigma} \xi_{m}$ contains a line bundle L_{1} which admits at least $\kappa_{1}+1$ linearly independent holomorphic sections viz. the $\varepsilon_{1}, \ldots, \varepsilon_{\kappa_{1}}, \varepsilon_{n+1}$. Similar relations hold for

$$
\varepsilon_{\kappa_{1}+\ldots+\boldsymbol{\kappa}_{i-1}+1}, \ldots, \varepsilon_{\kappa_{1}+\ldots+\boldsymbol{\kappa}_{i}}, \varepsilon_{n+1}
$$

for all $i=1, \ldots, m$ giving us subbundles $L_{i}, i=1, \ldots, m$ which admit at least κ_{i} +1 linearly independent holomorphic sections. This exhausts the ε_{i} and because the $\varepsilon_{1}(x), \ldots, \varepsilon_{n+m}(x)$ span $\xi_{m}(x)$ for all $x \in \mathbf{G}_{n}\left(\mathbf{C}^{n+m}\right)$ it follows that $E(\Sigma)$ $=\oplus L_{i}$. As the pullback of the bundle $\xi_{m}, E(\Sigma)$ itself is a subbundle of an $(n+m)-$ dimensional trivial bundle. Because $\mathbf{P}^{1}(\mathbf{C})$ is projective it follows (as before) that $E(\Sigma)$ has at most $n+m$ linearly independent holomorphic sections. But L_{i} has at least $\kappa_{i}+1$ linearly independent sections, hence $\oplus L_{i}$ has at least $\Sigma\left(\kappa_{i}+1\right)=n$ $+m$ linearly independent sections which proves that L_{i} has precisely $\kappa_{i}+1$ linearly independent sections and hence identifies L_{i} as the bundle $L\left(\kappa_{i}\right)$ described above in (8.5). We have reproved the theorem of Hermann and Martin [14].
8.12. Theorem. Keeping the notations introduced above in (8.10) and (8.5) we have $E(\Sigma) \simeq \underset{i=1}{\oplus} L\left(\kappa_{i}\right)$.

Still another proof of this theorem, using the Riemann-Roch theorem is found in Byrnes [33].
8.13. The Correspondence B. (cf. the diagram in section 5 above). The mapping $\Sigma \mapsto E(\Sigma)$ is obviously continuous. Thus the result $\overline{U(\kappa)} \supset U(\lambda) \leftrightarrow \kappa$ $>\lambda$ can be deduced from Shatz's theorem (cf. 2.9). Inversely Shatz's theorem for positive bundles over $\mathbf{P}^{1}(\mathbf{C})$ can be deduced from the result on feedback orbits because every positive bundle arises as an $E(\Sigma)$. By tensoring with a suitable $L(r)$, r high enough, the result is then extended to arbitrary bundles over $\mathbf{P}^{1}(\mathbf{C})$.
9. Vectorbundles, systems and Schubert cells
9.1. Partitions and Schubert-cells. Let κ be a partition of n. To κ we associate the following increasing sequence of n numbers $\tau(\kappa)$.

$$
\begin{align*}
\tau(\kappa)= & \underbrace{\left(2,3, \ldots, \kappa_{1}+1\right.}_{\kappa_{1}}, \tag{9.2}
\end{align*} \underbrace{\kappa_{1}+3, \ldots, \kappa_{1}+\kappa_{2}+2, \ldots}_{\kappa_{2}},
$$

Let $\tau_{j}(\kappa), j=1, \ldots, n$, be the j-th element of this sequence. It is an easy exercise to check that

$$
\begin{equation*}
\kappa>\lambda \leftrightarrow \tau_{i}(\kappa) \geqslant \tau_{i}(\lambda) \quad \text { for all } \quad i=1, \ldots, n . \tag{9.3}
\end{equation*}
$$

Thus the specialization order is a suborder of the inclusion ordering between closed Schubert cells, because

$$
S C(\tau) \supset S C\left(\tau^{\prime}\right) \leftrightarrow \tau_{i} \geqslant \tau_{i}^{\prime}, i=1, \ldots, n .
$$

