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ALTERNATION AND THE ACKERMANN CASE

OF THE DECISION PROBLEM 1

by Martin Fürer2

Abstract. The Ackermann prefix class is the set of all formulas of
predicate calculus (first order logic without function symbols) with quantifier

prefix 3 3V3 3. This is one of the few prefix classes for which

satisfiability is decidable. Lower bounds for the computational complexity of
this decision problem and the V3 sub-problem are presented. The tool to

get the main result is the alternating Turing machine. An introduction to

alternating Turing machines is given, because they are probably the most

remarkable new subject of automata theory, and are well known only to

computer scientists.

1. Introduction and historical background

From the beginning of this century to the thirties, the problem of
deciding universal validity of first order formulas, moved slowly to the

center of interest of mathematical logic. Especially Hilbert considered it
to be a fundamental problem. As it seemed too hard to solve the decision

problem (or Entscheidungsproblem) in general, the main approach was
to restrict the class of formulas (for which a decision algorithm should work)
by very simple syntactic criteria. An earlier example of this kind of restriction

was the decidability result of Löwenheim [29] for the monadic (only
unary predicate symbols) predicate calculus. Later the main such criterion
was the form of the quantifier sequence for formulas in prenex form (see

[14], [28], [43] for other syntactically defined classes). There is a duality
between universal validity and satisfiability. A closed formula (i.e. a formula
of predicate calculus without free variables) is universally valid, iff its
negation is not satisfiable. Around 1930 the decidability of the satisfiability

x) Presented at the Symposium über Logik und Algorithmik in honour of Ernst Specker,
Zürich, February 1980.

2) This work was supported by the British Science Research Council and by the
Swiss National Fonds.
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problem for closed formulas with the following prefixes has been shown

(3*(V*) stands for finite sequences of existential (universal) quantifiers).

Gödel [16, 17], Kalmar [23], Schütte [33, 34] 3* VV3*

Independent of Ackermann, Skolem [39] solved V3*. Bernays and Schön-
finkel [7] solved the V3 case before.

These results are for predicate calculus without equality. But for the
first two cases, the methods can be extended to predicate calculus with
equality (see [2] or [14]). Dreben has discovered that the same extension
is not obvious in the Gödel-Kalmar-Schütte case. Dreben's conjecture that
this case might be more difficult with equality was supported by Aanderaa
and Goldfarb with various examples. Recently Goldfarb [18] (see also [14])
has shown this case not to be primitive recursive. It is not known, if it is
decidable.

It took a long time to prove that for predicate calculus without equality
the subclasses of 3* V* and 3* VV3* are the only decidable prefix classes.

The major steps in this direction were: Church [12] showed that the predicate

calculus is undecidable. Turing [41] gave a more direct proof of this
fact using Turing machines. So in the thirties, it was known that not all
prefix classes allow an algorithmic solution. Undecidability results have
been obtained by several researchers for prefix classes containing prefixes
of arbitrary length (see [2, p. 61]). The gap was narrowed by Suränyi [40]
who showed that the prefix classes obtained from VV3 a VVV are
undecidable. Here the refined classification according to conjunctions of
formulas in prenex form is used. The formulas of the class VV3 a VVV
allow a straightforward transformation to formulas of both the prefix classes

VVV3 and VV3V. With an elegant proof Büchi [8] showed the

undecidability for 3 a V3V. Wang [43, 44] has invented several versions of
domino problems. They represent an intermediate step between computations

and formulas. Infinite computations are technically harder to
describe by formulas, than the corresponding domino problems. Using
dominoes, Kahr, Moore and Wang [22] got rid of the additional 3 (which
seemed necessary to describe a start configuration) and showed the

undecidability of V3V. With this result, the decidability problem for all
prefix classes was solved. The undecidability of V3 a VVV follows as a

corollary, and all other undecidability results in the refined classification

Bernays and Schönfinkel [7]

Ackermann [1]

3* V*
3* V3*
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follow immediately [8], while all decidable classes are contained in the

classes of the form

3*V* A 3* V* A A 3* V*
or

3*VV3* A 3*VV3* A A 3*VV3*

At the same time, as these purely syntactically defined subclasses of the

predicate calculus have been investigated, many decidability and un-

decidability results for mathematical theories (i.e. for classes of sentences

that are not selected primarily from a syntactical point of view) have been

obtained.
In recent years many researchers have investigated the computational

complexity of decidable theories. But very few have looked at this problem
for syntactically (in the above vague sense) defined sets of formulas, except

for propositional calculus. One of these few is Kozen [25] who got the

surprising result that predicate calculus without negation is TVP-complete.

The other is Lewis [27] who has investigated the computational complexity,
just of the (above defined) decidable prefix classes and the monadic predicate

calculus. (The latter was investigated before by Rackoff [31].) The work
of Asser [4], Mostowski [30], Bennett [5], Jones and Selman [21], and of
Christen [11] about spectra is related to this field.

