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ON THE GENUS OF GENERALIZED FLAG MANIFOLDS

by Henry H. Glover and Guido Mislin

Introduction

Let A be a nilpotent space of finite type. We denote by G (A) the genus of A,
i.e. the set of all homotopy types Y (nilpotent, of finite type) with p-localizations

Yp ~ Ap for all primes p, (cf. [HMR]). The set G (A) has been studied extensively
in case of A an H-space. In particular it is known that for the special unitary

group SU (n) one has

\G(SU{n))\> FI (ö (m!)/2)
1 <m<n

where (j) is the Euler function [Z, p. 152]. We are interested in this note in finding
non-trivial examples A with G (A) {[A]} and we call such spaces generically
rigid. A large family of such generically rigid spaces is provided by certain
generalized flag manifolds. Let

G U (n1 + n2+ +nk)

and

H U (nj X U (;n2) x x U (:nk),

embedded in G in the obvious way. Then

M M (nl9 n2,..., nk) G/H

is a generalized flag manifold (generalizing the standard complex flag manifold
U (n)/Tn which corresponds to M (1, 1,..., 1)). We will show essentially that
whenever the homotopy rigidity result for linear actions holds for M (cf. [LI],
[L2], [EL]), then M is also generically rigid. These two seemingly unrelated
rigidity results are tied up by certain results on E (A) and E (A0), the groups of
homotopy classes of self equivalences of A and A0, A0 the rationalization of A.

To make our result more precise, we need some further notation. For

M M (nu nk) G/H
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as above, we write N (H) for the normalizer of H in G. The finite group N (H)/H
acts on M in an obvious way and it is well known that through that action,
N (H)/H is faithfully represented in H* (M ; Q). We can therefore consider
N (H)/H as a subgroup of E (M) or E (M0). By Theorem 1.1 of [GH2] the

canonical map

E(M0)^ Aut^tf*(M;Q)
is a group isomorphism. In particular, the grading automorphisms

g (q) : H* (M;Q)-> tf* (M;Q)

defined by g (q) x qlx for x e H21 (M ; Q) and ^gQ*, lift to unique self

equivalences of M0 (which we denote also by g (q)% and thus

Gr(M0){g(q)\qeQ*}<= E(M0)
is a central subgroup isomorphic to Q*.

In all cases of generalized flag manifolds for which E (M0) has been

computed, the subgroup generated by Gr (M0) and N {H)/H,

(Gr(M0),N(H)/H) cz E(M0)

is all of E (M0). The following conjecture is thus plausible.

Conjecture C. Let M M (nl9 n2,nk) be a generalized flag manifold.
Then

E (M0) (Gr(M0),N(H)/H>.

A similar conjecture appears in [LI, Conjecture C] but the relationship
between the two conjectures is not entirely clear.

The Conjecture C has been verified in the following cases :

1) nx n2 nk 1 (compare the proof of Thm. 1 in [EL])
2) nx n2 nk^1 1, nk ^ k — 1 (compare the proof ofTheorem 9 in

[LI])
3) 2 and k 2 (follows from [O])
4) > Wl and k 2 ([GH1], [Br])
5) 1, n2 > 1, n3 ^ 2n2 — 1 and k 3 ([GH2])

The Conjecture C holds therefore for instance for all complex Grassmann

manifolds Gp (Cp +
<?) M (p, q) with p =£ q (since M (p, q) ~ M (q, p)), and for

the classical flag manifolds U (n)/Tn.

Our main theorem may be stated as follows.
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Theorem. LetM M(n1;nk)be a generalized flag manifold for
which the Conjecture C holds. Then

G (M) {[M]}.

In particular the Grassmann manifolds Gp(Cp+q) for p and the flag
manifolds U (n)/Tn are all generically rigid.

§1. Genus and self maps

Let P denote a fixed set of primes. Two P-sequences

SUS2:P^E(XO)

are called equivalent, if there exist maps h (0) g E (Jf0) and

h (p)e im (E(Xp)c E(X0))

such that for all p e P one has

h(0)SAp) s2(p)h(p).

Definition 1.1. We denote by P-Seq (E (X0)) the set of equivalence classes of
P-sequences in E (X0).

If P is a finite set of primes and X a nilpotent space of finite type, then there is

a canonical map

Q :G(X)-+ P-Seq (E (X0j).

It is defined as follows. Let Y e G (X) and P {pu pn}. Then the localization

YP is a pull-back of maps Xp. X0, i.e. YP ~ hoinvlim {Xp. X0}. The

maps Xt induce equivalences e E (X0) and we put

9(7)

If Yp may also be represented by hoinvlim {Xp.^> X0}, then there exist maps
h (0) g E (X0) and /T(pf) g E {Xpf i e {1,..., n} rendering the diagrams
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homotopy commutative and thus inducing hoinvlim {AJ ~ hoinvlim {pj.
Hence

{[Xi,fcj} {[filfA„]} e Seq (E {X0))

and therefore 9 is well defined.

Lemma 1.2. Let X be a nilpotent space of finite type and let P denote a finite
set of primes. Then

0: G(X) P-Seq (E (X0))

is surjective with fibers of the form

0"1 (9(y)) {Ze G (X)tZP^ YP).

