§ 8. Discussion of case (i) : G not 0dimensional

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 16 (1970)
Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
27.04.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

$$
u_{n}=n^{-2} Q_{j_{n}}
$$

satisfy the conditions

$$
\left.\begin{array}{l}
\operatorname{sp}\left(u_{n}\right) \subseteq \Gamma_{0}, \sum_{n=1}^{\infty}\left\|u_{n}\right\|<\infty \tag{7.9}\\
S_{{\Delta_{j_{n}}}} u_{n}(0) \text { is real and }>n
\end{array}\right\}
$$

At this point the construction in $\S 2$ will yield integers $0<n_{1}<n_{2}<\ldots$ and specifiable sequences $\left(\gamma_{p}\right)_{p \in N}$ of positive numbers such that each function of the form

$$
f=\sum_{p=1}^{\infty} \gamma_{p} u_{n_{p}}
$$

is continuous and satisfies

$$
\begin{equation*}
s p(f) \subseteq \Gamma_{0}, \lim _{p \rightarrow \infty} \operatorname{Re} S_{4_{j_{n_{p}}}} f(0)=\infty \tag{7.10}
\end{equation*}
$$

A fortiori, f satisfies (7.3).
We add here that, if the Δ_{j} are symmetric, the $D_{\Delta_{j}}$ are real-valued, and we may work throughout with real-valued functions, replacing $\operatorname{Re} S_{\Delta_{j}} f$ by $S_{\Delta_{j}} f$ everywhere.

§ 8. Discussion of case (i): G not 0-dimensional

8.1 In this case $\Phi \neq \Gamma$, and we begin by considering a finite subset of Γ of the form .

$$
\begin{equation*}
\Delta=\Omega+\Lambda \tag{8.1}
\end{equation*}
$$

where Ω and Λ are finite subsets of Γ such that $\pi \mid \Omega$ is $1-1$ and $\varnothing \neq \Lambda \subseteq \Phi$. We aim to show that (for a suitable absolute constant $k>0$)

$$
\begin{equation*}
\left\|D_{\Delta}\right\|_{1} \geqq k\left(\frac{\log N}{\log \log N}\right)^{\frac{1}{4}} \tag{8.2}
\end{equation*}
$$

provided $N=|\Omega|$ (the cardinal number of Ω) is sufficiently large.
8.2 Proof of (8.2). Introduce H as the annihilator in G of Φ and identify in the usual way the dual of H with Γ / Φ. Likewise identify the dual of $K=G / H$ with Φ ([7], (24.11)).

We then have

$$
\begin{aligned}
\left\|D_{\Delta}\right\|_{1} & =\int_{G}\left|\sum_{\gamma \in \Lambda} \gamma\right| d \lambda_{G} \\
& =\int_{G / H} d \lambda_{G / H}(\bar{x}) \int_{H}\left|\sum_{\theta \in \Omega} \sum_{\phi \in \Lambda} \theta(x+y) \phi(x+y)\right| d \lambda_{H}(y),
\end{aligned}
$$

the inner integral being viewed as a function of $\bar{x}=x+H$ Thus, writing $\bar{\theta}$ for $\pi(\theta)$ and noting that $\phi(y)=1$ for $\phi \in \Lambda \subseteq \Phi$ and $y \in H$, we obtain

$$
\begin{equation*}
\left\|D_{\Delta}\right\|_{1}=\int_{G / H} d \lambda_{G / H}(\bar{x}) \int_{H}\left|\sum_{\theta \in \Omega} \alpha(\theta, x) \bar{\theta}(y)\right| d \lambda_{H}(y), \tag{8.3}
\end{equation*}
$$

where

$$
\alpha(\theta, x)=\theta(x) \sum_{\phi \in \Lambda} \phi(x) .
$$

Now, since the dual of H (namely Γ / Φ) is torsion-free ([7], (A.4)), Theorem A of [8] shows that (for a suitable absolute constant $k>0$) we have

