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Problem. Prove these congruences in the framework of elementary
number theory.

d 2 3 4 5 6 2UM) 2 3 4 6 12 emc) emô)

2 2 2 2 1/6 4 G G
3 3 2 1 1/3 3 1 1 1 4 4

5 2 2 2 1/15 4 G G
6 6 3 1 5 1 2 1 6 6
7 4 4 4/3 5 2 2 6 6

10 6 4 7/3 8 II
11 10 4 7/3 5 2 4 10 8

13 2 4 1/3 4 «SII
14 12 4 10/3 8 2 4 12 10
15 8 6 4 12

17 4 2 2/3 4 G G
19 10 4 19/3 9 2 4 14 12

21 4 5 2/3 3 2 1 6 4
22 6 8 23/3 12 4 •2 16 14

23 12 8 20/3 7 4 6 18 14

26 18 4 25/3 20 G G

29 6 6 1 8 G G
30 12 10 34/3 24
31 12 4 40/3 11 2 6 22 18

33 4 3 2 7 1 1 6 6

34 12 4 46/3 24
35 20 8 38/3 28

37 2 8 5/3 — — — — — 8 G G
38 18 8 41/3 16 4 6 28 22
39 16 10 52/3 40

41 8 2 8/3 8 G G

§ 2. The cusps and their resolution
FOR THE 2-DIMENSIONAL CASE

2.1. Let K be a totally real algebraic field of degree n over Q and M
an additive subgroup of K which is a free abelian group of rank n. Such a

group M is called a complete Z-module of K. Let be the group of
those units s of K which are totally positive and satisfy sM M. Any
a eK with aM M is automatically an algebraic integer and a unit.

The group is free of rank n — 1 (compare [6]).
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Two modules Mu M2 are called (strictly) equivalent if there exists a

(totally positive) number XeK with XMx M2. Of course, Um1 Um2

for equivalent modules.

According to [71] p. 45, Theorem 4, for any parabolic point x of an

irreducible discrete subgroup F of (PL+ (R))n with $n/r °f finite volume
the element p e (PL+ (R))n with px — oo can be chosen in such a way
that the group pFxp~1 (see 1.5 (15)) is contained in PL+ (K) a (PL+ (R))n
where K is a suitable totally real field. Then we have an exact sequence

0 -> M p rxp~1 -> V -> 1

where M is a complete Z-module in K and F is a subgroup of of rank
n — 1. The field K, the strict equivalence class of M and the group V are

completely determined by the parabolic orbit and do not depend on the
choice of p.

It can be shown more generally ([71] p. 45, footnote 3) that there exists

ape (PL2 (R))n such that pTp-1 c PLj (K), provided there is at least

one parabolic orbit. Therefore, the field K is the same for all parabolic
orbits. The conjecture of Selberg (1.5 Remark) remains unsettled, because,

if we represent the elements of pTp-1 by matrices with coefficients in
c>£, we have no information on the determinants of these matrices.

A parabolic orbit will be called a cusp. We say that the cusp is of type
(M, V). If x is a point in the parabolic orbit, we often say that the cusp
is at x. Sometimes the cusp will be denoted by x.

For a given pair (M, V) with V c (where V has rank n — 1) we
define

G (M, V) { (0 Î) J s e F, pe M} M x F (semi-direct product)

For n 2, the element p e PL 2 (R)n can be chosen in a such a way
that prxp~1 G (M, F).

Let K be a totally real field of degree n over Q, let M be a complete
Z-module in K and F a subgroup of of finite index. Suppose © is a

group of matrices (E0 (with e e F, peK, and peM for g 1) such that
the sequence

(1) 0-+M-» ©-» F-> 1

is exact.

The group © operates freely and properly discontinuously on We
add one additional point 00 to the complex manifold §"/©. A complete
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system of open neighborhoods of oo in the new space §7® $7® u 00

is given by the sets

(2) (W(d)l ®)u ex?

where, for any positive d,

(3) W(d) {z\ze§>n,ff
j= i

The local ring O (©) at co is defined as the ring of functions holo-
morphic in some neighborhood of oo (except oo) and continuous in oo.

For n > 1 the condition "continuous in co" can be dropped ([71], p. 50,

lemma 7).

If (S G (M, F) we put £)(©) £) (M, F). We shall only give the

structure of D (M, F) explicitly. For n — 2 this is no loss of generality.
The ring £) (.M, F) has the following structure :

Let M* be the complete module in K which is dual to M: An element

xeK belongs to M* if and only if the trace tr (xa) is an integer for all
aeM. We recall that

n

tr (xa) Yj xU) aU)
j= i

Let be the set of all totally positive elements of M. The local

ring £> (M, F) is the ring of all Fourier series

(4) / a0 +£
xeM* +

for which the coefficients ax satisfy aEX ax for all se V, and which
o

converge on W (d) for some positive d depending on /.