The reason, why the computational complexity of these problems is of
interest is not that we would like to know how many hours we have to spend,
in order to decide if a certain formula is satisfiable. It is very much the

same, as the logicians have not been interested to use their decidability
results to decide for many formulas, if they are satisfiable. Nevertheless
the decidability problem was considered to be a fundamental question of
deep mathematical significance. In the same sense, we claim that the precise
asymptotic computational complexity of a natural class of formulas is a

fundamental mathematical property. Naturally this does not mean that
complexity results are of no importance for the computational practice.
But at least some results (mostly huge lower bounds) are not so directly
applicable. What they can do, is to improve our understanding of the
investigated problem, show connections to other problems, and give us
hints for a better understanding of the reasons for the complexity of certain
problems, and for the different qualities of complexity.

From a practical computational point of view, the deterministic time
complexity is certainly the most important complexity measure. But other
measures have been developed, such as nondeterministic and space measures
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and certain more complex measures concerning alternating Turing machines.
The claim that the computational complexity is an important mathematical
notion is supported by the fact that natural problems are in nice complexity
classes.

Lewis [27] has given good complexity bounds for the decidable prefix
classes of the predicate calculus. The largest gap is in his result about the
Ackermann class 3* V3*. Lewis claims an upper deterministic time bound
cn/i°gn. His lower bound is polynominal space. Naturally he conjectures that
the lower space bound is the correct bound, as problems containing quantifiers

do not tend to have good deterministic time bounds. And in any case,
there are very few problems known with good deterministic time bounds.
The usual method to prove lower time bounds is to describe Turing machine

computations. So just as well a nondeterministic Turing machine can be

chosen, yielding even a nondeterministic lower time bound.
But there are a few methods to prove deterministic lower time bounds,

using tools of automata theory, namely the auxiliary pushdown automaton
of Cook [13], or the auxiliary stack automaton of Ibarra [20], or the
alternating versions of them, investigated by Ladner, Lipton and Stockmeyer
[26], or the alternating Turing machine. The latter seems to be the most
interesting, but so far it has not had too many applications. And most
applications are to problems involving games or sequences of quantifiers
with an unbounded number of quantifier alternations. We apply alternating
Turing machines to get a c"/log n deterministic lower time bound for the
Ackermann case of the decision problem. This is an application of
alternating Turing machines in a new field, where it is not obvious that this tool
can be successful.

Here is a summary of the rest of this paper. In the next section a short

presentation of some notions from logic, and in section three from
computational complexity is given. In section four, the alternating Turing
machine is introduced.

In section five, a transformation from the full Ackermann class to the

monadic Ackermann class is described. This is a good transformation for
the classes 3^ V3* (only p existential quantifiers in front of the universal

quantifier) with constant p. But for the class 3* V3* this transformation
is via length order n2/log n instead of n. It is not clear, if a better
transformation exists. Alternating Turing machines can test the satisfiability
of 3* V3* formulas more directly than deterministic Turing machines.

They are used here to get the optimal upper bound of Lewis [27] for the
monadic case, because with alternating Turing machines a polynomial
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space upper bound for the 3* V3 subcase is obtained at the same time. It
is easy to see that the class 3 * V is TVP-complete.

Section six contains the main result, namely the c"/log " lower bound for
the V33 case, and also a tight lower bound for the V3 case, as well as

some NP-complete problems. In the last section are some conclusions.

2. Some notions from logic

The formulas of first order logic (see e.g. Shoenfield [36]) are built
from:

— variables y9 xl9 x2, zl9 z2i

— function symbols f9g9fL9fR9fl9f2,
(we use c, cl9 c2, for 0-any function symbols, i.e. constants)

— predicate symbols P9Pl9Pl9 (and other capitals)

— auxiliary symbols

— equality symbol

— propositional symbols a v —i,
— quantifiers V, 3

We use F[x/t] to denote the result of the substitution of the term t for
the variable a in the formula F.

A formula Q1 x1 Q2 x2 Qn xn F0 with Qt quantifiers (for i 1,...,/?)
and F0 quantifier-free is in prenex form. F0 is called the matrix of the
formula.

We are investigating decision procedures for formulas of first order
logic without equality and without function symbols. But we use the
functional form of formulas.

The functional form of a formula in prenex form is constructed by
repeatedly changing

\/xl\/x2 \/xn3y F (F may contain quantifiers) to

Vxi Vx2... Vx„ F [y/fiOq,*„)]
using each time a new n-ary function symbol ft until no more existential
quantifiers appear.

A formula is satisfiable, iff its functional form is satisfiable. In addition,
both are satisfiable by structures of the same cardinality.
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We use a, a' to denote structures. A structure oc for a first order language
L consists of :

— a nonempty set ] oc | (the universe of a),

— a function /a : | a |n -» | a | for each n-ary function symbol / of L, (in
particular an individual element) ca of |a | for each constant c of L),

— a predicate Pa : | oc |" -> {true, false} for each w-ary predicate symbol
PinL.
fa and Pa are called interpretations of/ and P.

A structure for a language L defines a truth-value for each closed
formula (i.e. formula without free variables) of L in the obvious way (see

e.g. [36]). A structure a is a model of a set of closed formulas, if all the
formulas of the set get the value true (i.e. are valid in a). A formula F is

satisfiable, if its negation —i F is not valid.
Let a be the following structure for a language L without equality:
The universe | a | (the Herbrand universe) is the set of terms built with

the function symbols of L (resp. of L together with the constant c, if L
contains no constants 0-ary function symbols)). Each function symbol

/ is interpreted by fa with the property: For each term t, fa (t) is the term

/(*). We call such an a a Herbrand structure. If a formula F (in the language

L) is valid in oc, then we call oc a Herbrand model of F.

