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DESCARTES, EULER, POINCARÉ,
PÖLYA—AND POLYHEDRA

by Peter Hilton and Jean Pedersen

1. Introduction

When geometers talk of polyhedra, they restrict themselves to configurations,
made up of vertices, edges and faces, embedded in three-dimensional Euclidean

space. Indeed, their polyhedra are always homeomorphic to the two-
dimensional sphere S2. Here we adopt the topologists' terminology, wherein

dimension is a topological invariant, intrinsic to the configuration, and not a

property of the ambient space in which the configuration is located. Thus S2 is

the surface of the 3-dimensional ball; and so we find, among the geometers'

polyhedra, the five Platonic "solids", together with many other examples.

However, we should emphasize that we do not here think of a Platonic "solid" as

a solid ; we have in mind the bounding surface of the solid, not the interior. It
seems to us that geometers are sometimes able to be cavalier about this
distinction (so that, for them, a polygon may be the closed polygonal path or the

homeomorph of a disk), but we will need, in what follows, to be precise about
meanings.

In this article we retrace an interesting historical path in the study of

polyhedra and even carry the story further ourselves—though with modest

expectations! We begin with a result due to Descartes (1596-1650). Let us
consider a convex polyhedron P, homeomorphic to S2. Euclid proved that the

sum of the face angles at any vertex P is less than 2n ; the difference between this
sum and 2n is called the angular defect at that vertex. If we sum the angular
defects over all the vertices of P we obtain the total angular defect A ; Descartes

proved, using methods of spherical trigonometry, that A 4n for every convex
polyhedron P. Thus in Figure 1 (b) there are 8 identical vertices on the cube and

n
the angular defect at every vertex is -, so that the total angular defect A is 4n.

Notice that the polyhedra shown in Figure 2 are not homeomorphic to S2 and
they fail to satisfy the formula.
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Pôlya gave an argument in a lecture at Stanford University on March 6, 1974

(see [1]) to deduce Descartes' theorem, using the fact that the Euler characteristic
of any polyhedron homeomorphic to S2 is 2. Here the Euler characteristic x (P) is

given by the formula

X(P) V - E + F, (LI)

where V is the number of vertices of P, E is the number of edges of P, and F is the

number of faces of P. Thus Polya's proof (which appears in slightly modified

form in [2]) shows that A 2nx and hence A 471 since % (P) 2 when P is

homeomorphic to S2.
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However Pôlya's proof really demonstrates a much more general fact;

namely that

A 2k% (1.2)

I for any 2-dimensional polyhedral manifold *). Thus if S is any rectilinear
jj surface, subdivided into vertices, edges and faces in such a way that every edge is

I incident with exactly two faces, then formula (1.2) holds for S. Of course, we have

\ to interpret A somewhat more generally in the sense that, since we no longer

require convexity, we must allow the angular defect at any vertex to be negative.
I Let us now take S to be any closed surface, orientable or not. Then we may
] find a homeomorphic rectilinear model T of S, and we may compute A (T), % T).
j Since we know that x (T) is a topological invariant of S—a result due to

Poincaré—it follows that A T\ too, is a topological invariant of S, a result which
is surely rather surprising,

j In the next section we give, in its more general setting, Pôlya's proof of the
J relation (1.2), and point to the topological significance of the result. In Section 3

5 we consider analogous formulae for A (P), where P is a polyhedron of dimension
;j greater than 2. Now Schläfli [9] generalized Euler's formula to spheres of higher
;j dimension. He succeeded in demonstrating that if P is a polyhedral subdivision
I of the «-dimensional sphere Sn and ifNt is the number of /-dimensional cells in the
I subdivision, then

I X (P) 2 if h is even,
j (1.3)
j x (P) 0 if n is odd,

where

I
7. (P) t (-1 (1.4)

I i 0

We call this alternating sum (1.4) the Euler-Poincaré characteristic of P and
note that it may be defined for any polyhedron P, of any dimension. Poincaré
[10] proved that % (P) is a topological invariant. This means that if X is any
geometric configuration embedded in some Euclidean space (of arbitrary
dimension) and if P, Q are any two polyhedra, subdivided into cells of dimension

I 0, 1, 2,..., n (vertices, edges, faces,...), such that P and Q are each homeomorphic
I to X, then % (P) x (Q). This result is one of the great triumphs of homology