$$
\begin{align*}
\int_{H}\left|\sum_{\theta \in \Omega} \alpha(\theta, x) \bar{\theta}(y)\right| d \lambda_{H}(y) & \geqq k\left(\frac{\log N}{\log \log N}\right)^{\frac{1}{4}} \min _{\theta \in \Omega}|\alpha(\theta, x)| \\
& =k\left(\frac{\log N}{\log \log N}\right)^{\frac{1}{4}}\left|\sum_{\phi \in A} \phi(\bar{x})\right|, \tag{8.4}
\end{align*}
$$

since $|\theta(x)|=1$ and $\phi(x)$ depends only $\bar{x} . \quad$ By (8.3) and (8.4),

$$
\begin{equation*}
\left\|D_{\Delta}\right\|_{1} \geqq k\left(\frac{\log N}{\log \log N}\right)^{\frac{1}{4}} \int_{G / H}\left|\sum_{\phi \in A} \phi(\bar{x})\right| d \lambda_{G / I I}(\bar{x}) . \tag{8.5}
\end{equation*}
$$

Since $\Lambda \neq \varnothing$, the remaining integral is not less than the maximum modulus of the Fourier transform of the function $\bar{x} \mid \rightarrow \sum_{\phi \in A} \phi(\bar{x})$, i.e., is not less than unity. Thus, (8.2) follows from (8.5).
8.3 Proof of 7.4 (i). The conclusions stated in case (i) of 7.4 are now almost immediate. If $\mathscr{D}=\left(\Delta_{j}\right)_{j \in N}$ is a grouping of infinite type covering $\Gamma_{0},\left|\pi\left(\Lambda_{j}\right)\right| \rightarrow \infty$ and so, since $\Lambda_{j} \subseteq \Phi,\left|\pi\left(\Omega_{j}\right)\right| \rightarrow \infty$. Then (8.2) shows that (7.6) is satisfied, and it remains only to refer to 7.6.
8.4 Supplementary remarks. The fact that, when G is not 0 -dimensional, (7.6) holds for suitable subgroups Γ_{0} of Γ and suitable groupings $\mathscr{D}=\left(\Delta_{j}\right)_{j \in N}$ covering Γ_{0} can be derived without appeal to Theorem A
of [8]. To do this, it suffices to take $\gamma_{k} \in \Gamma \backslash \Phi(k=1,2, \ldots, m)$ such that the family $\left(\gamma_{k}\right)_{1 \leqq k \leqq m}$ is independent (see [7], (A.10)), define

$$
\Gamma_{0}=\left\{\sum_{k=1}^{m} n_{k} \gamma_{k}: n_{k} \in Z \text { for } k=1,2, \ldots, m\right\}
$$

and make use of the formula
$\int_{G} F\left(\gamma_{1}(x), \ldots, \gamma_{m}(x)\right) d \gamma_{G}(x)$

$$
\begin{equation*}
=(2 \pi)^{-m} \int_{0}^{2 \pi} \ldots \int_{0}^{2 \pi} F\left(e^{i t}, \ldots, e^{i t_{m}}\right) d t_{1} \ldots d t_{m} \tag{8.6}
\end{equation*}
$$

valid for every $F \in C\left(T^{m}\right)$, where T denotes the circle group. (Recall that $\sum_{k=1}^{m} n_{k} \gamma_{k}$ denotes the character $x \mid \rightarrow \gamma_{1}(x)^{n}{ }_{1} \ldots \gamma_{m}(x)^{n}{ }_{m}$ of G.) It then appears that (7.6) holds when one takes

$$
\Delta_{j}=\left\{\sum_{k=1}^{m} n_{k} \gamma_{k}:\left|n_{k}\right| \leqq r_{j, k} \text { for } k=1,2, \ldots, m\right\}
$$

where the $r_{j, k}$ are positive integers satisfying $r_{j, k} \leqslant r_{j, k+1}$ and $\lim _{j \rightarrow \infty} r_{j, k}$ $=\infty$. Moreover, when $m=1$, the Cohen-Davenport result (essentially Theorem A of [8] for the case $G=T$) shows that (7.6) holds for every grouping \mathscr{D} covering Γ_{0}.

