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APPENDIX:
TORSION POINTS OF ABELIAN VARIETIES

IN CYCLOTOMIC EXTENSIONS

by Kenneth A. Ribet x)

Let k be a number field, and let k be an algebraic closure for k. For each prime

p, let Kp be the subfield of k obtained by adjoining to k all p-power roots of unity

in k. Let K be the compositum of all of the Kp, i.e., the field obtained by adjoining

to k all roots of unity in k.

Suppose that A is an abelian variety over k. Mazur has raised the question of
whether the groups A (Kp) are finitely generated [4]. In this connection, H. Imai
[1] and J.-P. Serre [5] proved (independently) that the torsion subgroup of
A (Kp) is finite for each p. The aim of this appendix is to prove that more precisely

one has the following theorem, cf. [3], §11, Remark 3.

Theorem 1. The torsion subgroup A (K)tors of A (K) is finite.

Let G be the Galois group Gal (k /k) and let H be its subgroup Gal (k/K). For
each positive integer n, let A [n] be the kernel of multiplication by n in A (k). For
each prime p, let Vp be the Qp-adic Tate module attached to A. If M is one of
these modules, we denote by MH the set of elements of M left fixed by H. Since

H is normal in G, MH is stable under the action of G on M.

Because of the structure of the torsion subgroup of A (k), one sees easily that
Theorem 1 is equivalent to the conjunction of the following two statements :

Theorem 2. For all but finitely many primes p, we have A [p]H 0.

Theorem 3. For each prime p, we have Vp 0.

Indeed, Theorem 2 asserts the vanishing of the p-primary part of A (K)tors,
while Theorem 3 asserts the finiteness of this p-primary part.

*) Partially supported by National Science Foundation contract number MCS 80-
02317.
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In proving these statements, we visibly have the right to replace k by a finite
extension of k. Therefore, using ([SGA 71], IX, 3.6) we can (and will) assume that
Ajk is semistable. Next, consider the largest subextension k' of K/k which is

unramified at all finite places of k.

Lemma. For each prime p, let Lp be the largest extension of k in K
which is unramified at all places of k except for primes dividing p and the

infinite places of k. Then is the compositum k'Kp.

Proof Let A be the Galois group Gal (K/k), viewed as a subgroup of Z*.
We consider Z* as the direct product of its two subgroups Z* and Y\ Z*. Let I

if p

(resp. J) be the subgroup of A generated by the inertia groups of A for primes of k

which divide p (resp. which do not divide p). Then I is a subgroup of Z*, while J is

a subgroup of Zf. The product I x J is the subgroup of A generated by all
ifp

inertia groups of A. We have J Gal (k/Lp), / x J Gal (k/k'), and

Gal (k/Kp) A n Zf). Now Gal (k/k'Kp) is the intersection of the two
lfp

Galois groups Gal (k/k') and Gal (k/Kp). Putting these facts together, we

prove the desired assertion.

We now replace k by its finite extension k'. With this replacement made, Kp
becomes equal to Lp. Furthermore, for odd primes p, the largest extension of k in
K which is unramified outside p and infinity and which has degree prime to p is

the field obtained by adjoining to k the p-th roots of unity in k.

Proof of Theorem 2. We shall consider only primes p which are odd,
unramified in k, and such that A has good reduction at at least one prime of k

dividing p. Let p be such a prime and v a prime of k over p at which A has good
reduction. Suppose that the G-module A [p]H is non-zero, and let W be a simple
G-submodule of this module. The algebra EndGIT is a finite field F, and the

action of G on IT is given by a character

cj>: G F*

since the action of G on A [p~]H is abelian. (Here the point is simply that G/H is an
abelian group.) In particular, the image of G in Aut (A [p]) has order prime to p.

On the other hand, the character $ is unramified at primes of k not dividing p

because A/k is semistable. By the discussion following the lemma, we know that
(j) factors through the quotient Gal (k ([ip)/k) of G ; here, pp denotes the group of
p-th roots of unity. In particular, (j) must have order dividing p — 1, so that its



TORSION POINTS OF ABELIAN VARIETIES 317

values lie in the prime field Fp. Since W was chosen to be simple, its dimension

over Fp must be 1 ; i.e., W is a group of order p.

