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APPLICATION OF TOPOLOGY TO

PROBLEMS ON SUMS OF SQUARES

by Z. D. Dai, T. Y. Lam x) and R. J. Milgram *)

If n 1, 2, 4 or 8, the classical n-square identities imply that the product of

two sums of n squares in any commutative ring A is also a sum of n squares in A.

On the other hand, by a classical theorem of Hurwitz [L, p. 137], one knows that
the same statement cannot hold for other natural numbers n.

One can study the same problem over fields instead of over commutative

rings. Here, the solution of the problem is also known, albeit somewhat different.

According to a remarkable theorem of Pfister [P], if n 2m is any 2-power, and

if u, v are sums of n squares in a field F, then their product uv is also a sum of n

squares in F. (This implies that the set of nonzero elements in F which are a sum

of n 2m squares in F is a group under multiplication.) On the other hand,

Pfister has also shown that the above statement cannot hold for all fields if n is

not of the form 2m.

Back to sums of squares in commutative rings again, the above two
paragraphs suggest that, in considering the multiplication problem, it is perhaps

more reasonable to confine one's attention to units of a ring A which are sums of
2m squares in A. Writing n 2m and U {A) for the group of units in A, one can
ask:

If u, v e U (A) are sums of n squares in A,
(*)

is uv e U {A) also a sum of n squares in A2

This is equivalent to asking if the set of units in A which are a sum of n 2m

squares in A is a group under multiplication. This problem, first raised by R.

Baeza, appeared as "Question 12" in Knebusch's collection [K2] of open
problems in the Proceedings of the Quadratic Form Conference in Kingston,
Ontario in 1976. Generalizing the work of Pfister, Knebusch [KJ has shown
that (*) has an affirmative answer in case A is a (commutative) semilocal ring.

b Supported in part by NSF.
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In this note, we shall furnish the following solution to Baeza's problem:

Theorem 1. The answer to (*) is affirmative (for all commutative rings A)
iff n — 1, 2, 4 or 8.

In view of the classical square identities mentioned before, we need only show
the "only if' part of the theorem. The idea of the proof is to apply (*) in a "generic"
setting, and then use suitable topological machinery to derive the conclusion n

1, 2, 4 or 8. The topological result needed here is Adams' famous theorem

[Ax] on the nonexistence of Hopf invariant one. Surprisingly, this algebraic
application of Adams' Theorem, though reasonably straightforward, seems to
have escaped the notice of both algebraists and topologists.

Let n be a natural numberfor which (*) holdsfor any commutative ring A.
We shall prove that n 1, 2, 4 or 8. (In the following, we do not need to
assume n to be a power of 2 to begin with, though this would follow from
Pfister's theorem.)

Let A be the ring obtained by localizing the polynomial ring

R[x,,xn,y„]

at the multiplicative set generated by

u xf + T xl and v y\ + + y2n

Then, by (*), the unit uv e U (A) is a sum of n squares in A, say

Clearing denominators, we get a polynomial equation:

Xi+... + x2)2r+1 (yf + + y2)2s+1

fi(x,y)2+ - + (x,

Now .we make the following key observation :

Lemma 1. Each fi(x,y) above is a "biform" in (x, y), of bidegree

(2r+l, 2s+l) (i.e. viewing the y's as constants, f { is a form of degree

2r + 1 in x, and, viewing the x's as constants, /f is a form of degree

25+1 in y).
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Proof. View each ft as a polynomial in x, and let fu denote its

homogeneous component of degree j in x. We may write

fi fi,p + fi,p+1 + - + fi,q

j where p, q are independent of i. If q > 2r +1, a comparison of terms of x-degree

j 2q on the two sides of (1) shows that

I in,-o,i 1

and hence fUq 0 for all i. Similarly, if p < 2r + 1, we must have fitP 0 for
'

all i. Hence, f\is a form in x of degree 2r + 1. By symmetry, we infer that ft is also

a form in y of degree 2s + 1. Q.E.D.

Now let x, y be points on the unit sphere Sn~The equation (1) above implies

that the n-tuple

(/i (x,y),(x,jO)

: is also a point on S"-1. Thus,

(x,(/(x, y),/„ (x, y))

induces a polynomial (and hence continuous) mapping :

j p: S""1 x S"-1 ^ S""1

Fix a base point b e S"'1. Then the compositions

j S"'1 S"'1 x { b } A S"-1

S""1 ^ {h} x S""1 A S"-1

i are odd mappings, since each f t has bidegree (2r+ 1, 2s + 1). By the theorem of
j Borsuk [B], these odd mappings from Sn~1 to itself must have odd (topological)
I degrees, say, 2r' + 1 and 2s' + 1. Thus, the mapping p has "type" (2r' + 1, 2s' + 1) in
j the sense of Hopf [HJ.
j Now by the Hopf Construction, the map p induces a continuous map

a: S2n~l -+ Sn. Let

H : n2n-ASn)-*Z

I be the Hopf invariant on the homotopy group n2„-1 (Sn). According to Hopf
[H1? § 6], the homotopy class [a] g n2n_ x (S") has Hopf invariant

H [a] ± (2r'+ 1) (2s'+ 1),
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which is an odd number. By Adams' theorem [Ax] on the nonexistence of Hopf
invariant one (or odd Hopf invariant), one knows that this is possible only if
n 1, 2, 4 or 8. This completes the proof of Theorem L

Adams' original solution of the Hopf invariant one problem took 85 pages,
but there exists a proof using the powerful machinery of topological X-theory (cf.

