Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 6 (1960)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES CORPS QUADRATIQUES

Autor: Châtelet, A.

Kapitel: CHAPITRE IV CRIBLES

DOI: https://doi.org/10.5169/seals-36342

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CHAPITRE IV

CRIBLES

27. Calcul des diviseurs premiers.

Les propriétés des idéaux canoniques, dans un corps quadratique, et des idéaux réduits, peuvent être interprétées sous la forme de propriétés des nombres premiers (rationnels), analogues à celles du «crible d'Eratosthène». On reprend, en se plaçant à ce point de vue, les constructions et définitions déjà indiquées, en sorte que le chapitre actuel peut être considéré comme indépendant des autres.

On forme, pour les valeurs entières de x, croissantes à partir de 0, la suite des valeurs d'un trinôme du second degré:

$$F(x) = x^2 + Sx + N;$$
 $\begin{cases} S = -1; & N \text{ quelconque;} \\ S = 0; & N \neq +1; \pmod{4}; \end{cases}$

sous la réserve que le discriminant $D = S^2 - 4N$, n'ait pas de facteur carré, à l'exclusion de 4 (si S = 0); et ne soit pas égal à +4.

On se propose de chercher les facteurs premiers qui sont des diviseurs des valeurs de cette suite.

A cet effet, on détermine un $rang\ r$, tel que pour tout x, au moins égal à r:

$$|F(x)| < (2x - S)^2$$
.

Cette condition est d'ailleurs équivalente, suivant le cas (25) à:

$$D>0$$
; $5(2x-S)^2>D \Leftrightarrow x\geqslant r$; $D<0$; $3(2x-S)^2>|D| \Leftrightarrow x\geqslant r$

(dans le cas de D positif, F(x) est négatif, notamment pour toutes les valeurs de x strictement inférieures à r).

On appelle racine minimum \bar{c}_p , d'un nombre (entier rationnel) premier p, la plus petite valeur entière de x (nulle ou positive) s'il en existe, telle que |F(x)| soit divisible par p.

Les valeurs de x pour lesquelles |F(x)| est divisible par p (zéros de la congruence fondamentale; (5), sont alors les termes de deux progressions arithmétiques, de raison p:

$$\bar{c}_p + \lambda p$$
; $S - \bar{c}_p + (\lambda + 1)p$; ($\lambda \text{ entier } \ge 0$).

Ces deux progressions sont confondues si $2\bar{c}_p$ —S=p; alors p est diviseur du discriminant.

Ces propriétés résultent de la construction des idéaux (7 et 21) les valeurs de x sont les racines des deux idéaux canoniques conjugués, de norme p, donc premiers et de produit égal à l'idéal principal (p). On peut aussi les établir directement comme conséquences de l'étude de la congruence fondamentale (5) pour un module premier.

On peut alors prendre comme base de l'algorithme du crible, la propriété fondamentale suivante.

Pour chaque valeur de x, au moins égale au rang r, si un nombre premier p est diviseur de F(x) et si son carré est au plus égal à |F(x)|, sa racine minimum \bar{c}_p est (strictement) inférieure à x—ou il est diviseur d'une valeur antérieure du tableau— .

$$x \geqslant r$$
; p diviseur de $|F(x)|$; $p^2 \leqslant |F(x)|$:
 \Rightarrow Existe $\bar{c}_p < x$ et p diviseur de $|F(\bar{c}_p)|$.

On peut vérifier directement cette propriété en conjuguant la définition de r et la limitation de p^2 :

$$\begin{array}{rcl} x \geqslant r & \Rightarrow & p^2 \leqslant |F(x)| < (2x-S)^2 \\ & \Rightarrow & (2\bar{c}_p-S)^2 \leqslant p^2 < (2x-S)^2 & \Rightarrow & \bar{c}_p < x. \end{array}$$

On peut aussi bien considérer l'idéal canonique de norme p, de racines $x+\lambda p$ et sa racine minimum (non négative) \bar{c}_p . S'il est réduit, \bar{c}_p est inférieur à r, donc à x. S'il n'est pas réduit $|F(\bar{c}_p)|$ est inférieur à p^2 , de sorte que x ne peut être égal à \bar{c}_p , donc lui est supérieur.