The following version of the Löwenheim Skolem theorem is very useful
for our investigations.

Theorem. The functional form of a closed formula without equality is

satisfiable iff it has a Herbrand model.

This theorem can be proved with the methods developed by Löwenheim
[29] and completed as well as simplified by Skolem [38]. The version of
Skolem [37] which uses the axiom of choice, has less connections with this
theorem. Also in Ackermann [2] and Büchi [8] versions of the above theorem

are present. Probably for the first time, Ackermann [1] constructs a kind
of Herbrand model, the other authors use natural numbers instead.

3. Some notions from computational complexity

We use one-tape Turing machines and multi-tape Turing machines with
a two-way read-only input tape and, if necessary, a one-way write-only
output tape. The other tapes are called work tapes. The Turing machine
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alphabet T and the input alphabet 1 are any finite set of symbols with

I c r and Be T - I, where B is the blank symbol.

A language L is a set of (finite) words over a finite alphabet. I* is the

set of all words over the alphabet 1.

We write/(n) if we mean the function/ : N -* R. This unprecise notation

is standard in computational complexity. In connection with Turing

machines n denotes always | w |, the length of the input word,

f (ri) O (jg (ri)) means 3c 3n0 \/n > n0 f (ri) < c g (ri)

A language L1 (over T) is logspace transformable to a language L2

(over I) via length order g (ri), if there exists a function / : Z* such

that:

/ (w) e L2 iff w e L1 for all w e T*,

\f(w)\ 0(g(\w\))9 and there exists a multi-tape Turing machine

which computes f scanning only O (log ri) tape squares of the work tapes.

We use the following complexity classes :

DTIME (/ (ri)) {L\L is accepted by a deterministic Turing machine

in at most / (ri) steps (for all w e I* with n | w j)}

NTIME (/ (ri)) {L IL is accepted by a nondeterministic Turing machine

in at most / (ri) steps (for all w e L with n | w |)}

DSPACE{f (rij) {l\L is accepted by a deterministic Turing machine

using at most/ (ri) tape squares on each work tape}

NSPACE / (ri)) [L I L is accepted by a nondeterministic Turing machine

using at most/ (ri) tape squares on each work tape}

P U DTIME (c + nk)
c,ke N

NP U NTIME (c + nk)
c,ke N

POLYSPACE U ESPACE (c + nk) U NSPACE(c + nk)
c,ke N c,ke N

It is easy to see that DSPACE (/ (ri)) DSPACE ([c /(«)"]) for all
positive constants c. This linear speed-up is done by increasing the alphabet
size. The same theorems hold for nondeterministic and alternating (defined
below) Turing machines. In the corresponding theorems for time complexity
(and for one-tape space complexity) cf (ri) is replaced by max (n+l,cf (ri)),
and they hold if lim njf (ri) 0.

A configuration of a Turing machine consists of its state, the position(s)
of its head(s), and the contents of the tape(s).
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Configurations are described by instantaneous descriptions (ID). An
ID of a one-tape (infinite only to the right) Turing machine with finite tape
contents (i.e. almost everywhere is the blank symbol) is the representation
of its configuration by a word, built from an initial segment of the tape
inscription which contains the non-blank part. In this segment the scanned

symbol s is replaced by (s, q), where q is the state of the configuration.

4. Alternating Turing machines

We assume that the reader is familiar with (one version of) deterministic

Turing machines. In nondeterministic Turing machines (see e.g. [3]), the
scanned symbol(s) do not determine a move (new symbol(s) and shift of
head(s)), but a finite set of moves. By choosing any move of this set, the

Turing machine follows a computation path. The nondeterministic Turing
machine accepts, iff at least one computation path leads to an accepting
configuration (i.e. a configuration with accepting state). Chandra and

Stockmeyer [10] and Kozen [24] have extended the concept of non-
deterministic Turing machines to alternating Turing machines [9]. Non-
deterministic machines involve an existential quantification (there exists a

path). Alternating machines are a natural extension involving universal as

well as existential quantification. This extension from nondeterministic to
alternating machines, works for all kinds of abstract machine models, but
we look here only at alternating Turing machines.

Definitions (Automata theory)

Alternating Turing machines have two disjoint sets of states, existential
and universal states. Configurations and successor configurations (reachable
in one move) are defined as for nondeterministic Turing machines, but the

conditions for acceptance are different.

An accepting computation tree of an alternating Turing machine M with

input w is a finite tree T whose nodes are labeled with configurations of M
according to the conditions :

a) The root of T is labeled with the start configuration of M with input w.

b) If a node is labeled with a configuration C, then all descendants are

labeled with successor configurations of C.

c) Nodes labeled with a non accepting existential configuration have at

least one descendant.
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d) If C is a successor configuration of a universal configuration C, and a

node N is labeled by C, then at least one descendant of N is labeled

with C'.

e) All leaves are labeled with accepting configurations.

The language L (M) accepted by an alternating Turing machine M is

the set of all words w, such that there exists an accepting computation tree

of M with input w.

Hence a nondeterministic Turing machine is an alternating Turing
machine with only existential states.