And in turn, as we saw above in section 4, the Schubert-cell order is a quotient of the Bruhat order on the Weyl group S_{n+m}.
9.4. Systems and Schubert Cells. Let $(A, B) \in L_{m, n}^{c r}$ be a system and as in section 8.8 consider the associated holomorphic morphism $\psi_{\Sigma}: \mathbf{P}^{1}(\mathbf{C})$ $\rightarrow \mathbf{G}_{n}\left(\mathbf{C}^{n+m}\right)$. Suppose that (A, B) are in Brunovsky canonical form. Then simple inspection of the matrix $(s I-A ; B)$ (cf. the example below proposition 8.11) shows that $\operatorname{Im} \psi_{\Sigma} \subset S C(\tau(\kappa))$, where $\kappa=\kappa(A, B)$. Now let (A, B) be any system in $L_{m, n}^{c r}$. Then it is feedback equivalent to one in Brunovsky canonical.form so that $(s I-A ; B)=P\left(s I-A_{0} ; B_{0}\right) Q$ for certain constant invertible matrices P, Q where $\left(A_{0}, B_{0}\right)$ is a canonical pair. Premultiplication with P does not change ψ_{Σ} and postmultiplication with Q induces an automorphism of $\mathbf{G}_{n}\left(\mathbf{C}^{n+m}\right)$ taking Schubert-cell $S C(\tau(\kappa))$ into another Schubert-cell of the same dimension type. Thus we have shown:
9.5. Theorem. Let $\Sigma \in L_{m, n}^{c r}, \kappa=\kappa(\Sigma)$ and let $\psi_{\Sigma}: \mathbf{P}^{1}(\mathbf{C}) \rightarrow \mathbf{G}_{n}\left(\mathbf{C}^{n+m}\right)$ be the Hermann-Martin morphism of Σ. Then there is a Schubert-cell $S C(A)$, $\underline{A}=\left(A_{1}, \ldots, A_{n}\right)$ such that $\operatorname{Im} \psi_{\Sigma} \subset S C(\underline{A})$ and $\operatorname{dim} A_{i}=\tau_{i}(\kappa)$, where $\tau_{i}(\kappa)$ is defined by (9.2).

We will now show that the Schubert-cell $\operatorname{SC}(\underline{A})$ obtained in 9.5 is the smallest possible in the sense of the associated sequence of dimension numbers. We first prove a technical lemma.
9.6. Lemma. Let $\underline{X}(s)$ be the matrix, defined by a partition

$$
\kappa_{1} \geqslant \kappa_{2} \geqslant \ldots \geqslant \kappa_{m}, \kappa_{1}+\ldots+\kappa_{m}=n,
$$

consisting of blocks $\underline{X}_{i}(s)$ where

$$
\underline{X}_{i}(s)=\left[\begin{array}{rrrrrr}
s & -1 & & & & 0 \\
& s & -1 & & & 0 \\
& & & \ddots & & \\
& & & -1 & \\
0 & 0 & & & s & 1
\end{array}\right] \quad \kappa_{i} \times\left(\kappa_{i}+1\right)
$$

and

$$
\underline{X}(s)=\left[\begin{array}{ccc}
\underline{X}_{1}(s) & \ddots & 0 \\
0 & & \underline{X}_{1}(s)
\end{array}\right] \quad n \times(n+m)
$$

Let B be an $(m+n) \times \tau$ matrix of rank τ. Then $X(s) B$ has rank greater than or equal to $\tau-t$ for almost all s where t is the largest number such that

$$
\kappa_{m}+\kappa_{m-1}+\ldots+\kappa_{m-t+1}+t \leqslant \tau .
$$

Proof. We first consider the case that there is only one κ, i.e., $m=1$. We can assume that B is in column echelon form by postmultiplying by a nonsingular matrix if necessary. So B has the following form:

$$
\left[\begin{array}{cccc}
0 & \ldots & & 0 \\
I_{\lambda_{1}} & 0 & \ldots & 0 \\
x & 0 & \ldots & 0 \\
0 & I_{\lambda_{2}} & & 0 \\
x & & x & 0 \\
& \vdots & \ldots & 0 \\
0 & \ldots & 0 & I_{\lambda_{u}} \\
x & & & x
\end{array}\right] \begin{aligned}
& r_{1} \\
& \lambda_{1} \\
& r_{2} \\
& \lambda_{2} \\
& \\
& \\
& \lambda_{u+1}
\end{aligned}
$$