On choisit un nombre h, au moins égal à r-1 ($r-1 \le h < H$), on considère les h premières valeurs de la suite et on décompose chacune d'elles en un produit de facteurs premiers p.

On détermine, pour chacune des valeurs successives de x $(h < x \le H)$, les puissances des nombres premiers p, précédemment obtenus, qui divisent exactement |F(x)|; on forme, pour chaque x, le quotient q_x de |F(x)| par le produit de ces puissances.

- 1. Le premier quotient q_c , ainsi obtenu (c > h), qui soit différent de 1 est un nombre premier.
- 2. Les quotients suivants, pour les valeurs de x, ($h < x < h_1$), vérifiant la condition (c déterminé comme il vient d'être dit):

$$|F(x)| < (2c - S)^2;$$

sont égaux à 1, ou sont des nombres premiers.

1. Quel que soit le diviseur premier p, du quotient q_c , il n'est pas diviseur d'une valeur antérieure |F(x)|, sa racine minimum est c et p^2 est supérieur à |F(c)| (c étant au moins égal à r). Donc:

$$p^2 > |F(c)| \geqslant q_c$$
.

Or il y a au plus un diviseur de q_c , dont le carré lui est supérieur; de sorte que si q_x est différent de 1, il est égal à son seul facteur premier p.

2. Si un quotient q_x , pour x > c, est différent de 1 et n'est pas premier, il admet au moins un facteur premier p_1 dont le carré lui est au plus égal. Ce facteur ne divise aucune des valeurs antérieures à F(c) et sa racine minimum c_1 est au moins égale à c, de sorte que:

$$(2c-S)^2 \leqslant (2c_1-S)^2 \leqslant p_1^2 \leqslant q_x \leqslant |F(x)|.$$

Ce quotient q_x ne peut donc être obtenu que pour une valeur de x, au delà des limites fixées par l'énoncé.

Ces règles peuvent s'appliquer par récurrence ascendante à des suites de valeurs croissantes $h_0 \gg r-1$; $h_1 > h_0$; ...

28. Exemples de calculs.

Le tableau V donne les valeurs pour x de 0 à H=100, du trinôme F(x) déjà utilisé (tableaux I et III), de discriminant D=-39. Le $rang\ r$ (25) est égal à 2.

Les deux premières valeurs de F(x), ont pour diviseurs premiers 2, 3, 5, qui sont des diviseurs de F(x), pour les valeurs respectives:

$$0+2\lambda$$
, $1+2\lambda$; $0+5\lambda$, $4+5\lambda$; $1+3\lambda$.

Il n'y a qu'une progression pour 3, qui est diviseur de D.

On a inscrit devant chaque valeur de la table, le monôme des puissances des facteurs 2, 3, 5, qui en est diviseur, de façon à calculer les quotients q_x . Les périodicités, ou les progressions sont mises en évidence par l'alignement (vertical) de ces facteurs.

Le premier quotient, rencontré ensuite, qui soit différent de 1 est F(3):2=11. Il est premier, on l'a inscrit devant les valeurs dont il est diviseur et qui sont données par les progressions de raison 11 et de premiers termes 3 et 7. Deux seulement F(51) et F(69) sont divisibles par une puissance supérieure de 11; les autres appartenant à des progressions de raison 11^2 sont extérieures à la table.

Le premier quotient obtenu ensuite, qui soit différent de 1 est $F(6):2^2=13$. C'est un nombre premier, diviseur de D; il n'est obtenu que pour les valeurs d'une seule progression $6+13\lambda$, et seulement à la première puissance.