Proposition. The space $7® w^h the local ring £) (©) at oo is a

normal complex space.

This is known for n 1, of course. For n ^ 2 we have to check

H. Cartan's condition ([67] Exposé 11, Théorème 1) that there is some

neighbourhood U of oo such that for any two different points Pi,p2£
U — { oo } there exists a holomorphic function / in U — { oo } with

fiPi) ^/(Pi)- If ® occurs as group pTxp~1 for some cusp of a group T
satisfying condition (F) of 1.5, Cartan's condition is proved in the theory
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of compactification (0.3) by the use of T-automorphic forms. The group

G(M, Um) occurs in such a way. Namely, M is strictly equivalent to an

ideal in some order o of K (see [6]) where o {xeK\xMcz M}. Therefore,

we may assume that M is such an ideal. The cusp at oo of the arithmetic

group (commensurable with the Hilbert modular group)

{("ß0)\cc,ß,y,öeo,ße M, ocô - ßy e Um }

has the isotropy group G (M, U^)-
As W. Meyer pointed out to me, the group H2 (V, M) —the set of all

equivalence classes of extensions over V with kernel M and belonging to
the action of V on M—is finite. (It vanishes for n < 2.) This implies the

existence of a translation p e PL2+ (K) with pz z + a such that

p©p~1 c: G (M, V) where M - M and k is the order of the extension
k

© as element of H2 (V, M). Therefore p©p_1 is commensurable with
G (M, Um), and it follows from general results on ramifications of complex

spaces [18] that $7® *s a normal complex space. (See also 0.7 for quotients
of normal complex spaces).

Remark. It would be interesting to check Cartan's condition directly
using only the structure of the ring D (©). It seems to be unknown if
every © occurs for a cusp of a group f of type (F). We shall call the

point oo of the normal complex space $7® a "cusp", even if it does not
occur for a group T.

The point oo (with the local ring O (©)) is non-singular for n— 1.

Probably it is always singular for 2. This was shown by Christian [11]
to be true for the cusps of the Hilbert modular group of a totally real field
of degree n § 2. For n 2, see [21].

Our aim is to resolve the point oo of $2/G (M, V) in the sense of the

theory of resolution of singularities in a normal complex space of dimension

2 (see, for example, [35], [49]). This will be done in 2.4 and 2.5. The
resolution process shows that oo is always a singular point.

It remains an open problem to give explicit resolutions also for n > 2.

If r is a discrete irreducible subgroup of (PLJ (R))71 satisfying the
condition (F) of the definition in 1.5, then 9)nfr can be compactified by
adding t points (cusps) where t is the number of F-inequivalent parabolic
points of r. The resulting space is a compact normal complex space. It
is even a projective algebraic variety (0.3).
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2.2. In the next sections we shall consider the case n 2, construct
certain normal singularities of complex surfaces and show that they are

cusps in the sense of 2.1. The construction will be very much related to
continued fractions.

Consider a function k b> bk from the integers to the natural numbers

greater or equal 2. For each integer k take a copy Rk of C2 with coordinates

uk9 vk- We define Rk to be the complement of the line uk 0 and Rk to be

the complement of vk 0. The equations

give a biholomorphic map cpk : Rk -» Rk+1

In the disjoint union u Rk we make all the identifications (5). We get
a set Y. We may now consider each Rk as a subset of Y. Each Rj is mapped
by (uj, Vj) bijectively onto C2. This defines an atlas of Y. A subset of Y
is open if and only if its intersection with each Rj is an open subset of Rj.

Lemma. The topological space Y defined by (5) satisfies the Hausdorff
separation axiom.

Proof. Denote the map Rj C2 by ij/j. Let k be an integer. According
to Bourbaki [7] p. 36, we have to show that the graph of

is closed in ij/j (Rj) x ij/j+k (Rj+k) C2 x C2. Without loss of generality
we may assume j — 0 and k > 0. The map i^/c ° ^0 _1 is given by

(5) uk+1 — ukkvk

Vk+1 1lUk

(6) ^j+k °iïj 1
: fj (Rj n Rj+k) ^j+k (Rj r\ Rj+k)

(7) Uk u0pk ' v0qk

Vk u0-pk-i-v0-qk-i

where

Pk %
-pk-i -ik-1

and

1

1



pk, qk are coprime. We define p0 1, q0 0 and have

Pk+i — bkPh ~~ Pk-1 f°r ^ ^
^fc+i ^ ~~ Pk+i for fc ^ 1

A > feP/c+i > Pk h tffc+i > 0k ^ for k ^ 0

The intersection i?0 n as subset of i?0 is given by u0 ^ 0, v0 ^ 0

for k ^ 2 and by w0 ^ 0 f°r & 1- Tiie graph of ^ • iA0_1 (see (6)) is

given by

% u0pk- v0qk, vk-u0pk~1' v0qk~l 1

i/o 7^ 0, ^o ^ 0 (k 2)

Uq -fi- 0 (/c 1)

But the inequalities follow from the equations. Therefore the graph is

closed in C2 x C2. This finishes the proof of the lemma. The negative

exponents in the second line of (7) were essential.