Here, of course, we use the term "polyhedron" in the more general sense favored by
topologists. Thus a polyhedron, in this broader sense, certainly need not be 2-dimensional ;

I and an n-dimensional polyhedron need not be homeomorphic to an rc-dimensional sphere!
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theory [12, p. 167]. For there are natural numbers p0, pu pn measuring the
number of "holes" in X of dimensions 0, 1,n, and one may show that, for any
polyhedron P homeomorphic to X,

Z(- 1)% *(-1)%. (1.5)

The numbers p0, pu pn are called the Betti numbers of X ; they are the
dimensions of the homology groups of X in dimensions 0, 1,..., n. For an
rc-dimensional sphere Sn, we have

p0 (Sn) pn CS") 1, Pi CS") - 0, i * 0, n ; (1.6)

thus (1.5) and (1.6) explain Schläfli's result (1.3).

For any polyhedron P, we may continue to define the total angular defect

A (P) exactly as in the two-dimensional case. However, A (P) obviously depends

only on the two-dimensional structure of P—its vertices, edges and faces—so

that we cannot expect, for higher-dimensional polyhedra, either that A (P) will be

an invariant or that it will be related to the Euler-Poincaré characteristic.

However, we may still attempt to generalize Poly?'s argument and thus to

express A (P) as a function of Vf E and F (or, in our present notation, N0, N1 and

N2).
We prove in Section 3 that, indeed, A (P) may be expressed in terms of

N0, Nl9 N2, provided only that the cellular structure on P has the property that
there exists an integer q such that every edge of P is incident with exactly q faces.

We give three examples of standard cellular subdivisions of S" with this property.
Reverting to the language of geometers (as exemplified by Coxeter [3]), such

structures on S" are called polytopes, and the three polytopes considered are

called, in [3], respectively simplexes, cross polytopes, and parallelotopes—and
will be so referred to by us. The numbers q in these cases are, respectively

n, In — 2, n. We compute A in these three cases. We remark that the fact that A

is, in these cases, a function of N0, Nu and N2 shows that it is a combinatorial,
rather than a geometric, invariant ; that is, we may pull and push the n-sphere

around, squeeze it, squash it, elongate it, stretch it, without altering A. Once

again our intuition may be at fault!

We close this article with a brief résumé of the history of the question. In this
résumé, as in the article itself, we do not take account of another direction in
which it may be said that formula (1.2) has been generalized—in the direction of
differential geometry. For formula (1.2) contains the seeds of the celebrated
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Gauss-Bonnet formula for smooth manifolds; an excellent account of the

development in this direction is to be found in the article by Chern ([13] ; see

especially formula (4) on p. 343).

2. Polya's proof of Descartes' theorem

We start from the position that Euler's formula for a polyhedral 2-sphere S2 is

known ; that is to say, if P is a polyhedron homeomorphic to S2 with V vertices, E

edges and F faces, then

V - E + F 2. (2.1)

In Figure 1 (a), for example, V 4, E 6, F 4. Thus 4 — 6 + 4 2,

verifying (2.1). Euler's formula is discussed in many elementary books on

polyhedra and many proofs have been given. The book by Courant and Robbins,
What is Mathematics? [4] contains a proof using networks. Polya's book,
Mathematics and Plausible Reasoning, Vol. I, [1], has a sequence of problems
that leads the reader to a proof. Lakatos' Proofs and Refutations [8] is cleverly
written in the format of a dialogue between a mathematics teacher and his

extremely bright students (who continually find counterexamples to the

proposed theorems). The "general" proof must be attributed to Poincaré [10]
who, as explained in the Introduction, proved that the generalized Euler-
Poincaré characteristic is a topological invariant which takes the value 2 on any
even-dimensional sphere.

We now show how Pôlya deduced Descartes theorem from (2.1); this
argument is essentially that given in [2].

Let P be a polyhedron homeomorphic to S2, subdivided into vertices, edges
and faces in such a way that every edge is incident with exactly two faces.

Number the vertices 1, 2,..., V and let the sum of the plane face angles at the i-th
vertex be c^. Then the angular defect at the i-th vertex is

Si — 2K — ot.

Note that ôf will be positive if P is convex, but that, in general, ôf may be negative
or zero. Let

A Z 5;
i 1

We want to show that A 4tl
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