The verification of (8.6) is simple. First note that, if G and G^{\prime} are compact groups, and if ϕ is a continuous homomorphism of G into G^{\prime}, then

$$
\begin{equation*}
\int_{G}(F \circ \phi) d \lambda_{G}=\int F d \lambda_{\phi(G)} \tag{8.7}
\end{equation*}
$$

for every $F \in C\left(G^{\prime}\right)$. (This is a consequence of the fact that $F \mid \rightarrow \int_{G}(F \circ \phi) d \lambda_{G}$ is invariant under translation by elements of $\phi(G)$, combined with the uniqueness of the normalised Haar measure on a compact group.) Taking $G^{\prime}=T^{m}$ and $\phi: x \mid \rightarrow\left(\gamma_{1}(x), \ldots, \gamma_{m}(x)\right)$, the stated conditions on the γ_{k} are just adequate to ensure that the annihilator in Z^{m} (identified in the canonical fashion with the dual of T^{m}) of $\phi(G)$ is $\{(0, \ldots, 0)\}$ and so ([7], (24.10)) that $\phi(G)=T^{m}$. Accordingly, (8.6) appears as a special case of (8.7).

It is perhaps worth indicating that special cases of (8.7) can be exploited in other ways. For example, suppose more generally that κ is an arbitrary nonvoid set and that $\left(\gamma_{k}\right)_{k \in \kappa}$ is a finite or infinite independent family of elements of $\Gamma \backslash \Phi$. Denote by Γ_{0} the subgroup of Γ generated by $\left\{\gamma_{k}: k \in \kappa\right\}$. Taking $G^{\prime}=T^{\kappa}$ and $\phi: x \mid \rightarrow\left(\gamma_{k}(x)\right)_{k \in \kappa}$, one may use (8.7) in a similar fashion to show that there is an isometric isomorphism $F \leftrightarrow F \circ \phi=f$ between $L^{p}\left(T^{\kappa}\right)$ (or $C\left(T^{\kappa}\right)$) and the subspace of $L^{p}(G)$ (or $C(G)$) formed of those $f \in L^{p}(G)$ or $\left.C(G)\right)$ such that $\operatorname{sp}(f) \subseteq \Gamma_{0}$. Moreover, if one identifies in the canonical fashion the dual of T^{κ} with the weak
direct product $Z^{\kappa^{*}}$, the said isomorphism is such that $\hat{F}=\hat{f} \circ \phi^{\prime}$, where ϕ^{\prime} is the isomorphism of $Z^{\kappa}{ }^{*}$ onto Γ_{0} defined by $\left(n_{k}\right) \rightarrow \sum_{k \in \kappa} n_{k} \gamma_{k}$.

One consequence of this may be expressed roughly as follows: If the compact Abelian group G is such that $\Gamma \backslash \Phi$ contains an independent family of (finite or infinite) cardinality m, then Fourier series on G behave, in respect of convergence or summability, no better than do Fourier series on T^{m}.

Another consequence is that, if Δ is a subset of Γ_{0}, then Δ is a Sidon (or $\Lambda(p)$) subset of Γ if and only if $\phi^{-1}(\Delta)$ is a Sidon (or $\Lambda(p)$) subset of $Z^{\kappa^{*}}$.
8.5 Further results. Theorem A of [8] implies something stronger than (8.2), namely: if ω is any complex-valued function on Γ such that

$$
\begin{equation*}
\omega(\gamma+\phi)=\omega(\gamma) \quad(\gamma \in \Gamma, \phi \in \Phi) \tag{8.8}
\end{equation*}
$$

so that ω can be regarded as a function on Γ / Φ, and if we write

$$
\begin{equation*}
D_{\Delta}^{\omega}=\sum_{\gamma \in \Delta} \omega(\gamma) \bar{\gamma}, S_{\Delta}^{\omega} f=\sum_{\gamma \in \Delta} \omega(\gamma) \hat{f}(\gamma) \tag{8.9}
\end{equation*}
$$