A very intuitive way of looking at alternating Turing machines is: Two

players A and E make moves (maybe not strictly alternating) beginning
in the start configuration of M with input w. Player A moves from universal

configurations, and E from existential configurations to successor

configurations. E wins if (after finitely many moves) an accepting configuration
is reached. The input w is in L (M) iff E has a winning strategy.

One might first think alternating Turing machines accept all arithmetic
sets and even more. But naturally, exactly the recursively enumerable sets

are accepted by alternating Turing machines, because every deterministic
Turing machine is an alternating Turing machine, and alternating Turing
machines can easily be simulated by deterministic Turing machines.

What goes wrong if we want a player (A or E) of an alternating Turing
machine to choose any natural number, is that this player could decide for
ever that he wants to choose an even bigger number (computation trees
have only finite branching).

The situation changes drastically if Turing machines do not accept by
entering one accepting state, but by infinitely often entering accepting
states. Then nondeterministic Turing machines accept exactly the T^-sets
of the analytical hierarchy, while deterministic Turing machines accept
exactly the 17°-sets of the arithmetical hierarchy. (It is not known, if the
sets accepted by alternating Turing machines in this way have such a nice
characterisation.) This remark is just to indicate that automata theory
might be useful for non-recursive sets too.

Alternating Turing machines are important for several reasons. First
they are a very natural extension of nondeterministic Turing machines, and
they are closely related to the fundamental concept of quantifiers. Second
they are a basic model of parallel computation, which is of growing
importance with modern technology. And third, there are beautiful relations
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between the power of time and space bounded versions of ordinary and

alternating Turing machines. Some versions of alternating Turing machines
with restricted alternating power (see Berman [6], Ruzzo [32]) are able to
bridge the gaps between deterministic and nondeterministic time and space
complexity classes. And the problems about the relation of these classes

(e.g. P NP1 P — POLYSPACE']) are still the most challenging open
questions in computational complexity.

Definitions Complexity)

ATIME (T (u)) is the class of languages L accepted by alternating Turing
machines M, such that for each input w, there exists an accepting computation

tree (of M with input w) of depth < T(n) (for n — | w |) if weL,
and there exists no accepting computation tree if w £ L.

ASPACE (S (n)) is the class of languages L accepted by alternating
Turing machines M, such that for each input w, there exists an accepting
computation tree (of M with input w), whose labels are S (rc)-space bounded

configurations (for n — | w |) if w e L, and there exists no accepting computation

tree if w $L. (A configuration is S^-space bounded if at most
S (n) tape squares on work tapes are used.)

The fundamental complexity relations between alternating and non-
alternating Turing machines are (Chandra and Stockmeyer [10], Kozen [24]) :

For S (n) > n

ATIME (S (n)) ç DSPACE (S (n))
and

NSPACE (S (n)) <= ATIME (S (n)2)

For T (n) > log n I

ASPACE (T{n)) U DTIME (cT(n))
c > 0 j

We sketch the proof of DTIME (cr(n)) ^ ASPACE(T(n)), because we j

use this fact for the complexity result about the Ackermann case. j

Let Ct s be the s-th symbol in the ID (instantaneous description) of the

configuration at time t, of a cT(n) time bounded deterministic one-tape

Turing machine M with input w. The computation of M is simulated
backwards.

Player E says, M accepts w by entering the accepting state qa at time t
with headposition st. And to prove this, he presents t — I, at_±, bt_ \

ct_1 and s Sf-i (t—\ and s in binary), claiming that Ct„XtS-x <L_i,
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Ct-i,s ^f-i and Ct-±,s+1 G-i- (Naturally these values must imply
the state qa and the headposition st at time t.) Now player A is allowed to
doubt one of these three claims, by playing the integer s' e [s — 1, s, s + 1},
and player E has to justify his claim for Cf_1>s, by claiming values for
Ct-2f s'-i, Q-2,s' and Ct-2,sf+i which imply his value for Ct^1 etc.

Finally the value claimed for C0s» is checked by comparison with the
V~th input symbol. If it is correct, then player E, otherwise player A wins.

If w is accepted by M, then the winning strategy for player E is to make

always correct claims. If w is not accepted by M, then player A has a

winning strategy. He always doubts one of the wrong claims of player E.

5. Upper bounds

Proposition. 1. For all p > 0, the 3PV3* class is logspace
transformable to the monadic 3 V3 * class via length order n.

2. The 3 * V3 * class is logspace transformable to the monadic 3 * V3 *
class via length order n2/log n.

Proof The main ideas of this proof are due to Lewis [27, Lemma 7.1]
and Ackermann [2, Section VIII. 1]. Given a formula F of the class 3P \/3q
with prefix 3xx ...3xp\/y3zl ...3zq and matrix M, let S be the set of
atomic formulas in M. We define the set S' by S' S U {A [y/xj | A e S
and 1 < i <p }

Let S' {Au Ar}.
Then | S'|r<0 + 1) | S |.

Now we change the matrix M of F toget the formula with matrix
M' by replacing (for; 1,r) all occurrences of the atomic formula A}
by Pj(y) (for a new monadic predicate symbol P}) and by adding —as a
conjunct to M—aset Bofbiconditionals.