The x 's stand for possibly nonzero blocks. Write

$$
X(s)=s\left[\begin{array}{llll}
1 & & & 0 \\
& \ddots & & \\
0 & & 1 & 0
\end{array}\right]+\left[\begin{array}{rrrr}
0 & -1 & & 0 \\
& \ddots & & \\
& & -1 & \\
0 & & 0 & 1
\end{array}\right]=s A_{1}+A_{2}
$$

and write

$$
\begin{gathered}
B=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n+1}
\end{array}\right] \\
X(s) B=\left[\begin{array}{c}
s b_{1}-b_{2} \\
\vdots \\
s b_{n-1}-b_{n} \\
s b_{n}+b_{n+1}
\end{array}\right]
\end{gathered}
$$

We need to prove that $X(s) B$ has the required rank. Assume that B has rank τ and $\tau \leqslant n$. Let x be a τ vector and assume that

$$
X(s) B x=0
$$

We will show that either $x=0$ or the equation only holds for finitely many values of s. We first note that

$$
\begin{aligned}
b_{2} x & =s b_{1} x \\
& \vdots \\
b_{n} x & =s^{n-1} b_{1} x \\
b_{n+1} x & =-s^{n} b_{1} x
\end{aligned}
$$

Thus if $b_{1} x=0$ then $b_{i} x=0$ for all x. But since B has full rank this implies that $x=0$. Thus we may assume that $b_{1} x=1$ and thus that $r_{1}=0$. So we have that $x_{1}=1, x_{2}=s, \ldots, x_{\lambda_{1}}=s^{\lambda_{1}-1}$. If $r_{2}=0, B$ is of the form $\binom{I_{\tau}}{x}$ and the result is obvious, so we can assume $r_{2} \neq 0$. Then we have

$$
s b_{\lambda_{1}} x=b_{\lambda_{1}+1} x
$$

so that

$$
s^{\lambda_{1}}=b_{\lambda_{1}+1,1}+b_{\lambda_{1}+1,2} s+\ldots+b_{\lambda_{1}+1, \lambda_{1}} s^{\lambda_{1}-1}
$$

and this question is satisfied for only finitely many s. Therefore we have shown that if there is a nonzero solution of $X(s) B x=0$ then $b_{1} x \neq 0$ and the solution can exist only for finitely many values of s. Thus in this case the rank of $X(s) B$ is equal to τ for almost all s. If B is invertible (rank of B equal to $n+1$) then the rank of $X(s) B$ is equal to $n=\operatorname{rank} X(s)=(\operatorname{rank} B)-1$.

Now let m be greater than or equal to two. Again put B into column echelon form and partition B in such a way that the pieces B_{1}, \ldots, B_{m} are still in column echelon form.

$$
\begin{array}{lllll}
B_{1} & 0 & \ldots & 0 & \kappa_{1}+1 \\
x & B_{2} & \ldots & 0 & \kappa_{2}+1 \\
& \vdots & & & \\
x & x & \ldots & B_{m} & \kappa_{m}+1
\end{array}
$$

The product $X(s) B$ has the form

$X_{1}(s) B_{1}$	0		\cdots	0
$?$	$X_{2}(s) B_{2}$	0	\ldots	0
		\ddots		
$?$				$X_{m}(s) B_{m}$

It follows that the rank of $X(s) B$ is equal to the sum of the ranks of the $X_{i}(s) B_{i}$. From before we have that rank $X_{i}(s) B_{i}=$ rank B_{i} for all but finitely many s unless B_{i} is invertible in which case $X_{i}(s) B_{i}=$ rank $B_{i}-1$. This proves the proposition. We can now prove the theorem that relates the ordering on the Schubert cells to the ordering on the orbits of the feedback group.
9.7. Theorem. Let (F, G) be a controllable pair and let ψ be the ássociated morphism from $\mathbf{P}^{1}(\mathbf{C})$ into $\mathbf{G}_{n}\left(\mathbf{C}^{n+m}\right)$. Let $A_{1} \ldots A_{n}$ be a sequence of subspaces of \mathbf{C}^{n+m} such that $\psi\left(\mathbf{P}^{1}(\mathbf{C})\right)$ is contained in the Schubert cell $\operatorname{SC}\left(A_{1}, \ldots, A_{n}\right)$. Let $\kappa_{1}, \ldots, \kappa_{m}$ be the Kronecker indices of (F, G) and for each i let $p(i)=j$ iff

$$
\kappa_{1}+\ldots+\kappa_{j}<i \leqslant \kappa_{1}+\ldots+\kappa_{j+1} .
$$

Then $\operatorname{dim} A_{i} \geqslant i+p(i)=\tau_{i}(\kappa)$.

