## 5. NON-REALIZABILITY AS COHOMOLOGY ALGEBRAS

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 7 (1961)
Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

## Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

## Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
$=2 i(p-1)$; and the degree of a monomial in the generators is the sum of the degrees of the factors. After these definitions, it follows readily that, for each $p$, the cohomology $H^{*}\left(X ; Z_{p}\right)$ of a space $X$ is a graded $\mathscr{A}_{p}$-module.

As an abstract algebra, $\mathscr{A}_{p}$ has a complicated structure. It is, of course, non-commutative. The Adem-Cartan relations give a kind of commutation law. A monomial in the generators

$$
\beta^{\varepsilon_{0}} \mathscr{P r}_{1} \beta^{\varepsilon_{1}} \mathscr{P}^{r_{2}} \ldots \mathscr{P}^{r_{k}} \beta^{\varepsilon_{k}} \quad\left(\varepsilon_{j}=0 \quad \text { or } \quad 1\right)
$$

is called admissible if $r_{j} \geqq p r_{j+1}+\varepsilon_{j}$ for $j=1,2, \ldots, \mathrm{k}-1$ and $r_{k} \geqq 1$. The Adem-Cartan relations are rules for expressing inadmissible monomials in terms of admissible ones. Cartan has shown [9] that the admissible monomials form a vector space basis for $\mathscr{A}_{p}$. Thus there is a normal form for an element of $\mathscr{A}_{p}$.

Another consequence of the relations is the following result of Adem [3]:
4.12. The algebra $\mathscr{A}_{p}$ is generated by $\beta$ and the $\mathscr{P}^{p^{i}}$ for $\mathrm{i}=0,1,2, \ldots ;$ and $\mathscr{A}_{2}$ is generated by the $\mathrm{Sq}^{{ }^{2 i}}$ for $\mathrm{i}=0,1,2, \ldots$.

Let us see how this is proved for $\mathscr{A}_{2}$. Assume, inductively, that, for $j<n$, each $\mathrm{Sq}^{j}$ is in the subalgebra generated by the $\mathrm{Sq}^{2 i}$. If $n$ is not a power of 2 , then $n=a+2^{k}$ where $0<a<2^{k}$. Set $b=2^{k}$ and apply 4.5. The coefficient in 4.5 of $\mathrm{Sq}^{a+b}=\mathrm{Sq}^{n}$ is congruent to $1 \bmod 2$. It follows that $\mathrm{Sq}^{n}$ is decomposable as a sum of products of $\mathrm{Sq}^{j}$ witl $j<n$. The nductive hypothesis now implies that $\mathrm{Sq}^{n}$ is in the subalgebra of the $\mathrm{Sq}^{2 i}$.

## 5. Non-realizability as cohomology algebras.

The preceding results will now be used to show that many of the graded algebras $F(R, n)^{h}$ on one generator of dimension $n$ and height $h$ are not realizable. Recall that $F(R, n)^{2}$ is realized by the $n$-sphere for each $n$ and any ring $R$. So we shall restrict attention to the cases $2<h \leqq \infty$.

First let $R=Z_{2}$, and assume that $F\left(Z_{2}, \mathrm{n}\right)^{h}$ is realized by a space $X$. Let $x \in \ddot{H}^{n}\left(X ; Z_{2}\right)$ be the generator of $H^{*}\left(X ; Z_{2}\right)$. Since $h>2, x^{2}$ is not zero. By 4.3, $\mathrm{Sq}^{n} x=x^{2}$ is not zero.

By 4.12, $\mathrm{Sq}^{n}$ is a sum of monomials in the $\mathrm{Sq}^{2 i}(i=0,1,2, \ldots)$. This implies that $\mathrm{Sq}^{2 i} x$ is not zero for some $2^{i} \leqq n$. Its dimension $n+2^{i}$ is $\leqq 2 n$. Since the groups $H^{q}\left(X ; Z_{2}\right)=0$ for $n<q<2 n$, it follows that $2^{i}=n$. This proves
5.1. If n is not a power of 2 , and $2<\mathrm{h} \leqq \infty$, then $\mathrm{F}\left(\mathrm{Z}_{2}, \mathrm{n}\right)^{h}$ cannot be realized.

