
1. Introduction

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 27 (1981)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 29.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



TOWARDS A COMPLEXITY THEORY
OF SYNCHRONOUS PARALLEL COMPUTATION

by Stephen A. Cook 1)

Abstract. This is largely an expository paper on the general theory of
synchronous parallel computation. The models of parallel computers
discussed include uniform circuit families, alternating Turing machines,

conglomerates, vector machines, and parallel random access machines.

A classification of these models indicates the need for still more; so "aggregates"

and "hardware modification machines" are introduced. The

resources sequential time, space, parallel time, circuit size and depth,
hardware size etc., are discussed and interrelated. Work in progress at
Toronto is mentioned and basic open questions are listed.

1. Introduction

There is now a well developed computational complexity theory of
sequential computation. The precisely "right" computer model is not
completely clear, but the main contenders for this model do not differ
markedly from each other in their computing efficiency. These contenders

are multitape Turing machines, possibly with storage structures more
general than linear tapes, and various versions of random access machines.

Of these models, the storage modification machine (SMM) made popular
by Schönhage [S2] carries the most conviction as a stable and general model
of a sequential computer; where we take sequential to mean the number of
active elements is bounded in time.

To be sure, there is a feeling that one step of an SMM may be a little
too powerful. It is hard to imagine a mechanism for reconnecting a given
edge out of a node vt in the storage structure to a node v2 in one step, when
the candidates for v2 from the perspective of the whole computation are
unlimited. But the fact remains that if we restrict ourselves to fixed storage

*) Presented at the Symposium über Logik und Algorithmik in honour of Ernst Specker,
Zürich, February 1980.



100 S. A. COOK

structures, there is no single structure or class of structures which seems

to be just right. (Certainly multitape Turing machines are too restrictive.)
On the other hand, for random access machine models one is never quite
sure which set of operations should be primitive, and whether to charge
more than one time unit for an operation capable of manipulating
arbitrarily large integers.

Whatever the sequential model, it is clear that the main resources of
interest are time and space. Let me repeat that the differences among the

leading models in the time and space needed to execute algorithms are
minor. And the theory of sequential time and space complexity is a rich
and interesting one.

In the past few years it has become increasingly clear that the most
powerful computers of the future will not be sequential but parallel. An
entire processor can now be placed on a VLSI chip that is so small and

cheap that it is not hard to imagine a machine of the future consisting of
millions of such processors connected together and operating synchronously.
The questions then become: How should the machine be organized and
what can be done with the result? Hence the need for a theory of parallel
computation. (A second motivation, of course, is that the human brain

appears to be a parallel computer.)
I should point out here that the theory I have in mind deals only with

synchronous computers. There is indeed a great and interesting literature
on asynchronous processes, and the theory has applications when the
processes in question cannot easily be synchronized (such as distributed

computer systems or operating systems). The theory discussed here assumes

one parallel computer whose elements have been designed from scratch

to operate synchronously.
The first problem in this theory is to find the right mathematical model

of a parallel computer. The parallel models in the literature fall roughly
into two classes: those with fixed structure and those with modifiable
structure. The fixed structure parallel models correspond to sequential
machines with fixed storage structure, namely Turing machines with
"tapes" which may be more general than linear arrays, but cannot be

modified. The parallel analogs of these include Borodin's uniform circuit
families [Bl], Goldschlager's conglomerates [Gl], [G2], and Hoover's
uniform infinite circuits [HI].

The modifiable sequential machines include SMM's and random access

machines (RAM's). (Indirect addressing in a RAM gives the effect of a

modifiable storage structure, and in fact RAM's which can only add and



SYNCHRONOUS PARALLEL COMPUTATION 101

subtract one are equivalent to SMM's [S2].) The modifiable parallel
machines include various parallel RAM's, such as SIMDAG's [Gl] and

P-RAM's [SS] and [FW], as well as vector machines as defined in [PS]. As

yet no parallel analog of SMM's has appeared, but a tentative candidate

is introduced in section 5.

