3. Some notions from computational
complexity

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 27 (1981)

Heft 1-2: L'ENSEIGNEMENT MATHEMATIQUE

PDF erstellt am: 29.05.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.

Die auf der Plattform e-periodica vero6ffentlichten Dokumente stehen fir nicht-kommerzielle Zwecke in
Lehre und Forschung sowie fiir die private Nutzung frei zur Verfiigung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot kbnnen zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veroffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverstandnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewabhr fir Vollstandigkeit oder Richtigkeit. Es wird keine Haftung
Ubernommen fiir Schaden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch fur Inhalte Dritter, die tUber dieses Angebot
zuganglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zirich, Ramistrasse 101, 8092 Zirich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

142 M. FURER

We use «, ¢’ to denote structures. A structure o for a first order language
L consists of:

— a nonempty set | o

(the universe of «),

— a function f* :]oc " [oc I for each n-ary function symbol f of L, (in
particular an individual (= element) ¢* of]oc] for each constant ¢ of L),

— a predicate P* : Ioc
Pin L.

T {true, fa]se} for each m-ary predicate symbol

f* and P“ are called interpretations of fand P.

A structure for a language L defines a truth-value for each closed
formula (i.e. formula without free variables) of L in the obvious way (see
e.g. [36]). A structure « is a model of a set of closed formulas, if all the
formulas of the set get the value true (i.e. are valid in «). A formula F is
satisfiable, if its negation =1 F is not valid.

Let o be the following structure for a language L without equality:

The universe] o l (the Herbrand universe) is the set of terms built with
the function symbols of L (resp. of L together with the constant ¢, if L
contains no constants (= 0-ary function symbols)). Each function symbol
f1s interpreted by f* with the property: For each term ¢, f*(¢) is the term
f(t). We call such an « a Herbrand structure. If a formula F (in the language
L) is valid in «, then we call @ a Herbrand model of F.

The following version of the Lowenheim Skolem theorem is very useful
for our investigations.

THEOREM. The functional form of a closed formula without equality is
satisfiable iff it has a Herbrand model. .

This theorem can be proved with the methods developed by Léwenheim
[29] and completed as well as simplified by Skolem [38]. The version of
Skolem [37] which uses the axiom of choice, has less connections with this
theorem. Also in Ackermann [2] and Biichi [8] versions of the above theorem
are present. Probably for the first time, Ackermann [1] constructs a kind
of Herbrand model, the other authors use natural numbers instead.

3. SOME NOTIONS FROM COMPUTATIONAL COMPLEXITY
We use one-tape Turing machines and multi-tape Turing machines with

a two-way read-only input tape and, if necessary, a one-way write-only
output tape. The other tapes are called work tapes. The Turing machine

ALTERNATION AND DECISION PROBLEM 143

alphabet I' and the input alphabet X are any finite set of symbols with
> < I'and Be ' — X, where B is the blank symbol.
A language L is a set of (finite) words over a finite alphabet. 2* is the
set of all words over the alphabet .
We write f () if we mean the function f : N — R. This unprecise notation
is standard in computational complexity. In connection with Turing
machines # denotes always | W l, the length of the input word,

f(n) = O0(g (m) means Ic 3Iny Vn = no f(n) < cg (n)

A language L, (over X) is logspace transformable to a language L,
| (over X) via length order g (n), if there exists a function f: Z* — 2* such
B that:

: fwyeL,iff weL; forallweZX¥,

I f(w) l = 0(g (lwl)), and there exists a multi-tape Turing machine
B which computes f, scanning only O (log) tape squares of the work tapes.
: We use the following complexity classes:

DTIME (f (n)) = {L IL is accepted by a deterministic Turing machine
B inat most /(n) steps (for all we 2* with n = |w D}

NTIME (f (n)) = {L IL is accepted by a nondeterministic Turing machine
in at most f (n) steps (for all we L with n =] W D}

DSPACE (f (n) = {L IL is accepted by a deterministic Turing machine
using at most f (n) tape squares on each work tape}

i NSPACE (f(n)) = {L|Lis accepted by a nondeterministic Turing machine
using at most f (n) tape squares on each work tape}

P = U DTIME (c+n"

; c,keN
NP = U NTIME (c+n")
' c,keN
| POLYSPACE = U DSPACE (c+n*) = U NSPACE (c+n")

C,kEN C5k€N

It is easy to see that DSPACE (f (n)) = DSPACE ([c f(n)]) for all
positive constants c¢. This linear speed-up is done by increasing the alphabet
size. The same theorems hold for nondeterministic and alternating (defined
below) Turing machines. In the corresponding theorems for time complexity
(and for one-tape space complexity) ¢ f (n) is replaced by max (n+1, ¢ f (1)),
and they hold if lim »n/f (n) = 0.

A configuration of a Turing machine consists of its state, the position(s)
of its head(s), and the contents of the tape(s).

144 M. FURER

Configurations are described by instantaneous descriptions (ID). An
ID of a one-tape (infinite only to the right) Turing machine with finite tape
contents (i.e. almost everywhere is the blank symbol) is the representation
of its configuration by a word, built from an initial segment of the tape
inscription which contains the non-blank part. In this segment the scanned
symbol s is replaced by (s, ¢), where ¢ is the state of the configuration.

4. ALTERNATING TURING MACHINES

We assume that the reader is familiar with (one version of) deterministic
Turing machines. In nondeterministic Turing machines (see e.g. [3]), the
scanned symbol(s) do not determine a move (new symbol(s) and shift of
head(s)), but a finite set of moves. By choosing any move of this set, the
Turing machine follows a computation path. The nondeterministic Turing
machine accepts, iff at least one computation path leads to an accepting
configuration (i.e. a configuration with accepting state). Chandra and
Stockmeyer [10] and Kozen [24] have extended the concept of non-
deterministic Turing machines to alternating Turing machines [9]. Non-
deterministic machines involve an existential quantification (there exists a
path). Alternating machines are a natural extension involving universal as
well as existential quantification. This extension from nondeterministic to
alternating machines, works for all kinds of abstract machine models, but
we look here only at alternating Turing machines.

Definitions (Automata theory)

Alternating Turing machines have two disjoint sets of states, existential
and universal states. Configurations and successor configurations (reachable
in one move) are defined as for nondeterministic Turing machines, but the

conditions for acceptance are different.
An accepting computation tree of an alternating Turing machine M with
input w is a finite tree 7" whose nodes are labeled with configurations of M

according to the conditions:
a) The root of T is labeled with the start configuration of M with input w.

b) If a node is labeled with a configuration C, then all descendants are
Jabeled with successor configurations of C.

c) Nodes labeled with a non accepting existential configuration have at
least one descendant.

	3. Some notions from computational complexity