Let x • G -> F* be the mod p cyclotomic character, i.e., the character giving
the action of G on pp. Since <|) factors through Gal (k (pp)//c), we may write <\> in
the form %n, where n is an integer mod (p — 1). We claim that n can only be 0 or 1.

To verify this claim, it is enough to check that it is true after we replace G by

an inertia group I in G for the prime v, since x is totally ramified at v. We remark
that W is the /-module associated to a finite flat commutative group scheme iV
over the ring of integers of the completion of k at v, since v is such that A has good
reduction at v. Because iT has order p, the classification of Tate-Oort ([8],
especially pp. 15-16) applies to W. Because v is absolutely unramified, the

classification shows immediately that iV is either étale or the dual of an étale

group. In the former case, / acts trivially on W ; in the latter case, / acts on W via

X- This completes the verification of the claim.

Thus, if Theorem 2 is false, there are infinitely many primes p for which A [p]
contains a G-submodule isomorphic to either Z/pZ or to \ip. Of course, the
former case can occur only a finite number of times, since A (k) is finite. One way
to rule out the latter case is to argue that whenever pp is a submodule of A [p], the

group Z/pZ is a quotient of the dual of A [p], which is the kernel of
multiplication by p on the abelian variety A v dual to A. In other words, if pp
occurs as a submodule of A [p], then there is an abelian variety isogenous to A v

(and therefore in fact to A) which has a rational point of order p over k. Therefore

p is a divisor of the order of a finite group that may be specified in advance, viz.
the group of rational points of any reduction ofA at a good unramified prime of k

of residue characteristic different from 2. (See the appendix to Katz's recent paper
[2] for a discussion of thir point.)

Proof of Theorem 3. Suppose that p is a prime such that Vp is non-zero. We
again choose W to be an irreducible G-submodule (i.e., Qp [G]-submodule) of
Vp. Because the action of G on IT is abelian, and because W is simple, each
element of G acts semisimply on IT. Since A/k is semistable, it follows that the
homomorphism

p: G ->• Aut (IT)

giving the action of G on IT is unramified at all primes of k not dividing p.
Therefore, p factors through Gal (Kp/k) in view of the lemma and the subsequent
replacement k - k!. In other words, starting from the hypothesis that the p-
torsion subgroup of A (K) is infinite, we have deduced that the p-torsion
subgroup of A (Kp) is infinite.
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Of course, this situation is ruled out by the theorem of Imai and Serre

mentioned above. Nevertheless, we will sketch for the reader's convenience an

argument which leads to a contradiction. Let v be a place of k dividing p, and let
D c G be a decomposition group for v. By ([SGA 71], IX, Prop. 5.6), the D-
module Vp is an extension of D-modules attached to p-divisible groups over the

integer ring of the completion of k at v. Because of Tate's theory [7], the

semisimplification Vsps of the D-module Vp has a Hodge-Tate decomposition.
(Here we should remark that submodules and quotients of Hodge-Tate modules

are again Hodge-Tate.) Since W is semisimple as a D-module (because

semisimple and abelian as a G-module), W may be viewed as a submodule of Vp.
Therefore, IT is a Hodge-Tate module.

By ([6], HI, Appendix), we know that p is a locally algebraic abelian

representation of G. Using this information, plus the fact that p factors through
Gal (KJk\ we find that there is an open subgroup G0 of G with the following
property: the restriction of p to G0 is the direct sum of 1-dimensional

representations, each described by an integral power %nP °f the standard

cyclotomic character %p : G - Z*. After replacing k by a finite extension, we may
assume that G0 is G. Take a prime w of k which is prime to p and such that A has

good reduction at w. Let g e G be a Frobenius element for w. The eigenvalues of

p (g) will be integral powers of %p (g\ i.e., of the norm Nw of w. However, by a well
known theorem of Weil, these eigenvalues all have archimedian absolute values

equal to (Nw)1/2. This contradiction completes the proof of Theorem 3.
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