The argument would break down, for example, if k 6 and bt 1

for 0 ^ z ^ 5, because (-Î o)6 (o ?)•

The topological space Y obviously has a countable basis. For any
function k bk ^ 2 we have constructed a complex manifold T of complex

dimension 2. In Y we have a string of compact rational curves Sk

non-singularly embedded (k e Z). The curve Sk is given by uk+x =0 in
the (/c + l)-th coordinate system and by vk 0 in the &-th coordinate

system. Sk, Sk+1 intersect in just one point transversally, namely in the

origin of the (&+l)-th coordinate system. SuSk(i<k) do not intersect,
if k — i ^ 1. The union of all the Sk is a closed subset of Y.

Lemma. The self-intersection number of the curve Sk equals — bk.

Proof The coordinate function uk+1 extends to a meromorphic
function on Y. Its divisor is an infinite integral linear combination of the

Sj which because of (5) contains Sk-± with multiplicity bk, the curve Sk

with multiplicity 1 and the curve Sk+1 with multiplicity 0. The intersection
number of Sk with this divisor is zero. Since it is also equal to bk + Sk • Sk,
the result follows.

Remark. The construction of Y is analogous to the resolution of a
quotient singularity in [35], 3.4. For technical reasons we have changed

L'Enseignement mathém., t. XIX, fasc. 3-4. 14
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the notation by shifting the indices of Sk and bk by 1. This should also be

taken into account when comparing with [39], §4.

2.3. Let us assume that the function k (-> bk ^ 2 of 2.2 is periodic,
i.e. there exists a natural number r ^ 1 such that

bk + r bk-

Continued fractions of the form

1

ao •

a 1

as

shall be denoted by \[a0, as]~] ; similarly, [[a0, au a2, ...]] stands for
infinite continued fractions of this kind. For our given function k h-> bk ^ 2

we consider the numbers

(8) wk [[bk,bk+lZ.

The wk are all equal to 1 if bj 2 for all j. Therefore, we assume

bj ^ 3 for at least one j. Then all wk are quadratic irrationalities which
are greater than 1. They satisfy wk+r — wk and all belong to the same real

quadratic field K. We consider the complete Z-module

M — Zw0 + Z. 1 c= K

Let be the non-trivial automorphism of K. Thus x x(1) and

x' x(2) in the notation of 1.3. The module M acts freely on C2 by
(zl9 z2) •-> (z1 + a, z2 + a') for ae M. For our function j i-> bj ^ 2 we have

constructed in 2.2 a complex manifold Y. We now define a biholomorphic
map

<P : Y — v Sj -> C2IM

# :

by

(9) 27 ziz1Wq log m0 + log

2717 Z2w'0 log + log V0

The logarithms are defined modulo integral multiples of 2rti, thus

(z1, z2) is well-defined modulo M. Observe that
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Y — u Sj { (Uq, v0) 1w0 7^ 0, ^ ® } •

jez

Since the determinant | | ^ 0, we can solve (9) for log u0 and

log v0 and obviously have a biholomorphic map. The map $ can be written
down with respect to the k-th coordinate system (k e Z). The result is as

follows.
Put A0 1 and Ah+1 wk+± 'A- This defines Ah inductively for

any integer k:

A (wi w2 " wk)~1 f°r k 1? ^-/t w0 H'_fc+1 for k ^ 1,

0 < < Ak for keZ, Ak =£ 1 for k ^ 0.

Formula (8) implies wk bk and
Wk+i

(10) bkAk + ^+i
For any integer k, the numbers are a basis for M. From the

coordinate transformations (5) we get the expression for the map 0 in
the k-th coordinate system

(11) 2niz1 Ak_1 -\oguk + AkAogvk

2niz2 Ak_ i • log uk + Ak • log vk

We had assumed that the bj are periodic with period r which implies
wk+r wk for any k. Therefore, A'1 equals the product of any r consecutive

Wj which gives

(12) Ak+r ArAk forany&eZ
(Ar)n Anr for any ne Z.

This implies that ArM M. Therefore Ar is an algebraic integer and
a unit =£ 1.