Les quotients suivants, jusqu'à F(13) exclus, qui devient supérieur à $(2\times6+1)^2=169$, sont égaux à 1, ou sont premiers:

$$F(7): (2 \times 3 \times 11) = 1;$$
 $F(8): 2 = 41;$ $F(9): (2^2 \times 5^2) = 1;$ $F(10): (2^3 \times 3 \times 5) = 1;$ $F(11): 2 = 71;$ $F(12): 2 = 83.$

On inscrit ces nombres premiers devant les valeurs de la table, dont ils sont diviseurs, et qui sont données par:

41 pour
$$x = 8, 49, 90; 32, 73;$$
 71 pour $x = 11, 82;$ 59; **83** pour $x = 12, 95;$ 70;

ils n'y figurent qu'à la première puissance.

Le premier quotient différent de 1, qui est rencontré ensuite est F(16): $(2\times3) = 47$; il est premier et il en est de même de ceux des

quotients suivants, qui sont différents de 1, jusqu'à F(33) exclus, qui est supérieur à $(2\times16+1)^2=1$ 089. Certains sont encore diviseurs d'autres valeurs du tableau, ce sont:

47 pour
$$x = 16, 63; 30, 77;$$
 79 pour $x = 17, 96; 61;$

43 pour
$$x = 20, 63; 22, 65;$$
 59 pour $x = 21, 80;$ 37, 96;

61 pour
$$x = 24, 85$$
; 36, 97; **89** pour $x = 26$; 62.

Par contre, les diviseurs premiers 281, 383, 137, ne se rencontrent plus dans le tableau, limité à H=100.

Le premier quotient rencontré ensuite, est F(33): $2^2 = 283$; il est premier et il en est de même de ceux des quotients suivants qui sont différents de 1 jusqu'à F(67) exclus qui est supérieur à $(2\times33+1)^2=4$ 489. Dans ces quotients, ceux qui figurent plus d'une fois dans le tableau, limité à H=100, sont:

127 pour
$$x = 35$$
; 91; **103** pour $x = 47$; 55;

149 pour
$$x = 54$$
; 94; **139** pour $x = 64$; 74.

Le premier quotient rencontré ensuite est F(67): $(2\times3) = 761$; il est premier et il en est de même de tous les quotients suivants de la table, car $(2\times67+1)^2=18$ 225 est supérieur à F(100).

Dans la table, les nombres en caractères gras sont les facteurs p rencontrés pour leur racine minimum \bar{c}_p (ou pour la première fois).

On rappelle qu'il a été indiqué ci-dessus que les nombres premiers ainsi obtenus sont ceux qui appartiennent à douze progressions arithmétiques de raison commune 39.

Le deuxième exemple, donné dans le tableau VI, est constitué par les valeurs pour x de O à H=100, du trinôme, de discriminant D positif (définissant un corps réel):

$$F(x) = x^2-47;$$
 $D = (-4) \times (-47) = 188.$

Les valeurs sont négatives et de valeurs absolues décroissantes jusqu'à F(6); elles sont ensuite positives et croissantes.

Le rang r est égal à 4, car:

$$5 \times (2 \times 3)^2 = 180 < 4 \times 47 < 5 \times (2 \times 4)^2 = 320.$$

Les quatre premières valeurs de F(x) ont pour diviseurs premiers: 2, 47, qui sont diviseurs de D, et 23, 43, 19. On inscrit devant chaque valeur les monômes de ces facteurs qui en sont des diviseurs.

Diviseurs

F(c)

5 710 5 862 6 016 6 172 6 330

75 76 77 78 79

6 490 6 652 6 816 6 982 7 150 7 320 7 492 7 666 7 842 8 020

80 82 83 84 85 85 88 88 88 88

22. 3.5. 149 2. 5.11.83 2. 59.79 22.3. 13.61 24. 607 2. 5. 991 2.3.5. 337

8 200 8 382 8 566 8 752 8 940 9 130 9 322 9 516 9 712

90 91 92 94 95 95 96 99

TABLEAU V.