Now let $p$ be a prime $>2$, and consider $F\left(Z_{p}, 2 n\right)^{h}$. Suppose it is realized by a space $X$ for a certain $n$ and $h>p$. Then the generator $x \in H^{2 n}\left(X ; Z_{p}\right)$ is such that $x^{p}$ is non-zero in $H^{2 n p}\left(X ; Z_{p}\right)$. By 4.8, $\mathscr{P}^{n} x=x^{p}$ is not zero. By 4.12, $\mathscr{P}^{n}$ is a sum of monomials in the $\mathscr{P}^{p^{i}}(i=0,1,2, \ldots)$. It follows that some $\mathscr{P}^{p^{i}} x \neq 0$ where $p^{i} \leqq n$. Therefore the dimension $2 n+2 p^{i}(p-1)$ of $\mathscr{P}^{p^{i}} x$ must coincide with one of the nonzero dimensions $2 n s$ of $H^{*}\left(X ; Z_{p}\right)$. Then

$$
n(s-1)=p^{i}(p-1) .
$$

Since $p^{i} \leqq n$, and $n$ divides $p^{i}(p-1)$, it follows that $n=p^{i} m$ where $m$ divides $p-1$. This proves
5.2. If n is not of the form $\mathrm{p}^{i} \mathrm{~m}$ where m divides $\mathrm{p}-1$, and $\mathrm{p}<\mathrm{h} \leqq \infty$, then $\mathrm{F}\left(\mathrm{Z}_{p}, 2 \mathrm{n}\right)^{h}$ cannot be realized.

Passing to integer coefficients, we shall derive the following complete result:
5.3. If $3<\mathrm{h} \leqq \infty$, then $\mathrm{F}(\mathrm{Z}, 2 \mathrm{n})^{\boldsymbol{h}}$ is realizable if and only if $\mathrm{n}=1$ or 2 .

We have seen in $\S 2$ that $F(Z, 2)^{h}\left(F(Z, 4)^{h}\right)$ is realized by the complex (quaternionic) projective ( $h-1$ )-space. Conversely, suppose $X$ realizes $F(Z, 2 \mathrm{n})^{h}$. As $H^{*}(X ; Z)$ has no torsion, the universal coefficient theorem states that

$$
H^{*}(X ; Z) \otimes Z_{p} \approx H^{*}\left(X ; Z_{p}\right)
$$

Since the reduction $\bmod p: H^{*}(X ; Z) \rightarrow H^{*}\left(X ; Z_{p}\right)$ is a ring homomorphism, it follows that $X$ realizes $F\left(Z_{p}, 2 n\right)^{h}$. Taking $p=2,5.1$ asserts that $2 n=2^{s}$ for some $s$. Taking $p=3$, 5.2 asserts that $n=3^{t}$ or $2.3^{t}$ for some $t$. Since both hold, we have $2^{s-1}=3^{t}$ or $2.3^{t}$. This implies $t=0$, and therefore $n=1$ or 2 .

If we knew only that $x^{2} \neq 0$, the above argument with $p=2$ shows that $n$ is a power of 2 . Therefore
5.4. If n is not a power of 2 , then $\mathrm{F}(\mathrm{Z}, 2 \mathrm{n})^{3}$ is not realizable.

Recall, by $\S 2$, that $F(Z, 8)^{3}$ and $F\left(Z_{p}, 8\right)^{3}$ are realized by the Cayley projective plane. However, by $5.3, F(Z, 8)^{4}$ is not realizable. This is in accord with the fact that there is no projective 3 -space over the Cayley numbers (due to non-associativity).

We turn next to the case of odd dimensional generators. Recall that $F(\mathrm{Z}, 2 n+1)^{h}$ is zero except for a $Z$ in dimensions 0 and $2 n+1$, and a $Z_{2}$ in dimensions $(2 n+1) k$ for $1<k<h$.
5.5. If $2<\mathrm{h} \leqq \infty$, then $F(Z, 1)^{h}$ is not realizable.