If we apply the non-trivial automorphism of K to the equation
1

wk — bk and use the periodicity we get

(13) w'k~+\ hF-

Wk+1 [[^^,-1 ,...]] > 1
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Therefore,

(14) 0 < wk < 1 < wk for keTj.

Thus the wk and the Ak are totally positive. Let V be the (infinite cyclic)
subgroup of Um generated by Ar. Thus we have associated to our function

jh^ 2 (at least one bj ^ 3) and the given period r (which need not
be the smallest one) a pair (M, V) and a group G (M, V) (see 2.1) which
determines a cusp singularity. We shall use the complex manifold Y
constructed in 2.2 for a resolution of this cusp singularity.

We restrict <P to the open subset (§2/M) of Y. According to (11)
this set is given by

Ak_1'log\uk \ + Ak-log\vk \ < 0

A'k-1 • log I uk I + A'klog I vkI< 0

Since vk 0 or uk+1 =0 for a point on Sk and the above inequalities
do not depend on the coordinate system, it follows that

Y+ 1 (§2/M) u U Sk
keZ

is an open subset of Y. The group

F {(Ary\n
acts on Y+ as follows:

(Ar)n sends a point with coordinates uk, vk in the k-th coordinate system
to the point with the same coordinates in the (k + nr)-th coordinate system.
Because of the periodicity bj+r bp this is compatible with the
identifications (5). Therefore the action of the infinite cyclic group V on the

complex manifold Y+ is well-defined. We have the exact sequence

0 -> M - G (M, V) -> V -> 1

Thus V acts on §2/M. On the other hand we have a biholomorphic
map

0 : Y+ - u Sk -> $)2/M
keZ

Lemma. The actions of V on Y+ and 9)2jM are compatible with <P.

Proof If a point p has coordinates uk, vk in the k-th system, its image

point (zl9 z2) under is given by (11). If we let Ar act on p, its image point
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is mapped under $ (use formula (11) for the (k + r)-th coordinate system
and (12)) to (Ar zu A'r z2).

Lemma. The action of V on Y+ is free and properly discontinuous.

Proof. In view of the preceding lemma the action is free on
Y+ - u Sk. By A" (assume n # 0) a point on Sk is mapped to a point

keZ

on Sk+nr- If it is fixed, it will be an intersection point Sj_1 n Sj of two
consecutive curves, but this point is carried to Sj+nr-1 n Sj+nr.

To prove that V is properly discontinuous we must show that for
points p, q on 7+ there exist neighborhoods Ux and U2 of p and q such

that gU1 n U2 A 0 only for finitely many geV. Since V acts properly
discontinuously on §2/M and u Sk is closed in 7 + this is clear if p and

keZ
q both do not belong to u Sk. Ifp e u Sk and q $ u Sk we use the func-

ke Z keZ keZ
tion <P.

For (z1,z2)e§)2 put p (zx, z2) Im zt *Imz2 and set

U1 {u\ue Y + ,p $(u) < p <P(p) + 1},

and let U2 be the complement of TJ1 in F+.
Then U1n U2 0 and Ul for geV.
Now suppose both points p and q lie on u Sk. It is sufficient to prove

keZ
the existence of neighborhoods U1 and U2 of p and q such that
gU1 nU2=£ 0 for only finitely many g (Ar)n with n < 0. Recall that
Ar generates V. If q lies on Sj and in the y-th coordinate system and p
on Sk and in the k-th system, then a neighborhood U2 of q is given by

0 ^ I uj I < -,J Vj I < e (for s sufficiently small).

A neighborhood U1 ofp is given by

n 1 1

1
1 10 ^ I uk I < -, I vk I < s (for e sufficiently small).

Suppose that \n \ ^k-j +1. Then a point (w in the th
system is mapped under (Ar)"(n<0) to a point (uj, Vj) in the /-th system
if and only if
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115) Uj=uka-vkb
uj-ukc-vdk1

where a, b, c, d are non-negative integers and c > d. In fact is a

matrix of type (7) depending on n, of course. If the points (uJy vj) and
(uk, vk) lie in the chosen neighborhoods of p and q we obtain from (15)
the inequality

sd~c~1 < 1

which is not true for s ^ 1. Therefore, the image of U1 under (Ar)n does

not intersect U2 for n < 0 and \n \ k — j + I.

Remark. The elements of M Zw0 + Z can be written in the form
y — xw0 with x, y e Z. The number y — xw0 is totally positive if and

only if

y — xw0 > 0 and y — xwq > 0

Since w0 > 1 > Wq > 0, the totally positive elements of M correspond
exactly to the integral points in the (x, y)-plane which lie in the quadrant
(angle < 180°) bounded by y — xw0 0 (x^O) and y — xwq 0 (x^O).
If we write Ak pk — qk w0, then for k ^ 0 these are the pk,, qk of 2.2.