r = 1 $D = -39 = (-3) \times 13$ $F(x) = x^2 + x + 10$

લં

urs	11 ³ 461 359 149		23.5 27.4 13.4 19.6 8.3 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Diviseurs	29. 5. 1 2. 3. 2. 3. 2. 2. 3. 2. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.		3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
F(c)	2 560 2 662 2 766 2 872 2 980 3 090		4 042 4 170 4 300 4 432 4 566 4 702 4 840 4 980 5 122 5 266 5 412 5 560
υ	50 52 53 54 55	56 57 58 59 60 61	63 64 65 65 66 68 69 70 71 72 73

ırs	11 89	383	137	11	47	167	3. 41	283		127	19	29	373	157	11		227	317	199	13	181	103	181	41
Diviseurs	22. 3. 5. 23. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	2.	2.3.	24. 5.	22. 5.	2.3.	2. 13	22.	$2^4.3.5^2.$	2. 5.	2. 11	23.3.	.22.	2. 5.	2.3.52.		23.	2.3.	2. 5.	25. 5.	22.3.	2. 11.	2. 1	22.3.5.
F(c)	660	994	822	∞	4	1 002	9	13	20	1 270	34	41	49	57	20	1	1 816	6	66	0	17	26	က	97
ပ	25			29	30	31	32			35		37	38	39	07	41	42	43	77	45	97	47	48	49

urs				11			13	11	41			71	83		11		47	42	11	13	43	59	43	281	61
Diviseurs	20	ω 			3.5	٠. 5	67.	က		2 ² . 5 ²	. 3. 5			က	5.		က	٠.,	٠	3.5.	5.	 •	 		5.
				-							23.										5.	23	22	જં	.5
F(c)	10	12	16	22	30	04	52	99	83	100	120	143	166	192	220	250	282	316	352	390	430	472	516	299	610
ວ	0	1	3	က	7	5	9	7	∞	6	10	11			14					19	20	21	22	23	77

Les quotients suivants, pour les valeurs de x, définies par:

$$|F(x)| \leqslant (2 \times 4)^2 \Rightarrow x \leqslant 10$$

sont uniquement des valeurs, ou des moitiés de valeurs du polynôme puisqu'à l'exception du diviseur 2, la première valeur devant laquelle on a inscrit un des diviseurs précédents est F(16) divisible par 19. Ce sont:

$$F(4) = -31;$$
 $F(5): 2 = -11;$ $F(6) = -11;$ $F(7): 2 = +2;$ $F(8) = +17;$ $F(9): 2 = +17;$ $F(10) = +53.$

On les inscrit devant les valeurs suivantes de la table qu'ils divisent, éventuellement avec l'exposant convenable.

Le quotient suivant F(11): 2 = +37 est premier; ceux qui suivent pour les valeurs de x:

$$|F(x)| \leqslant (2 \times 11)^2 \quad \Rightarrow \quad x \leqslant 23,$$

sont égaux à 1, ou sont premiers. Ces derniers sont encore égaux aux valeurs, ou aux moitiés des valeurs du polynôme; les seuls quotients donnés par des diviseurs déjà inscrits, à l'exception de 2, sont:

$$F(16): (19 \times 11) = +1;$$
 $F(22): (23 \times 19) = +1.$

Les seuls nombres premiers ainsi obtenus qui figurent encore dans la table, limitée à H=100, sont 37, 97, 61, 89.

Le premier quotient suivant qui est différent de 1 est F(28): 11 = 67, ceux qui suivant pour les valeurs de x:

$$|F(x)| \leqslant (2 \times 28)^2 \quad \Rightarrow \quad x \leqslant 56,$$

sont égaux à 1 ou premiers; ceux qui figurent plus d'une fois dans la table sont: 67, 127, 101, 107, 151.

Au-delà de x=56, tous les quotients sont premiers ou égaux à 1. La disposition typographique est semblable à celle de l'exemple précédent, les nombres premiers obtenus pour la première fois (pour leur racine minimum) sont en caractères gras.