Proof. It is a simple matter to check that $\tau_{i}(\kappa)$ (cf. (9.2) above) is equal to i $+p(i)$. We can assume that (F, G) is in Brunovsky canonical form. Suppose that $\operatorname{dim} A_{i}=t<i+p(i)$. Then

$$
A_{i}=\left\{x \in \mathbf{C}^{n+m}:\left\langle b_{j}, x\right\rangle=0, j=1, \ldots, n+m-t\right\}
$$

for certain linearly independent b_{j}. Let B be matrix whose columns are the b_{i} 's. Let $P(s)$ be the space spanned by the rows of $X(s)$. Since $\psi\left(\mathbf{P}^{1}(\mathbf{C})\right)$ is contained in $S C\left(A_{1}, \ldots, A_{n}\right)$ we must have that $\operatorname{dim}\left(A_{i} \cap P(s)\right) \geqslant i$. Thus the dimension of $P(s) B$ is less than or equal to $n-i$ which is the same as

$$
\operatorname{rank} X(s) B \leqslant n-i .
$$

Now by the previous proposition $\operatorname{rank} X(s) B \geqslant n+m-t-l$ where l is the largest number such that

$$
\kappa_{m}+\kappa_{m-1}+\ldots+\kappa_{m-l+1}+l \leqslant n+m-t .
$$

So we have the following
(1) $t<i+p(i) \quad$ (by hypothesis)
(2) $n-i \geqslant n+m-t-l$ or equivalently $i \leqslant t+l-m$
(3) $\kappa_{m}+\ldots+\kappa_{m-l+1}+l \leqslant n+m-t$
(4) $\kappa_{1}+\ldots+\kappa_{p(i)}<i \leqslant \kappa_{1}+\ldots+\kappa_{p(i)+1}$.

Using (2) and (3) we have that

$$
\kappa_{m}+\ldots+\kappa_{m-l+1} \leqslant n-i=\kappa_{1}+\ldots+\kappa_{m}-i
$$

so we have $i \leqslant \kappa_{1}+\ldots+\kappa_{m-l}$ which implies $m-l \geqslant p(i)+1$ thus

$$
p(i)+i \leqslant m-l-1+i \leqslant(m-l-1)+(t+l-m)=t-1
$$

which contradicts (1). This proves the theorem.
9.7. Vectorbundles and Schubert cells. Because every positive vectorbundle over $\mathbf{P}^{1}(\mathbf{C})$ arises as the bundle $E(\Sigma)$ of some system Σ one has the obvious analogues of theorems 9.5 and 9.6 for positive bundles over $\mathbf{P}^{1}(\mathbf{C})$. Here the morphism ψ_{Σ} must, of course, be replaced by the classifying morphism (cf. section 3.2 above) of a pósitive vector bundle E, and $n+m$ and m are determined respectively as $\operatorname{dim} \Gamma\left(E, \mathbf{P}^{1}(\mathbf{C})\right)$ and $\operatorname{dim} E$.

10. Deformations of representation homomorphisms AND SUBREPRESENTATIONS

10.1 On proving Inclusion Results for Representations. Suppose we have given a continuous family of homomorphisms of finite dimensional representations over \mathbf{C} of a finite group G

$$
\begin{equation*}
\pi_{t}: M \rightarrow V \tag{10.2}
\end{equation*}
$$

Suppose that $\operatorname{Im} \pi_{t} \simeq \rho$ for $t \neq 0$ (and small) and that $\operatorname{Im} \pi_{0} \simeq \rho_{0}$. Then the representation ρ_{0} is a direct summand of the representation ρ. This is seen as follows. Because the category of finite dimensional complex representations of G is semisimple there is a homomorphism of representations $\phi_{0}: \operatorname{Im} \pi_{0} \rightarrow M$ such that $\pi_{0} \circ \phi_{0}=i d$. Then $\pi_{t} \circ \phi_{0}: \operatorname{Im} \phi_{0} \rightarrow \operatorname{Im} \pi_{t}$ is still injective for small t (by the continuity of π_{t}) which gives us ρ_{0} as a subrepresentation and hence a direct summand of ρ.

It is almost equally easy to construct a surjective homomorphism $\operatorname{Im} \pi_{t}$ $\rightarrow \operatorname{Im} \pi_{0}$.