We have

Pk Pk /lim— w0, lim — w0
k-^oo qk k-+-go qk

More precisely, it can be shown [12] that the Ak are exactly the lattice
points of the support polygon, i.e. the polygon which bounds the convex
hull of the lattice points in the above quadrant. It follows [12] that every
totally positive number of M can be written uniquely as a linear combination

of one or of two consecutive numbers Ak with positive integers as

coefficients.

2.4. In section 2.3 we have constructed for a periodic function
k ^y bk ^ 2 (with bj ^ 3 for at least one j) a complex manifold Y+

together with a free properly discontinuous action of an infinite cyclic

group V on Y+. The orbit space Y+\V is a complex manifold. The curve
Sk in Y+ was mapped by the generator Ar of V onto the curve $k+ r where

r was the period. Thus Sk and Sk+r become the same curve in Y+/V. We
shall denote the curves in Y+\V again by Sk (k e Z) with the understanding
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that we have Sk Sk+r. We have in Y+/Vfor r ^ 3 a cycle S09 Su SV-i
of non-singular rational curves such that Sk and Sk+1 intersect transversally

in exactly one point (keZ/rZ) and the selfintersection number Sk-Sk

equals — bk. Otherwise there are no intersections. The configuration is

illustrated by the diagram:

r ^ 3,

r 5 in this example

For r 2 the configuration looks as follows:

There are two transversal intersections of S0 and St.
If r 1, there is a special situation because the curves S0 and of

Y+ intersect transversally in one point and S0 and become identified
under V. Thus under the map Y+ -» Y+/V the string of rational curves

Sk is mapped onto one rational curve S0 in Y+/V with one ordinary
double point (which was previously also denoted by S0, but must here be

distinguished).

So'S0 — b0 — 2

Proof. Let ci and c1 denote- the first Chern classes of Y+ and Y+/V
respectively. Let n be the map Y+ -> Y+/V. Then tc*c1 c1 and

ci (50) — ci (S0)



— 212 —

where we evaluated the first Chern classes on the cycles S0 and S0. By
the adjunction formula (0.6)

ci (So) — So * 2

ci (So) S0 ' S0 + 2 =2.
The summand 2 on the left side of the second formula is the contribution

of the double point of S0 in the adjunction formula. We get

So'So S0 • S0 + 2 — b0 + 2

which completes the proof.
By ((^oj &r — i)) we denote a cycfe of numbers. (A cycle is given

by an ordered set of r numbers. Two ordered sets are identified if they
can be obtained from each other by a cyclic permutation.)

For any cycle ((ô0, bu ôr_i)) of natural numbers ^2 (at least

one bj 3) we have constructed a complex manifold Y+jV which we

shall denote now by F((Z?0,..., Z?r_x)).

In this complex manifold of complex dimension 2 (we shall often say

"complex surface") we have a configuration (16), (17) or (18) of rational
curves. The corresponding matrices of intersection numbers are

1 0

1 1 0

0 1

0 1 -br_ 2
1

1 0 0 1 -6r—i

for r > 3

and

/ -bo 2 \
\ 2 -bi) for r 2

By the lemma we have for r 1 the 1 x 1-matrix — 60 + 2). It is

easy to show that these matrices are negative definite in all cases.
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If all the bt of a cycle equal 2, then the matrix is negative semi-definite

with a null-space of dimension 1. Thus to get negative definiteness we do

need the assumption bj ^ 3 for at least one j.
The negative definiteness implies, according to Grauert [17], that the

configurations (16), (17) or (18) can be blown down to give an isolated

normal point P in a complex space Y ((<b0,..., 6r_1). We have a holo-

morphic map

: Y((&„,b,_x))->7((b0,

with

crfJs,) P
k= 0

The map

cr : F ((b0,b,^)) - V St - F ((b0, -, b,_x)) - {P}
k=0

is biholomorphic. The configurations (16), (17), (18) represent the unique
minimal resolution of the point P, because they do not contain exceptional

curves of the first kind, i.e. non-singular rational curves of selfintersection

number — 1. Thus the point P is singular.
The first lemma of 2.3 shows that we have a natural map

Y((b0,...,b^t))->£2/G(M, V)

and a commutative diagram

Y((b09...,br-1))^$>2/G(M,V)

y *
Y ((i0,..., 6r-i))

where ù is biholomorphic and o-(P) oo (in the notation of 2.1). The

map o is biholomorphic also in P because one can introduce at most one

normal complex structure in §2/G(M, V) extending the complex structure
of S2/G(M,F).