L'application de la loi de la réciprocité (22) montre que les nombres premiers ainsi obtenus sont ceux qui appartiennent à $\varphi(168)$: 2=46 progressions arithmétiques, de raison commune 168 et de premiers termes: 1, 9, 11, 15, 17, 19, 21, 23, 25, 31, 35, 37, 39, 43, 49, 53, 61, 65, 67, 81, 87, 89, 91, 97, 99, 101, 107, 121, 123, 127, 135, 139, 145, 149, 151, 153, 157, 163, 165, 167, 169, 171, 173, 177, 179, 187.

Diviseurs

6 353 3 257 11. 607 11. 311 43. 163 37. 97 7 349 3 761 43. 179 31. 127

80 82 83 84 85 85 88 88 89

6 353 6 514 6 677 6 842 7 009 7 178 7 349

%

7 522 7 697 7 874

3

503 4 877 . 269

8 053 8 234 8 417 8 602 8 789 8 978 9 169 9 362 9 557 9 754

90 92 92 94 95 95 97 98

2 789 17. 337 17. 173 6 037 19. 163

5 578 5 729 5 882 6 037 6 194

75 76 77 78 79

TABLEAU VI.

 $F(x) = x^2 - 47$ $D = 188 = (-4) \times (-47)$ r = 188

4.

Diviseurs	11. 223	1 277		1 381		1 489	3 089	1 601		17. 101	19.11. 17	1. 16	3 797	53. 37	4 049	2 089	31. 139	2 221	23. 199	2 357	23. 211	Ţ.		6	
		જ		3		%		23		જ		%		%		%		જ		2.		%		%	
F(c)	4	55	2 657	97	∞	97	0.8	20	3 317	43	55	67	79	95	70	4 178	30	44	57	71	85	66	13	5 282	43
υ	50		25		54	55	56	57	58	59	09	61	62		79			67		69	70	7.1	72	73	7.4

Diviseurs	47	2.23	43	2. 19	31	2. 11	11	2.	17	2.17	53	2.37	97	2. 61	149	2. 89	19.11	2.112	277	2. 157	353	2. 197	23. 19	2. 241	232
F(c)	_ 47	95 —	— 43	- 38	- 31	- 22	- 11	+	17	34	53	7.4	97	122	149	178	209	242	277	314	353	394	437	787	529
0	0	-	જ	က	7	ဂ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54

urs		37	11	67	397	853	457	977	521		31		661	127	29	553			53			0	23	19	107
Diviseurs	172	17.	31.	11.						-	19.	T		11.	11.	₩	43.	17.	17.	1	23.	67	47.	37.	_
Д 	.2		%		3.		3		3.		.5		3.		.2		%		3.		%		%		2
F(c)	578	629	685	737	194	5	-	-	70	10	1 178	54	35	39	1.47	5	63	71	80	1889	97	90	16	25	35
	25	98	27	88	53	30	31	32	က	4	35	9	7	∞							45 1				

29. Successions de nombres premiers.

Dans le deuxième exemple traité, les quinze premières valeurs de |F(x)| sont des nombres premiers ou des doubles de nombres premiers. Cette particularité tient à ce que les valeurs de |F(x)| pour x < r, sont des nombres premiers relativement grands, qui ne se retrouvent, par suite, dans la table, qu'à des rangs relativement éloignés. Il existe d'autres exemples de ce même phénomène.

Un exemple (bien connu, au moins depuis Euler) est constitué par les valeurs du trinôme (à discriminant D négatif):

$$F(x) = x^2 + x + 41; \quad D = -163.$$

Le tableau VII en donne les valeurs pour les valeurs entières de x, de 0 à 299; pour celles qui ne sont pas des nombres premiers, on a seulement inscrit leur décomposition en facteurs premiers.

Les quarantes premières valeurs de F(x) sont des nombres premiers.

Le rang r est égal à 4; les quatre premières valeurs sont les nombres premiers:

Ils ne se retrouvent comme facteurs qu'au-delà de x = 39. On peut montrer par récurrence sur c, compris entre 4 et 39 inclus, que F(c) est un nombre premier, de racine minimum égale à c. Car, il en est ainsi pour F(4), et, par hypothèse de récurrence, pour toute valeur F(x), x étant compris entre 0 inclus et c exclus; en outre la racine conjuguée du nombre premier F(x) est supérieure à 39, puisque

$$F(x)-x-1 = x^2+40 \ge 40.$$

Il s'en suit que F(c) ne peut être divisible par aucun des nombres premiers F(x), il est donc premier et de racine minimum c.