The set B is constructed to ensure that every Herbrand model a' of the
functional form of the formula F'(withmatrix M') defines immediately a
model a of the functional form of Fby | a | | a' |,

4 4' ck, k -1 (where ck is the replacement of in the
functional forms of F and F'),
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fk !>•••># (where fk(y) is the replacement of zk in the
functional forms of F and F'),

Pa (bl9 bn) Paj (b), if Aj eS',be\ot' |, bl9 bn e | a | and there
exist variables vl9 vn fulfilling for all z, k the following properties:

a) Aj P(yu
b) if vt xk then bt ck,

c) if vt y then bt b,

d) ifv< zfcthenZ>, - ft (b).

P" (bu Z>n) is defined arbitrarily (e.g. false) if no such ^ and b exist.
There might exist several Aj and b having these properties. To ensure that
in this case the definition of P* (bu bn) is correct, i.e. independent of the

particular choice of Aj and b, we conjoin the set B of biconditionals to the

matrix M.
Take any n-tupel (bl9 bn) e | a |". In the following cases, several

Aj e S' and b e | a | might satisfy the conditions a), b), c), d):

1. {bu...,bn} ^
2. There is a b' in {c*,..., c*} such that {Z^...., Z?„} Ç {c*,..., c*,/* (6'),

00}.
3. There is a b" in {Z>1? such that {Z>l5 Z>n} Ç {c", c*, Z>"}.

To make the definition correct in case 1, we add to B the following
biconditionals :

If there is an Aj in S' such that Aj P(vu with \yl9...,
Ç {xl9 xp], we add

Pj(y)^Pj(x1)

If Aj P(vu...,v„) with {v1,...,vn}çandAjly/x,]
Aj, [y/xk] (for Aj / Aj), then we add

Pj(X;)Pj. (xk)

Note : Here the length of the monadic formula might grow quadratically
in p.

To make the definition correct in the case when 2 but not 3 holds, we
add to B for all jj\ i with Aj [y/xL] Aj, [y/xj the formula

Pj(x^PJ, (X).
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To make the definition correct, when 3. but not 2. holds, we add to B the

following biconditional.
For all j,jr, k such that Aj P (v±,..., vn) with

ye{vu,..,vn}s
and Aj [y/zk\ Ar, we add

Pj(zk)~Pr(y)

If both 2. and 3. but not 1. hold, and if there are atomic formulas Ay

and Ay, such that Aj contains y but no variables of (zl5 zqj and

Aj [y/zk] Ay [y/xi], we have to make sure that

Pj'ifïtâ)) =*?(#).
But in this case S ' contains an Ay with

Ay Aj \_yI zk~\

and we have added the formulas:

Pj(zk)^Py(y) (case 3)

and

Py (Xi) Py (xt) (case 2)

Hence

wsrwr» Fj-vï) rfv,')
It is not obvious that the transformation from formula F to formula F'

can be done in logarithmic space, because F might contain variables or
predicate symbols with excessively long indices. But then a simple trick
solves the problem. Instead of writing such an index on a work tape, only
a pointer position number) to its location on the input tape is stored on
a work tape.

If I F j n, then at most O («/log n) different atomic formulas appear
in F (i.e. | S | O («/log «)). The number | S' | of different atomic formulas
in F' is then bounded by c{p+ 1) | S |. Hence the transformation from F
to F' is via length order n for constant p and via length order n2/log n in
general (i.e. for p O (n/log «)).

Problem. Is there an efficient transformation from the 3* V3* class to
the monadic 3* V3* class via length order n

Theorem (Upper bound). The satisfiability of the monadic prefix class
3* V3* is decidable by an alternating Turing machine M in space
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O («/log «). Furthermore M enters no universal states for formulas of the
subclass 3* V3.

Proof Let the input F be the monadic formula

3x1 ...aXpVySzj ...3

with F0 quantifier-free. It is easy to find out if the input has this form or
not. Let F0 contain m different atomic formulas. Then m O («/log «)
for n - I F \.

Let (vlf ...,vp+q+1)be(xu xp,y,zu z4) and let Au be the
atomic formulas Pj (vt) of F0 in lexicographical order according to (i,j).

Tl9 is a sequence of truth values for the atomic formulas. (The
atomic formula Ak is interpreted to be true if Tk true.)

The alternating Turing machine M executes the following satisfiability
test:

Program

1. begin

for all k such that the atomic formula Ak contains an xi9 choose

existentially Tk to be true or false;
for r : 1 to max (19p) do

begin

2. for all k9 k'9 j such that Ak is Pj (y and Ak, is Pj (xr) do Tk : Tr ;

3. for all k9 j such that Ak is Pj (y and Pj (xr) does not appear in Fdo
choose existentially a value of {true, false} for Tk;

4. for counter : 1 to 2W do

begin

5. for all k such that Ak is a Pj (zf) do choose existentially a truth
value for Tk; check that the interpretation of the atomic
formulas Ak (k 1, m) by Tk gives the value true to the

matrix F0, otherwise stop rejecting;

7. if q 0 then goto E\
if q 1 then s : I (i.e. zs zf);
if q > 1 then choose universally a value from (l,..., #} for s;

8. for all k9k'J such that Ak is Pj(y) and Ak> is Pj (zs) do

T, : 7L:
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9. for all k such that (for any j) Ak is Pj (y) and Pj (zs) does not

appear in F do choose existentially a truth value for Tk;

end;

E : end;

stop accepting;
end.