We have established the existence of the normal complex space

§2/G(M, V) directly without using the Proposition given in 2.1. We need

only define a to be biholomorphic. Also we have given the resolution of
the singular point go which was added to §2/G(M, V). We summarize
our results:
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Theorem. Let ((b0,bl, be a cycle of natural numbers ^ 2

(at least one bj ^ 3). Put

wo — [[i0j - "5^-1) •••]] [[^o> •••> br-ij]

(infinite periodic continued fraction). Then K — Q (w0) is a real quadratic
field and M — Zw0 + Z 1 a complete Z-module of K. The cycle

((b0, Z?r-i)) determines a totally positive unit Ar of K with ArM M.
The unit Ar generates an infinite cyclic subgroup V of the group of all
totally positive units s of K with &M — M. The unique singular point oo

of $)2/G(M, V), where G(M,V) is the natural semi-direct product of M
and V, admits a cyclic resolution by rational curves Sk (configuration (16),

(17) or (18)) with selfintersection numbers Sk • Sk — bk (for r 1 we

have S0 ' SQ — b0 + 2). This resolution is given by the complex surface

Y(fbQ,^r-i)) which we canonically associated to a cycle.

Remark 1. Laufer [50] has shown that two normal singular points
(in complex dimension 2) which admit a resolution with a given cyclic
configuration of rational curves of type (16), (17) or (18) and given self-

intersection numbers are isomorphic. Hence the singularity P of
Y((b0%..., £r-i)) which we have constructed is up to isomorphism the

unique singularity with the given cyclic configuration of rational curves
and the given selfintersection numbers. (These singularities are called

cyclic singularities.) Reversal of the cycle gives an isomorphic singularity.

Remark 2. The construction of Y in 2.2 applies also to the case where

all bk equal 2. Then we have Uj • Vj uk • vk (compare (5)) and hence obtain
a holomorphic function / : Y -» C. As in 2.3, we have a properly
discontinuous action of an infinite cyclic group V on Ye {p\peY, \f(p) | < s },
for e positive and sufficiently small, whose generator maps the curve Sk to

Sk+r. The period r ^ 1 can be choosen arbitrarily.
The function / is invariant under V; thus we get a holomorphic map

f :Y*IV -+{z\\z\ <8}

All fibres of / are non-singular elliptic curves except / "1 (0) which is

a configuration of rational curves of type (16), (17), (18) where now all
bk equal 2. The fibring we have constructed is of type 1Ir in the sense of
Kodaira [45], Part II. We have seen:
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Cycles ((2, 2)) give an infinite continued fraction of value 1 and

correspond to an elliptic fibring. Cycles ((b0, br-ifj, (bk ^ 2, at least

one bj ^ 3), give an infinite continued fraction whose value is a quadratic

irrationality. These cycles determine singular points.

2.5. The theorem in 2.4 actually provides a resolution of the singular

point of §>2/G (M, V) (see 2.1 with n 2) for any complete Z-module

M of a real quadratic field K and an infinite cyclic subgroup V of Um of

any given index a [U^ : V]. We need a lemma.

Lemma. Consider the Z-module M defined by a periodic function

kv+bk^2 (with bj ^ 3 for at least one j). Let r ^ 1 be the smallest

period. Then Ar (see 2.3) is a generator of U^.

Proof. We shall denote ordinary continued fractions

1

ao 4 1

+ —
a2 +

by [a0, au a2, ...]. The relation between the two types of continued fractions
is as follows:

(19) [a0, auz][Oo + 1,2, ...^2, z + 1]]

where z is an indeterminante and a1 a natural number ^ 1. Using (19)
the lemma can be derived from similar results for ordinary continued
fractions (compare [6], Kap. II, § 7). A proof is also given in [12]. Another
proof was communicated to the author by J. Rohlfs.

Two complete Z-modules Mu M2 of the same real quadratic field K
are strictly equivalent (2.1) if there exists a totally positive number oteK
with a— M2. We have Umx ^m2-

The actions of G(MUV) and G{M2,V) on §2 are equivalent under
the automorphism (zl5 z2) h» (azl5 ocz2) of Srf2. Any module M{ is strictly
equivalent to a module of the form M2 Zw0 + Z • 1 where w0eK and
0 < Wq < 1 < w0. (This is easy to prove, as was shown to me by H. Cohn.)
Then the continued fraction w0 \[b0, bu ...]] is purely periodic, i.e.

periodicity starts with b0. This can be proved in the same way as an analogous
result for ordinary continued fractions ([60], §22). Let r be the smallest
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period. We can resolve the singularity of §2/G(M2, Um2) by the method
of 2.3 and 2.4, since by the preceding lemma Um2 { (Ar)n | n e Z }. The
resolution is described by the primitive cycle ((ô0, &r_i)) where primitive
means that the cycle cannot be written as an "unramified covering" of
degree > 1. The cycle ((2, 3, 5, 2, 3, 5)) ((2, 3, 5))2 is not primitive, for
example.