then, for $\Delta=\Omega+\Lambda$ as in (8.1), we have

$$
\begin{equation*}
\left\|D_{\Delta}^{\omega}\right\|_{1} \geqq k\left(\frac{\log N}{\log \log N}\right)^{\frac{1}{4}} \min _{\gamma \in \Omega}|\omega(\gamma)| \tag{8.10}
\end{equation*}
$$

provided $N=|\Omega|$ is sufficiently large.
So, if we can arrange for $\Omega=\Omega_{j}$ to vary in such a way that the righthand side of (8.10) tends to infinity with j, the substance of 7.6 will lead to a continuous f satisfying $\operatorname{sp}(f) \subseteq \Gamma_{0}$ and

$$
\begin{equation*}
\overline{\lim _{j \rightarrow \infty}} \operatorname{Re} S_{\Delta_{j}}^{\omega} f(0)=\infty \tag{8.11}
\end{equation*}
$$

Taking the most familiar case, in which $G=T, \Gamma=Z$ and $\Phi=\{0\}$, and supposing $\Delta=\Omega$ to range over a sequence $\left(\Delta_{j}\right)$ of finite subsets of Z such that, if $N_{j}=\left|\Delta_{j}\right|$,

$$
\lim _{j}\left(\frac{\log N_{j}}{\log \log N_{j}}\right)^{\frac{1}{4}} \min _{n \in \mathcal{A}_{j}}|\omega(n)|=\infty,
$$

the construction will lead to a continuous f on T such that

$$
\overline{\lim _{j}} \operatorname{Re} S_{\Delta_{j}}^{\omega} f(0)=\infty
$$

In particular, taking $\Delta_{j}=\left\{n \in Z: 2^{j} \leqq n<2^{j+1}\right\}$ it can be arranged that

$$
\sum_{n \in Z} \frac{ \pm \hat{f}(n)}{(\log (2+|n|))^{\alpha}}
$$

diverges for any preassigned distribution of signs \pm and any preassigned $\alpha<\frac{1}{4}$.

Of course, much stronger results are derivable by using random (and unspecifiable!) changes of sign, but there seems little hope of making this even remotely constructive.

§ 9. Discussion of case (ii) : G 0-dimensional

9.1 In this case there is ([7], (7.7)) a base of neighbourhoods of zero in G formed of compact open subgroups W. For each such W the annihilator $\Delta=W^{\circ}$ in Γ of W is a finite subgroup of Γ. Define

$$
\begin{equation*}
k_{W}=\lambda_{G}(W)^{-1} \times \text { characteristic function of } W \tag{9.1}
\end{equation*}
$$

Then k_{W} is continuous, $k_{W} \geqq 0, \int_{G} k_{W} d \lambda_{G}=1$. The transform \hat{k}_{W} of k_{W} is plainly equal to unity on Δ. On the other hand, since W is a subgroup, we have for $a \in W$ and $\gamma \in \Gamma$

$$
\begin{aligned}
\hat{k}_{W}(\gamma) & =\int_{G} k_{W}(x) \overline{\gamma(x)} d \lambda_{G}(x)=\int_{G} k_{W}(x+a) \overline{\gamma(x)} d \lambda_{G}(x) \\
& =\int_{G} k_{W}(y) \overline{\gamma(y-a)} d \lambda_{G}(y) \\
& =\gamma(a) \hat{k}_{W}(\gamma),
\end{aligned}
$$

which shows that $\hat{k}_{W}(\gamma)=0$ if $\gamma \in \Gamma \backslash \Delta$. Thus \hat{k}_{W} is the characteristic function of Δ, and so

$$
\begin{equation*}
k_{W}=D_{W^{\circ}} . \tag{9.2}
\end{equation*}
$$

By (9.1) and (9.2), a routine argument shows that, if $1 \leqq p<\infty$ and $f \in L^{p}(G)$, then

$$
\begin{equation*}
f=\lim _{W} S_{W^{\circ}} f \tag{9.3}
\end{equation*}
$$

in $L^{p}(G)$; and that (9.3) holds uniformly for any continuous f.
9.2 Proof of 7.4 (ii). If Γ_{0} is any countably infinite subgroup of Γ we can choose a sequence W_{j} of compact open subgroups of G such that