To execute this program, the alternating Turing machine M uses only

space

m to count to 2m,

m to store Tu Tm,

log p < log m to store r,

c log n for anxillary storage, especially to store position
numbers of certain information on the input tape,

e.g. long indices, which are not copied to the work
tapes.

Because m O (n/log n), there is an upper bound O (n/log n) (independent
of p and q) for the space used by M.

We have to show that the above program decides satisfiability of the
formula F correctly.

Let F' y Fq be the functional form of F 3x±... 3xp \/y 3z}
3zq F0, obtained by replacing xt by c{ and zt by ft (y).

a) Let F' (and F) be satisfiable and let a be a model of F'.
We think the program of M extended by:

before 2. b : car

before 8. b : f% (b)

Then good existential choices for the truth values Tk are

if Ak Pj (xd then Tk : P«(c«)

if Ak Pj(y) then Tk : P* (b)

if Ak Pj (Zi) then : P) (/« (b))

The computation tree defined by these existential choices accepts the
formula F.
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b) Assume the alternating Turing machine M accepts the formula F. Then
each minimal accepting computation tree (without unnecessary branches)
of M with input F can be used to construct a Herbrand model a of F'.

Note that the Herbrand universe

I a I {clscp,fl (cj), (f1 ...}

(as a set of terms) and the functions f\, of a possible Herbrand model
of F' are uniquely defined. We have to define the predicates

We look at the program extended by

b : c* (before 2) and

b : /" (b) (before 8) as in a).

All elements of | a | with nesting depth < 2m are assigned to b somewhere

in the accepting computation tree. The current values of the sequence

Tu Tm define some truth values of predicates in cf,..., c^b, f\ (b),...,

f\ (b) by
Tj if

P*(b) Tj if AJ

PUflib)) Tj if AJ

The other truth values of the predicates P* are defined arbitrarily. This
method of defining predicates of b is used on each path in the tree

(| a |>/i> •••>/£)> °nly until the first repetition of all truth values on that
path. That happens on each path in a depth < 2m. Let bf be the node on
the path to b with the same truth values for all predicates as b. Then

(inductively) the predicates are defined to have the same values on the subtree

with root b as on the subtree with root b'. The so constructed structure a is

a model of F.

Corollary 1 (Lewis [27]). The set of satisfiable formulas of the monadic

3* V3* class is (for a constant c > 1) in DTIME (c"/log n).

Proof The alternating Turing machine of the upper bound theorem

can be simulated in deterministic time cn/log n.

The direct construction of a deterministic cn/loë n time decision procedure
of Lewis [27] is easier. He starts with a big structure (with 2m elements,

where m is the number of predicate symbols), and eliminates bad elements

of this structure, to get either a model or the non-existence of a model.
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We have chosen the decision procedure by an alternating Turing
machine to get the following result for free.

Corollary 2. The satisfiable formulas of the monadic 3* V3 class

are in NSPACE («/log n).

Proof The universal states of the alternating Turing machine M which

decides the monadic 3* V3* class are not used for the subclass 3" V3.

If we drop them, we get a nondeterministic Turing machine.

By combining the proposition with the upper bound theorem we get

immediately.

Corollary 3. The satisfiable formulas of the 3* V3* class are

in DTIME (c("/Iog n)2) for some c.

Corollary 4. The satisfiable formulas of the 3* V3 class are in

NSPACE ((«/log«)2).

Lewis [27] claims the same time bound in Corollary 3 as for the monadic

case. But this seems not to work. For example, if P(xuy), P (xp, y)
and P (y, xx), P (y, xp) appear in the formula, then p2 truth values for
Pa (c", (ij — 1, ...,p) have to be guessed.

But these upper bounds are not very good, as e.g. in Corollary 3 the Turing
machine could be replaced by one which works a short time (O ((«/log «)2)

steps) nondeterministically and then only c"/log M steps deterministically.

The 3* V class

Formulas of the 3* V class are transformed by our procedure in
monadic formulas again of the 3* V class. For these formulas, the
procedure of the upper bound theorem works in nondeterministic polynomial
time. On the other hand the 3* V class is certainly more difficult than
propositional calculus. Therefore the set of satisfiable formulas of the
3* V class is TVP-complete. (TVP-completeness is discussed in [15].)

In fact, as the Herbrand models of the satisfiable formulas of the
3P \/q class, have only max (p, 1) elements, it is easy to see that the
satisfiability problem for all the following classes in NP-complete :

a) 3p\fq p+q> 1

b) 3*V* q>0
c) V*
d) 3V*

But the classes 33V*and3*V* need NTIME cn/logn resp. cn.
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6. Lower bounds

Definition. A marked binary number is a word over the alphabet
{0, 0, 1, 7} described by the regular expression (Ou 1 )* 0 1* u 7*. The value

of a marked binary number is given by the homomorphism h with h (0)
h (0) 0 and h (1) h (7) 1, i.e. by disregarding the type of the

digits.

Note : The digits in italics are those which will change their value when
the marked binary number is increased by one.

Marked binary numbers allow the following local tests :

1. A word over the alphabet {0, 0, 1, 7} is a marked binary number, iff
the last digit is in italics and only the following adjacent pairs of digits
occur :

a) 00, 01, 00, 10, 11, 10 (0, 1 or 0 behind 0 or 1), and

b) 01,11 (7 behind 0 or 7).