For any primitive cycle ((<b0,..., br_ J) we obtain a module Zw0 + Z • 1

with w0 [[ft0, bu ...]]. In the cycle we must allow cyclic permutations.
This changes the module to a module Zwk + Z • 1 (see 2.3). But Zw0 + Z • 1

ZAk_1 + ZAk and Ak^1/Ak — wfc, where is totally positive (see 2.3).

Therefore, the strict equivalence class of the module only depends on the

cycle. If one reverses the order (orientation) of the cycle, the associated

equivalence class of modules is replaced by the conjugate one (see (13)).

If we start from a strict equivalence class of modules, it determines,
as explained above, an isomorphism class of singularities (represented by
the singularity of §>2/G (M2,

But isomorphic singularities must give the same unoriented cycle in
their canonical minimal resolutions. "Unoriented" means that we cannot
distinguish between ((è0, br_jj) and (fibr-l9 bjj). But, in fact, if we

represent the class of modules as above by M2 Zw0 + Z • 1, then the

cycle of w0 is uniquely determined including the orientation. If this were

not the case, it would follow that M2 and M2 are strictly equivalent. Then
the singularity and its resolution admit an involution showing that the

cycles ((&o, br_jj) and (fbr_u b0j) are equal. (Details are left to
the reader. The relation between strict equivalence classes of modules and

primitive cycles can be derived, of course, also without using the resolution,

compare 2.6.)

We have established a bijective map between primitive admissible cycles

(all bk^2 and at least one bj ^ 3) and the strict equivalence classes of
complete Z-modules (where the real quadratic field K varies).

The preceding discussion yields the following theorem.

Theorem. Let K be a real quadratic field and M a complete Z-module

in K. Let ((&0, bl9 br_jj) be the primitive cycle belonging to M. Let V
be the subgroup of of index a. Then the resolution of the singular point

of %)2/G(M,V) is given by the cycle ((60, bu br__j))a.
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Remark. The structure of the local ring JO (M, V) at the point oo of

§)2/G(M, V) was described in 2.1. For any admissible cycle ((Z?0, •••> ^r-i))>
not necessarily primitive, the functions /e JO (M, F) can be written as

power series' in u0,v0 where u0,v0 is the coordinate system of 2.3 (11)

with A0 1 and A-± w0 [[60, We could use also any
other coordinate system uh, vh.

Let (u0,v0)n u0nl-v0n2 for n (nun2) and

see 2.2 (7),
\ P r Pr/\«2/

then O (M, F) is the ring of all power series'

fflo + Ia„K^o)"
n

where the summation extends over all pairs 77 (/?1? n2) of positive integers
with Wq ^ «i/«2 ^ v^o? the coefficients satisfy #n, and the power
series converges for

w0 log I u0 I + log I v0 I <0, Wo log I u0 I + log I v0 I <0

(w0 log I «0 I + log I v0 I) • (wo log I I + log I v0I) > 1,

(the positive constant c depending on /).
Observe that T (as fractional linear transformation) maps the intervall

[wq, w0] bijectively onto itself (Twq Wq, Tw0 w0). We have Tx < x
for Wq < x < w0 and therefore

lim Tkx Wq (for Wq ^ x < w0) and lim Tkx w0 (for Wq < x ^ w0)
k~+ co k->-oo

Example. Consider the Fibonacci numbers

...,-8,5,-3,2,- 1,1,0,1,1,2,3, 5,8,13

where F00, Fl 1 and Fk+1Fk + Fk_t (Ice Z). The numbers
Gk F2t+1 (/c e Z) are all positive and satisfy
The function

OO

f (tl0,V0) X! «0Gfe-1 •»oGfe
k= — oo
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represents an element of D (M, U^)where
M Zw0+ Z and w0 [[3]] (3 + ^/5).

2.6. The primitive cycle associated to a module M can be found also

without using a base w0, 1 of M with 0 < Wq < 1 < w0: Real numbers

x, y are called strictly equivalent if there exists an element (" J) e SL2 (Z)
such that

ax + b
y •

cx + d

Any irrational number x has a unique infinite continued fraction
development

x [[a0,a1,a2, ...]]
where at e Z and at^2 for i 1 and where at ^ 3 for infinitely many
indices i. Two irrational numbers are strictly equivalent if and only if
their continued fractions [[a0, al9 ...]] and [[ciq, a'u ...]] coincide from
certain points on, i.e. aJ+i ak+i for some j and k and for all i ^ 0. This
is analogous to a classical result on ordinary continued fractions ([60],
Satz 2.24).