Fortunately, all these models are roughly equivalent from the point
of view of computation time, in the sense that each can simulate another
while at most cubing the computation time. In fact, the sets or functions

computed by each in time S°(1) (i.e. time polynomial in S: this notation

appears in [PI]) are the same as those computed by a Turing machine in
space S°(1) for any well behaved time bound S. (This phenomenon was
observed, for example, in [CS], and called the "parallel computation
thesis" in [Gl].)

This thesis can be made more specific as follows: For the fixed structure
parallel machines ; namely, uniform circuit families, conglomerates, "aggregates"

(see section 4) and uniform infinite circuits (see [HI]),

(1.1) parallel time (S) ç= DSPACE (S) <= NSPACE (S) c parallel time
(S2)

(See [HU] for the meaning of DSPACE and NSPACE.)
On the other hand, the modifiable parallel machines tend to be more
powerful, and the inclusions become (at least for SIMDAG's and the
P-RAM's of [FW]):

(1.2) parallel time (S) c DSPACE (S2) ç parallel time (S2).

(For SIMDAG's, the stronger statement NSPACE (S) ç parallel time (S)
also holds [Gl]).

The modifiable parallel models that have been proposed so far all share
the same problem as the sequential RAM models : The choice of primitive
operations seems arbitrary, and most of these operations (such as shifts
in vector machines and random access to global storage in P-RAM's) seem
too powerful to be primitive. Hence I propose a new modifiable parallel
model: "Hardware Modification Machines" (HMM's), to be the parallel
analog of SMM's. These are discussed in section 5.

Time and space are the fundamental resources in sequential complexity
theory. What are their analogs in the parallel theory? Obviously, parallel
time plays a fundamental role. The second important parallel resource,
I think, should be hardware size; that is, the number of elements of a
machine which are active during a computation. For conglomerates, hard-



102 S. A. COOK

ware size is the number of active finite state machines, and for vector
machines it is the sum of the lengths of the vectors. For SIMDAG's and
P-RAM's it corresponds roughly to the number of processors, although it
should take into account the total memory used. For circuits, the circuit
size is an upper bound on hardware size, but the traditional restriction that
circuits are acyclic disallows elements to be reused during a computation
and hence may give an unrealistically large value for size. Hence "aggregates"

are introduced in section 4. These can be thought of either as circuits
with cycles, or as finite conglomerates.

Section 2 discusses two fundamental fixed structure parallel models;
namely, uniform circuit families and alternating Turing machines. These

turn out to be nearly equivalent. Section 3 gives examples which are log
depth complete for deterministic log space, and hence may distinguish
between two similar classes: deterministic log space and uniform log
circuit depth. Section 4 discusses two fixed structure models useful for
considering hardware size as well as parallel time; namely, conglomerates
and aggregates. Section 5 introduces hardware modification machines, and
section 6 surveys other modifiable parallel models, such as vector machines

and parallel RAM's. Section 7 discusses characterizations and
interrelationships between two complexity classes defined by simultaneous

resource bounds; namely, NC and SC Finally, section 8 lists some open
problems.

2. Circuits and Alternating Turing Machines

Perhaps the simplest model for measuring the parallel time to compute a

function is the combinational circuit (or simply a circuit). (See [S3] and

[P2] for general discussions of circuits.)

Notation. Bn {/| {0, 1}"-* {0, 1}} the set of all Boolean functions

of rank n.

Definition. A circuit oc with n inputs is a finite directed acyclic graph
such that each node has a label from {xu u B0 u u B2. A node

labelled xt must have indegree zero, and is called an input node. A node v

with label g e Bt must have indegree f, and one edge into v is associated

with each argument of g. Certain nodes are designated output nodes. When
the variables xt are assigned values from {0, 1} every node v assumes a

unique value in {0, 1}, so that v computes some function fv of xl9..., xn.

We say the circuit a computes f if/ fv for some output node v.


	1. Introduction