[A6], [A7, p. 137]) which, according to M. Atiyah, "can be written on a

postcard". Thus, our Theorem 1 does admit a "short" proof. In fact, using X-
theory, it is possible to obtain a more general version of Theorem 1. This will be

deduced from the following topological statement :

Theorem 2. Let p: Sk~1 x S"~1 — S"-1 be a continuous mapping such

that

p(-x, y) p(x, -y) -p(x, y)

for all xeSfc_1 and yeS"_1 (cf. [H2]). Then k ^ p (n), where p is the

Hurwitz-Radon function.

(Recall that, if n 2Ara + b
n0 where n0 is odd and b 0, 1, 2 or 3, then, by

definition, p (n) 8a + 2b.)

Before proving this theorem, let us first record several of its remarkable

consequences in algebra. The first one is a result on real common zeros of
biforms.

Corollary 1. Let

x (xl5..., xfc), y (yu yn).

Let f i (x, y) (1 ^ i ^ n) be biforms in (x, y) ofodd bidegrees (2rt + 1, 2sf +1). If
k > p (n), then the real loci of ft 0 in the multiprojective space RP*-1
x RP" ~1 have a common point.

Proof. If otherwise, we would have a mapping p as in Theorem 2 defined by

H (x,y)(f 1 (X, y)/g (x, ,f„ (x, y)/g (x, y))

where g (x, y) (L fi(x, y)2)1'2.

Corollary 2. Let.

F (x,y) F (xl5..., xk \ yl5..., yn)

be a biform of bidegree (d, e) where d, e are not multiples of 4, and k

> p (n). Suppose that
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F (X0, yj 0 (x0 e R", y0eR")=> x0 0 or 0

Then F cannot be a sum of n squares in R [x, y].

Proof This is clear from the above Corollary and the argument given in

Lemma 1.

The next corollary may be viewed as a nonlinear generalization of the

classical Hurwitz-Radon Theorem [L, p. 137] :

Corollary 3. For

x (xi,X/J, y (y I-» •••' yn)

and fixed integers r, s ^ 0, the following statements are equivalent:

I (1) (*i + + Xfc)2r+1 (yî + + 3$2s + 1 is a sum of n squares in R [x, y] ;

(2) (x? +... + xl)2r +1 (yi +... + y2)2s +1 is a sum of n squares in Z [x, y] ;

(3) k ^ p (n).

Proof (2) => (1) is obvious.
I (l) => (3) follows from Corollary 2.

j (3) ^ (2): It is enough to prove (2) for r s 0. This follows from [Gt] or

[GJ.

For a commutative ring A, let Sm (A) denote the set of sums of m squares in A,

and let USm (A) U {A) n Sm (A).

Corollary 4. For fixed integers k and n, the following statements are

equivalent:

(1) For any commutative R-algebra A, USk (A) • US„ (A) ^ US„(A) ;

(2) For any commutative ring A, Sk (A) • Sn [A) ^ Sn (A) ;

(3) fc < p (n).

Proof This is clear from Corollary 3 and the localization argument we have

given before. (Note that Theorem 1 is a special case of this Corollary since it is

well-known that n < p (n) iff n 1, 2, 4 or 8.)

We shall now begin the proof of Theorem 2, using tools from K-theory,
especially Adams' work on the J-homomorphism. For any finite CIT-complex
X, let KO (A) denote the K-group of virtual real vector bundles over X, and
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KO (2Q the reduced X-group (modulo trivial bundles). Let J (X) denote the

group of stable fiber homotopy equivalence classes ofvirtual sphere bundles oyer
X, and J (X) the reduced J-group. The canonical J-homomorphism J : KO (X)
-> J (X) induces a homomorphism J : KO (X) -> J (X). We shall use Adams'
results in the following form (see [A2, (7.4)], [A4, (3.5)] and [A5]):

Adams' Theorem. For X RPm, J is an isomorphism KO (X)
J (X). The group KO (X) is cyclic of order 2^(m) where c\) (m) is the

number ofpositive integers ^m which are congruent to 0,1,2 or 4 (mod 8).

A generatorfor KO (X) is given by the canonical line bundle E,m over RPm.

On the product x Sn_1, we have an involution defined by

T (x,y) (-x, -y);

let E be the quotient space S*-1 x Sn~1/T. We have an (n— l)-sphere bundle

q : E - RPk~1 : this is the associated sphere bundle of the Whitney sum n •
L.

Note that E has an involution x (x, y) (x, — y) which on each fiber is the

antipodal map.
Assume that we have a continuous map

p: x S"'1 -> Sn_1

as in Theorem 2. Then p induces a map p : E — Sn~1 which is equivariant with
respect to the involution x on E and the antipodal map on Sn~1. We have a fiber

map

(r|, p) : E - RPfc_1 x S"'1 (trivial bundle over RP*-1)

which (by the theorem of BorSuk again) has odd degree d on each fiber. By the

"mod d-Dold Theorem" [A3, (1.1)], there exists an integer e ^ 0 such that de • q
is fiber homotopy equivalent to a trivial bundle. Since J (RPk_1) is 2-primary,
this implies that q 0 in J(RPfc_1). Pulling back to KO (RPfc_1), we have

n - OinXO^RP*"1), so by Adams' Theorem, n is divisible by 2<Hfc_ 1}. Let

n 24a + b
n0 where n0 is odd and b 0, 1, 2 or 3. If k > p (n) 8a 4- 2b, then

(J) (k — 1) ^ (J) (8a + 2b) 4a + b + 1

contradicting 2*{k~1} \ n. Therefore, we have k ^ p (n) as desired.

In a recent communication to us, I. M. James has suggested a similar proof of

Theorem 2. He points out that a more general discussion of similar structures
from which Theorem 2 follows may be found in [W] and in [J, Sec. 7].
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