A quadratic irrationality w admits a continued fraction which is periodic
from a certain point on. It is purely periodic if and only if 0 < < 1 < w

as mentioned before. The periodicity of the continued fraction of w
determines a primitive cycle ((Z?0, br_x)) which is admissible (all bt ^ 2, at
least one bj ^ 3). Thus two quadratic irrationalities are strictly equivalent
if and only if their cycles agree, and we have a bijection between strict
equivalence classes of quadratic irrationalities and admissible primitive cycles.
The admissible primitive cycles are in one-to-one correspondence with the

strict equivalence classes of complete TL-modules in real quadratic fields K
where K varies (see 2.5).

A complete Z-module M of a real quadratic field K will be oriented

by using the admissible bases (ß1, ß2) of M with ß1ß2 — ß2ßi > 0- By
restricting the norm function (iV(x) xx; for x e K) to M we obtain an
indefinite quadratic form / on M with rational values. The exists a unique
positive rational number m such that m •f is integral and with respect to

an admissible base of M can be written as

au^ -j- huv -f- ccf
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where a, b, c e Z and (a, b, c) 1. The pairs (u, v) are in Z © Z M.
The discriminant DM b2 — 4ac is positive and not a square number.

In this way, we get a bijection between strict equivalence classes of
complete Z-modules of real quadratic fields and the isomorphism classes

under SL2 (Z) of integral indefinite primitive binary quadratic forms of
non-square discriminant.

Remark. The discriminant D of such a quadratic form can be written
uniquely as

D Dk */2, /I 1,

where is the discriminant of the real quadratic field K
Then the corresponding strict equivalence class of modules can be
represented by an ideal in the order (subring of oK) which as an additive group
has index / in oK, and this is the smallest / such that the equivalence class

of M can be represented in this way.
The strict equivalence class of the "first root"

— b + Jb2 — 4ac [—where Jb — 4ac > 0
2a

depends only on the equivalence class of the quadratic form.

We obtain a bijection between SL2 (Z)-equivalence classes of integral
indefinite primitive binary quadratic forms of non-square discriminant and
strict equivalence classes of quadratic irrationalities.

All the bijections are compatible with each other as can be checked
easily. Let us collect the bijections:

strict equivalence classes of complete Z-modules in real quadratic
fields

admissible primitive cycles of natural numbers <-»

strict equivalence classes of quadratic irrationalities <-»

SL2 (Z)-equivalence classes of integral indefinite primitive binary
quadratic forms of non-square discriminant

isomorphism classes of cyclic singularities with a primitive cycle
and as additional structure a prefered orientation of the cycle
(compare 2.4, Remark 1).
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Example. Let d be a square-free number > 1 and suppose d 2 mod 4

or d 3 mod 4. The 1) is an admissible Z-base of the ideal (1) in

oK for K Q (yfd). The quadratic form is given by

— u2d + v2

- J~d 1

and has discriminant 4d. The first root equals —-— — which
d Jd

is equivalent to yfd. (Take always the positive square root). The admissible

cycle of natural numbers is obtained by developing ^fd in a continued
fraction.

§ 3. Numerical invariants of singularities
and of Hilbert modular surfaces

3.1. Let X be a compact oriented manifold of dimension 4k with or
without boundary. Then Hlk (X, dX; R) is a finite dimensional real vector

space over which we have a bilinear symmetric form B with

B (x, y) (x u y) [X, dX], for x, y g H2k (X, ÔX; R),

where [X, dX] denotes the generator of HAk (X, dX; Z) defined by the
orientation. The signature of B, i.e., the number of positive entries minus
the number of negative entries in a diagonalized version, is called sign (X).
If X has no boundary and is differentiate, then according to the signature
theorem ([36], p. 86)

(1) sign (X) Lk(pu

where Lk is a certain polynomial of weight k in the Pontrjagin classes of
X with rational coefficients (pj e H*J (X, Z)).

Let TV be a compact oriented differentiate manifold without boundary
of dimension 4k — 1 together with a given trivialization a of its stable

tangent bundle. (Such a trivialization need not exist). We shall associate

to the pair (TV, a) a rational number ô (TV, a). Since TV has a trivial stable

tangent bundle, all its Pontrjagin and Stiefel-Whitney numbers vanish.

Therefore TV bounds a 4T:-dimensional compact oriented differentiable
manifold X. By the parallelization a we get from the stable tangent bundle

of X an SO-bundle over X/N. We denote its Pontrjagin classes by
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