2. For two right adjusted marked binary numbers x and y with y below x
holds :

value (x) + 1 value (y) iff only the following vertically
adjacent pairs of digits occur:

a) 0 or 0 below 0 or 7 and

b) 1 or 7 below 0 or 1.

Theorem (Lower bound). If a language L is accepted by a linear space
bounded alternating Turing machine M, with at most q successors for each

universal configuration, then L is polynomial time transformable to the set

of satisfiable formulas of the monadic V3^ class via length order n log n.

Proof We can assume that M is a one-tape alternating Turing machine

accepting L in space n + 1 and time 2m — 1 for an m O (n). We describe

the case q 2. To each input w of M, we define (using function symbols

fL and fR) the functional form F (w) of a formula F' (w) of the monadic
V3* class, such that:
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Claim A: w e L iff F (w) is satisfiable.

Before we define the formula F (w), we show how to construct a structure

a from an accepting computation tree, such that a will turn out to be a

model of F(w).
If w is accepted by M, then there is an accepting computation tree CT

with the properties:

— Every node of the tree with depth less than 2m — 1 has exactly two sons,
and every node with depth 2m — 1 is a leaf. I.e. it is a complete binary
tree.

— If the same configuration appears in several nodes, then the correspond¬

ing successor configurations are the same.

Therefore, there are functions succL and succ^, which define the
instantaneous descriptions of the successor configurations in the tree. Furthermore,

we can choose succL and succ^ in such a way that they have the

following property:
For every pair consisting of a state and a scanned symbol, we consider

the possible moves of M to be an ordered set.

If ID is a universal instantaneous description, then succL (ID) is the first
and succR (ID) is the second successor of ID.

If ID is existential, then succL (ID) and succ^ (ID) are arbitrary successors
of ID (typically succL (ID) succR (ID)).

If ID is accepting, then succL (ID) succ# (ID) ID.
Given functions succL and succ^ and an accepting computation tree CT

of depth 2m - 1 with the above properties, we define now the structure a,
such that:

Claim B : a is a model of F(W).

1. The universe | a ] is the set {(/, ID) | * is an integer with 0 < t < 2m - 1

and ID is the instantaneous description of a configuration occuring in a
branch of the computation tree CT of M with input w at time t}.

2. fL (resp. fR) is interpreted by a function mapping (t, ID) for t < 2m - 1

to (t+1, succL (ID)) (resp. (t+ 1, succR (ID))) and (2m- 1, ID) to (0, start
ID for input w). succL (ID) (succR (ID)) is defined to be the
instantaneous description of the left (right) successor configuration of ID.

3. In (t, ID) the monadic predicates are interpreted as follows:
m— 1

Let t Y, bi 2l with bt e {0, 1},
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and let ID a0 ak^1 (ak, q) ak+1 an with cij e I (alphabet) and q e Q 1

(states). I

Then the O (m) monadic predicate symbols By Mj9 Z, Ly, Sp, Taj
with je {0,..., m - 1}, j' e (O,..., n}, p e Q and a el are interpreted as

B°j ((t, ID)) is true iff bj 1

M* ((t, ID)) is true iff bj 1 for all i < j, i.e. bj is marked

Za ((f, ID)) is true iff bt 0 for all i
Ly ((t, ID)) is true iffy" k

((t, ID)) is true iffp q

Tly ((t, ID)) is true iff ar a

We now define the formula F (w) and add some remarks about the intended

meaning of its subformulas. This makes it obvious that claim B holds.

F(w) is the formula

VylFh (}>) a Fv(y,fL(y))a Fv (y,fR(y)) a F0 (y) a

a Fw(y)a Fl (y,fl00)a Fr (y,f r (y)) a Fa (v)]
where

a) Fh (y) is /\ [Mi+ (y) <-> (Mj (y) a Bj (y))] a M0 (y)
0^j^m — 2 j.

The intended meaning is :

All binary numbers are correctly marked. (H stands for horizontal
condition.)

b) Fv(y,z)is//\ [ß,-(z) <->(Mj(y)<-> i Bj (jO)]

The intended meaning is : j

The level number below level number / is / + 1. (V stands for vertical j

condition.) f

C) F0 (y)is [ /\ I Bj (y)] z (y)
O^j^m-1 j

The intended meaning is :

The configuration at level 0 is distinguished by Z.

d) Fn(y) is '[ /\ /\ —i (7V, (y) a (y))]
0 ^ j ^ n a, a' e 2

a =£ <s'

A [ /\ I (Sq (>') A Sq, (>'))]
g.g'eß

q * q'
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The intended meaning is:

For every configuration there is at most one symbol in every tape cell, and

the Turing machine is in at most one state.

e) Fw (y) is Z 00 - [ /X T j 00 a (y) a /\ I Lj(y)a Sqo ]
O^j^n 1

where a0 an is wb (the input w extended by a blank endmarker B),
and q0 is the start state of M. This is the only subformula of F (w) depending
not only on n J w |, but also on w. Its intended meaning is:
The distinguished configuration at level 0 is the start configuration.

f) Exactly as for nondeterministic Turing machines, it is possible to check if
IDx is a successor of ID0 by writing IDt below ID0 and checking all 6-tuples
seen through a window of length 3 and height 2 which is pushed over the

two words, and by checking that no head of the Turing machine walks
in or out of the tape portion represented by the instantaneous descriptions.
In this way, we check

— for universal ID0, if the left son is labeled with succL (ID0) and the

right son is labeled with succ^ (ID0);

— for existential ID0, just if both sons are labeled with any successors;

— for accepting ID0, if both sons are labeled with ID0.

