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Ruzzo shows the above result still holds when UE is replaced by U,

provided S > L2.

From their definition, ATM's appear to model a restricted form of
parallel computation, because the "processors" in the model are restricted

to be Turing machines, and they must be organized in the form of an

and-or-tree. This makes Theorem 2.5 all the more interesting. On the other

hand, ATM's are more pleasing in one way than circuit families, because

there is no question of how to define uniform. Each ATM is automatically
uniform. In fact, ATM's may be the best candidate proposed so far for
defining parallel time, at least in the fixed structure category. But this
remains to be seen. The one clear drawback of ATM's is that they do not
seem to have any resource that corresponds to hardware size (see section 4).

3. Log Depth vs Log Space

As far as we know, the second inclusions in Theorems 2.2 and 2.4

cannot be improved, even when NSPACE is replaced by DSPACE. (Of
course an improvement for NSPACE would improve Savitch's theorem.)
Taking S (n) log n as the most basic case, it is interesting to look for
examples of sets in DSPACE (log n) which do not appear to be in
DEPTH (log n). Addition of n «-digit binary numbers, and multiplication
of two «-digit binary numbers both can be done in O (log «) circuit depth
(see [S3]), as can sorting « «-digit binary numbers (see [MP]). On the other
hand, the "cycle free problem" is in DSPACE (log «) but does not appear
to be in DEPTH (log «).

Definition. The cycle free problem (CFP) is the set of all binary codes
for symmetric Boolean N x N adjacency matrices A of undirected cycle-
free graphs.

One can define functions /: {0,1}* -> {0,1}* computable in depth S

(or uniform depth S) using circuits with several outputs. We say A± is
log depth reducible to A2 (respectively uniformly log depth reducible) iff
there is some function / computable in depth O (log n) (respectively
uniform depth O (log «)) such that w e A± iff/(w) e A2, for all w. We say A
is log depth complete for the class Sf iff A e and every A7 e Sf is log
depth reducible to A. The uniform case is defined similarly. The main
ideas in the proof of the following result appear in Hong [H2].
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Theorem 3.1. (a) CFP is uniformly log depth complete for
DSPACE (log n).

(b) CFP is log depth complete for DSPACE (log n)

(NONUNIFORM).

Corollary (a) DSPACE (log n) UDEPTH (log n) iff
CFP e UDEPTH (log n).

(b) DSPACE (log n) (NONUNIFORM)
DEPTH (log n) iff CFP e DEPTH (log n).

We note that because UDEPTH (log n) ç DEPTH (log n), the first
equation in the Corollary implies the second. This fact does not seem to
be obvious without using the CFP.

To prove CFP e DSPACE (log ri), Hong devised an algorithm for
moving several pebbles around the input graph in an attempt to do a depth
first search of each of its components. To prove that every

A e DSPACE (log n)

is uniformly log depth reducible to CFP, one can, given an input w, define

a graph whose nodes are ^ x {0, 1, T}, where ^ is the set of possible
configurations of the Turing machine M with input w, where M accepts the

complement of A in space O (log n), and T is an upper bound on the

computation time. Two nodes (c, t) and c\ t') are adjacent iff either c cr

in one step and t' t + 1, or c' -> c and t t' + 1. If we let c0 be the

initial configuration and cf be the unique accepting configuration, then we
also add an edge between (c0, 0) and (cf9 T). Using the fact that M is

deterministic, it is not hard to see that M accepts w iff the graph has a cycle.

A second example for which theorem 3.1 applies is GAP1 : the graph
reachability problem for directed graphs of outdegree one. The completeness
of GAP1 for DSPACE (log n) is proved for reducibilities other than log
depth in [J] and in [HIM]. The proof of theorem 3.1 for GAP1 is easier

than for CFP.
The following example is interesting, because it is complete for

nonuniform log n space, but no one knows how to solve it in uniform log n

space.

Definition. The undirected graph reachability problem (URP) is the

set of codes of symmetric adjacency matrices of graphs with nodes

{1, 2,..., N} with a path from node 1 to node N.
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Theorem 3.2. URP is log depth complete for DSPACE (log «)

(NONUNIFORM).

That URP e DSPACE (log «) (NONUNIFORM) follows from the

existence of a short universal covering string for all «-node undirected

connected oriented graphs of fixed degree (see [AKLLR]). The reducibility

proof is similar to the above argument.
Many interesting problems have O (log2 «) as the best known upper

bound for both deterministic space and uniform depth. It is interesting to

try to reduce these to each other via log depth or uniform log depth
reducibility, so as to cut down the number of equivalence classes of problems
classified by their depth complexity. For example, the directed graph
reachability problem (GRP) is well known to be log space complete for
NSPACE (log «) (see [HU]). In fact, it is also uniform log depth complete
for NSPACE (log n). Two other examples are finding the integer part of
the quotient of two «-digit binary numbers, and raising an «-digit number
to the power «. The best known upper bound for both problems for both

space and depth is O (log2 «). Hoover [HI] shows that each is log depth
reducible to the other, although one of the reductions is not uniform. As
a matter of interest, Hoover also points out that the base conversion problem
(say converting binary notation to ternary) is in nonuniform depth
O (log «) (because the powers of two in ternary can be built in), but the
best space upper bound and uniform depth upper bound is O (log2 «).

4. Conglomerates and Aggregates

I Uniform circuits and ATM's are good models for measuring parallel
I time, but neither is right for measuring the second important resource
j mentioned in the introduction, namely hardware size. What is needed is to
I allow circuits to have cycles. Goldschlager's conglomerates [Gl] satisfy this
j requirement. Briefly, a conglomerate is an infinite collection {M0, M1?...,}
j of identical deterministic finite state machines connected together in some
j manner. Each machine has r > 1 inputs and one output, and the connection
j function / specifies for some inputs of some machines the output of which

machine it is connected to. (Inputs left unconnected receive some fixed
symbol b.) Cycles are allowed in the connection graph. Initially at time O,
the first « machines Ml5 M„ store the symbols of the input string
wx w2 ••• and all other machines start in the initial state q0. At sub-
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