Assume $X$ realizes $F(Z, 1)^{h}$. Let $\eta: H^{*}(X ; Z) \rightarrow H^{*}\left(X ; Z_{2}\right)$ be reduction mod 2 , and let $x \in H^{1}(X ; Z)$ be the generator. Then $x^{2}$ is not zero and $2 x^{2}=0$. It follows that $\eta x$ and $\eta\left(x^{2}\right)=(\eta x)^{2}$ are not zero. By 4.3 and 4.2,

$$
(\eta x)^{2}=\mathrm{Sq}^{1} \eta x=\beta \eta x
$$

But $\beta \eta$ is identically zero by the definition of $\beta$. This contradiction proves 5.5.

A second proof of 5.5 is based on the Hopf theorem that there exists a mapping $f: X \rightarrow S^{1}$ (assuming $X$ is a complex) such that $x=f^{*} y$ where $y$ generates $H^{1}\left(S^{1}, Z\right)$. Since $y^{2}=0$, it follows that $x^{2}=0$.

## 5.6. $\mathrm{F}(\mathrm{Z}, 3)^{3}$ is realizable.

To see this, let $Y$ be the suspension of the complex projective plane $C P^{2}$. If the latter is represented in the form $S^{2} \cup e_{4}$ (a 2 -sphere with a 4 -cell attached by the Hopf mapping $S^{3} \rightarrow S^{2}$ ), then $Y=S^{3} \cup e_{5}$ where $e_{5}$ is attached by the suspension of the Hopf mapping. As this has order 2 in $\pi_{4}\left(S^{3}\right)$, the 5 -cycle $2 e_{5}$ is spherical. Hence we may adjoin a 6 -cell to $Y$ obtaining a space $X=S^{3} \cup e_{5} \cup e_{6}$ such that $\partial e_{6}=2 e_{5}$. It is easily checked that $H^{*}(X ; Z)$ has $Z$ in dimensions 0 and $3, Z_{2}$ in dimension 6 , and is otherwise 0 . We must show that the square of the
generator $x \in H^{3}(X ; Z)$ is non-zero in $H^{6}(X ; Z)$. It is easily checked that the diagram

$$
\begin{array}{clrr}
H^{3}(X ; Z) & \xrightarrow{\eta} H^{3}\left(X ; Z_{2}\right) & \xrightarrow{g} & H^{3}\left(Y ; Z_{2}\right) \\
\downarrow f & \mathrm{Sq}^{3} & \mathrm{Sq}^{2} & \downarrow \mathrm{Sq}^{2} \\
H^{6}(X ; \mathrm{Z}) & \xrightarrow{\eta^{\prime}} H^{6}\left(X ; \mathrm{Z}_{2}\right) \stackrel{\beta}{\longleftarrow} H^{5}\left(X ; \mathrm{Z}_{2}\right) \xrightarrow{g^{\prime}} H^{5}\left(Y ; \mathrm{Z}_{2}\right)
\end{array}
$$

is commutative where $f$ is the squaring operation, $\eta$ and $\eta^{\prime}$ are reduction $\bmod 2$, and $g, g^{\prime}$ are induced by the inclusion $Y \subset X$. The relation $\beta \mathrm{Sq}^{2}=\mathrm{Sq}^{1} \mathrm{Sq}^{2}=\mathrm{Sq}^{3}$ follows from 4.2, 4.5. All of the indicated groups except $H^{3}(\mathrm{X} ; Z)$ are isomorphic to $Z_{2}$.