It is easy to construct a formula Pf (p, z) (Pf (p, z)) expressing the window
condition at the positions j, j + 1, j + 2 for the ID's in node p and in its
left (right) son z.

Pj (p, z) and Pf (p, z) are built from the atomic formulas

SP (y)> sp (z) for P e Q

and Ly (y),Lr (z) for f' j,j + IJ + 2

and Tar (p), Tar (z) for./' j,j + l,y + 2 and a el.
The length of Pf (p, z) and Pf (p, z) are bounded by a constant times the
maximal length of the atomic formulas.

For D L and D R,

Fd O, z) is Z(z)v [ /\ p® z)
0^j^n-2

a (Lq (z) -» (L0 (y) v Lt (j;))) a (L„ (z) (L„_ (y) v L„ (>•)))!
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g) FA(y) is [Bm_1(<y) a Mw_! (y)] V Sq(y)

Qa is the set of accepting states of M. The intended meaning of FA (y)
is:

At the deepest level 2m — 1, all branches of the computation tree accept.

Now the formula F (w) is defined, and for w eL it should be clear that
F (w) is satisfiable and has the model a.

We still have to show the other direction of claim A. If F (w) is satisfiable,
then w eL. Let a be a model of F(w). In a the formula

Vj[F,](y)A Fv(y,fL(y)) a

is valid. Hence for all be| a|a level number I (b) is defined by the in-
terpretation of the predicate symbols Bj in a. The level numbers have
the property

I (f1(b)) l{faR{b)) I (b) + 1 mod 2m

Therefore (as | a | is non-empty), there are elements of all levels mod 2m,

in particular, there is an element b0 of level 0.

Because Vy [F0 (y) a Fw (j^)] is valid in a, the truth values of the predicates

Lp SI and Taaj in b0 encode the start configuration of the alternating
Turing machine M with input w.

Let I a I' be the subset of | a | which is accessible from b0 by several
applications offI and fR. Then the validity of

Vy|~Fv{y) a FL(y,fL(y))afR(y,/Ä(y))]
in a ensures that the predicates L", S"p and Taa j define for all e | a |' a

unique instantaneous description ID (b) such that ID fL (b)) is a left
successor of ID (b), and ID (/R (b)) is a right successor of ID (b).

Finally, the validity of \/yFA(y) guarantees that the computation tree
is accepting.

It is easy to check that F (w) contains only O (n) atomic formulas, each

of length O (log/?). Therefore |F(w)| O (ft log ft). It is also obvious
that the formula F' (w) and its functional form F (w) can be computed from
w in logarithmic space by a Turing machine. Note that most parts of F (w)

depend only on n | w |.

Corollary 1. There is a c > 1 such that no deterministic Turing machine

accepts the satisfiable formulas of the monadic V33 class in time O (e"/log ").
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Proof. By standard diagonalization arguments, there is a language L
in DTIME (c2) which is not in DTIME (c") for cl < c2 [19].

L is then in ASPACE (;n). Assume Corollary 1 is not true. Then by first

transforming L according to the lower bound theorem to the monadic

V33 class, and then accepting this language fast, L could be accepted in

deterministic time c".

Corollary 2. For every nondeterministic Turing machine M which

accepts the satisfiable formulas of the monadic V3 class, there exists a

constant c, such that M uses space cn\log n for infinitely many inputs.

Proof. We use the hierarchy result for NSPACE [35] and the fact that

an alternating Turing machine with only one successor configuration for
each universal configuration, is a nondeterministic Turing machine.

Conclusions

Alternating Turing machines are a powerful tool in the few areas where

applications have been found so far. They can make connections visible,
which are not seen otherwise. It seems impossible to find the lower bound
for the Ackermann case of the decision problem, without knowing
alternating Turing machines. Even knowing the result, a direct description of
the computation of a deterministic exponential time bounded Turing
machine M by a 3* V3* formula, without obviously copying the simulation
of M by an alternating Turing machine, seems impossible.

We are used to think that nondeterministic machines correspond
to existential quantifiers (e.g. satisfiability in propositional calculus), and
that alternating machines correspond to a sequence of alternating quantifiers
(e.g. quantified boolean formulas, i.e. the theory of {0, 1} with equality).
This paper shows that this needs not always to be the case.

Examples

1. Not only the satisfiability problem of the 3* class, but also of the
V* class is AP-complete (not co-AP-complete).

2. Adding an existential quantifier to the V prefix class, means moving
from a time to a space complexity class.
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3. Adding another existential quantifier to the V3 prefix class means

moving from a nondeterministic (space) to a deterministic (time)
complexity class.

One possible continuation of this work, is to investigate the complexity
of the decision problem for formulas with simple quantifier patterns in
decidable theories. For most of the decidable theories, huge lower bounds

are known, because a class of formulas with so many quantifier
alternations, that they hardly appear in practice, is shown to be difficult to
decide.
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