Proof. Let P {pu pn} and

{17 u-,7J}e ^"Seq (E (X0j).

Let e, : XPi -> X0denotethe canonical maps and put

ft ji°ei\Xp. -*X0.
Define W hoinvlim {/J ; W comes equipped with a canonical map / : W

- X0. Let Z be the homotopy pull back of W X0 Xp, where P denotes the

set of primes complementary to P. Then Z g G (X) and

0(Z) /„]};
thus 0 is surjective. It is clear from the definition of 0 that for Y, Z e G (2f) one has

0(7) 0 (Z) if and only if YP ~ ZP.

The next lemma provides a sufficient condition for 0 to be monic "at the

basepoint".
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Lemma 1.3. Let X be a nilpotent space of finite type. Suppose that there

exists a finite set of primes P with complement P such that

a) Y e G (X) implies YP ~ Xp

b) every / e E (X0) can be written as f1 ° f 2 with f1 e im (E (XP) E (X0))
and f2e im (E (XP)^E(X0)).

Then for 0: G (X) - P-Seq (E (X0)) as above, one has 0~ 1
(0 (X)) {X}.

Proof. Let Y eG (X) with 0 (Y) 0 {X). Then YP ~ by the definition
of0, and Yp ~ XP by assumption. Hence Y may be obtained as a homotopy pull
back of the form

If a induces a e E (X0) and if y a
1

° ß, then Y is also a pull back of the form

y x0

Let y e E (2T0) be the map induced by y and write y f1f2 with

fy 6 im (E (XP) - E(Z0)),f2 e im (E (X-P) -> E (Z0)) •

Choose a lift /x"1 e E(XP)of /r1 and a lift /2 e (XP) of Then /r1 y
can o f2andone can form a commutative diagram,
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§2. The case of generalized flag manifolds

The following result is an easy consequence of [F].

Lemma 2.1. Let M be a generalized flag manifold. Then the following
holds.

a) If g (X) g Gr (M0) is a grading map with X g for some (not necessarily

finite) set of primes Q, then g (X) lifts to a homotopy equivalence g (X) : MQ

-Me.
b) Let P be an arbitrary set of primes with complement P. Then every

fe(Gr(M0),N(H)/H>

may be written in the form / f1°f2 with

/i 6 im [E(MP)->(M0))

and

/2Gim(£(Mp)->£(M0)).

Proof. Let X k/l with k and / relatively prime integers. Then g (k) and g (I)

lift to equivalences

g(k),g(l):MQ- Mc
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since necessarily k, le Z\ (compare [F]). Thus g (k) g (I) 1 is a lift of g (k). For b)

we note that / g (p) ° cr for some p e Q* and

a e IV (H)/H

If we write p Pi * p2 with px e Z£ and p2 e Z|, then

/ g(Pi) (9 (p2) cr)

and we may choose

f1 0(Pi), f2 ö' (Pa) cr.

Since cr lifts even to E (M), we infer by using a) that f1 and f 2 lift as desired.

A final step towards proving the Theorem formulated in the introduction
consists in the following.

Lemma 2.2. Let M be a generalized flag manifold for which Conjecture C
holds. Then for every finite set of primes P,

P-Seq(E(M0)){[1,1,..., 1]}.

Proof. Let {ftij,..., p„]} e P-Seq E(M0)),where P p„} and

Pi e im (E (Mp.) -> E (M0))

for all i. Then g (/.,) ° cr, with e Q* and

aie N (H)/H c E (M0).

Define X eQ*byX Tlpf, where m, e Z is such that p?< /,, e Z*. Then g (X) |i,
g (XXf)a;with XXt e Z*. By Lemma 2.1 a) we know that g (XX;) lifts to

and since cr,- lifts even to M we conclude that

h Pi)g {XXi)<7;e im (MPl) -> E

for all i. The equation

g(X)\ii h {Pf i

show that {[ql5..., q„]} {[1,..., 1]} e P-Seq (E (M0j).

The proof of the main Theorem :

Let Mbe a generalized flag manifold for which the Conjecture C holds. Since
M is a formal space we can find for every N e a rational equivalence
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/ (N) : N - M. Let P (M) denote the set of primes which appear in any of the

orders of

ker (/ (A/)*://* (AT;Z - ff„ (M;Z))

or coker / (A%, N ranging over G (M). The set P (M) is finite, since each

ker / (N)+ and coker / (iV)^ is finite and since G (M) is a finite set by [W].
Consider now the map

0 : G (M) -> P-Seq E (M0)

with respect to this finite set of primes P (M) P. Since P is finite,

P-Seq (E (M0))

consists of only one element (Lemma 2.2). It remains to show that

0-i (0(M)) {M}

For this we apply Lemma 1.3. Note that N e G (M) implies Np ~ Mp since

/ (N) : N -+ M is a P-equivalence. Moreover, the condition b) of 1.3 is satisfied in
view of Lemma 2.1 b). Therefore we conclude that G (M) {[M]} and the

proof is completed.

Note added in proof. Since this paper went to press, we have been informed
that Conjecture C has been proved for the case k — 2, n1 n2, by M.Hoffman:
"Cohomology endomorphisms of complex flag manifolds", Ph.D. dissertation,
MIT 1981. As a consequence, it follows that all complex Grassmann manifolds

are generically rigid.
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