It follows that $\eta$ is an epimorphism, and $\eta^{\prime}$ is an isomorphism. Since $Y$ has the same 5 -skeleton as $X, g$ is an isomorphism and $g^{\prime}$ is a monomorphism. But both groups being $Z_{2}, g^{\prime}$ is an isomorphism. Since $\partial e_{6}=2 e_{5}$, it follows that $\beta$ is an isomorphism. Because $\mathrm{Sq}^{2}$ commutes with suspension and is an isomorphism in $C P^{2}$, it gives an isomorphism in $Y$. Thus all the mappings of the diagram excepting $f$ and $\eta$ are isomorphisms. Since $\eta$ is an epimorphism, commutativity implies that $f x=x^{2}$ is not zero.

The preceding results are about as far as one can go using only the primary cohomology operations. There are secondary cohomology operations corresponding to the relations among the primary operations, and they are defined on a cohomology class on which certain primary operations are zero. The secondary operations have been exploited by J. F. Adams [1] to show that there are no mappings $S^{2 n-1} \rightarrow S^{n}$ of Hopf invariant 1 in cases other than $n=1,2,4$ and 8 . He proves this by showing that $\mathrm{Sq}^{2 i}$, which is not decomposable in $\mathscr{A}_{2}$, is decomposable in terms of secondary operations for each $i \geqq 4$. Using an argument similar to the proof of 5.1, Adams obtains the result
5.7. If $\mathrm{i} \geqq 4$ and $2<\mathrm{h} \leqq \infty$, then $\mathrm{F}\left(\mathrm{Z}_{2}, 2^{i}\right)^{h}$ is not realizable.

This and preceding results settle all cases for $F\left(Z_{2}, n\right)^{h}$. It is realizable precisely in the cases $n=1,2$, and 4 with $3 \leqq \mathrm{~h} \leqq \infty$, and $n=8$ with $h=3$.

The result of Adams has been extended to primes $p>2$ by Liulevicius [13] and Shimada [17]. They have shown that $\mathscr{P}^{p^{i}}$
is decomposable in terms of secondary operations for each $i \geqq 1$. Using this result, 5.2 can be improved as follows:
5.8. If n is not a divisor of $\mathrm{p}-1$, and $\mathrm{p}<\mathrm{h} \leqq \infty$, then $\mathrm{F}\left(\mathrm{Z}_{p}, 2 \mathrm{n}\right)^{h}$ cannot be realized.

This leaves a good many unsettled cases. For example can $F\left(Z_{p}, 2(p-1)\right)^{3}$ be realized for some $p>5$ ? Can $F\left(Z_{5}, 8\right)^{4}$ be realized? The cohomology of such a space would necessarily have torsion involving the prime 3. Likewise unsettled are the cases of $F(Z, 2 n+1)^{h}$ where $n>1, h>2$ and $n=1, h>3$. In view of the preceding results, it seems unlikely that any of these can be realized.

For a rough summary, let us exclude the trivial cases $h=1,2$. Then the only $n$ 's for which $F(R, n)^{h}$ is known to be realizable are included among the integers $1,2,4$ and 8 . If $R=Z, Z_{2}$, or $Z_{3}$ it is not realizable for any other $n$. If $R=Z_{p}$, it is not realizable for $h>p$ and $n>2(p-1)$. In short, $F(R, n)^{h}$ is not realizable except in rare cases involving small values of $n$ or $h$.

These negative conclusions have interesting implications in algebra. The successful realizations were obtained by using projective spaces over the real numbers, complex numbers, quaternions, and Cayley numbers. If there is a real division algebra on $n$ units, we can use it to realize $F\left(Z_{2}, n\right)^{3}$; hence our non-existence results imply that $n=1,2,4$ or 8 . Again, since $F\left(Z_{3}, 8\right)^{4}$ is not realizable, it follows that there is no real, associative division algebra on 8 units.

## 6. Hopf algebras.

Historically, we started with the preconception that the cohomology of a space is nothing more than a graded algebra, and we asked if certain simple graded algebras could be realized. On the whole we found that the answer was negative; and this was shown by using the fact that the algebra $\mathscr{A}_{p}$ of reduced powers operates in $H^{*}\left(X ; Z_{p}\right)$. Our preconception was misleading, the cohomology algebra of a space is something more than a graded algebra. Just how much more is not yet clear.