A l'exclusion des sept décompositions:

$$F(40) = 41^2$$
, $F(41) = 41 \times 43$, $F(44) = 43 \times 47$, $F(49) = 47 \times 53$, $F(56) = 53 \times 61$, $F(65) = 61 \times 71$, $F(76) = 71 \times 83$

les valeurs de F(40) à F(80), sont des nombres premiers (soient 34 nombres premiers nouveaux).

$A.\ CHATELET$

TABLEAU VII.

 $F(x) = x^2 + x + 41$; discriminant: -163; r = 4.

l		1		1 1		, ,	
x	F(x)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	F(x)	x	F(x)	x	F(x)
0	41	42	1 847	84	43×167	126	61×263
1	43	43	1 933	85	7 351	127	43×379
2	47	44	43×47	86	7 523	128	16 553
3	53	45	2 111	87	43×179	129	16 811
4	61	46	2 203	88	7 873		, , , , , , , , , , , , , , , , , , ,
5	_ 71	47	2 297	89	83×97	130	43×397
6	83	48	2 393			131	17 333
7	97	49	47 imes 53	90	8 231	132	17 597
8	113	-	0.50	91	47×179	133	17 863
9	131	50	2 591	92	8 597	134	18 131
	1	51	2 693	93	8 783	135	18 401
10	151	52	2 797	94	8 971	136	71×263
11	173	53	2 903	95	9 161	137	18 947
12	197	54	3 011	96	47×199	138	47×409
13	223	55	3 121	97	9 547	139	19 501
14	251	56	53×61	98	9 743		101
15	281	57	3 347	99	9 941	140	131×151
16	313	58	3 463			141	20 063
17	347	59	3 581	100	10 141	142	20 347
18	383		0.504	101	10 343	143	47×439
19	421	60	3 701	102	53×199	144	20 921
		61	3 823	103	10 753	145	21 211
20	461	62	3 947	104	97×113	146	21 503
21	503	63	4 073	105	11 171	147	71×307
22	547	64	4 201	106	11 383	148	22 093
23	593	65	61×71	107	11 597	149	22 391
24	641	66	4 463	108	11 813		
25	691	67	4 597	109	53×227	150	22 691
26	743	68	4 733			151	22 993
27	797	69	4 871	110	12 251	152	23 297
28	853	-		111	12 473	153	23 603
29	911	70	5 011	112	12 697	154	23 911
		71	5 153	113	12 923	155	53×457
30	971	72	5 297	114	13 151	156	24 533
31	1 033	73	5 443	115	13 381	157	24 847
32	1 097	74	5 591	116	13 613	158	25 163
33	1 163	75	5 741	117	61×227	159	83×307
34	1 231	76	71×83	118	14 083		
35	1 301	77	6 047	119	14 321	160	25 801
36	1 373	78	6 203			161	151×173
37	1 447	79	6 361	120	14 561	162	53× 499
38	1 523			121	113×131	163	41×653
39	1 601	80	6 521	122	41×367	164	41×661
		81	41×163	123	41×373	165	27 431
40	41^{2}	82	41×167	124	15 541	166	27 763
41	41×43	83	7 013	125	15 791	167	28 097
		<u> </u>		J———		l ———	

TABLEAU VII (suite).

\boldsymbol{x}	F(x)	x	F(x)	x	F(x)		x	F(x)
168	28 433	201	9 7×419	234	113× 487		267	71 597
169	28 771	$\begin{vmatrix} 201\\202 \end{vmatrix}$	41 047	235	55 501		268	53×1 361
109	20 111	203	41 453	236	223×251		269	72 671
170	43× 677	204	$41 \times 1 \times$	237	47×1201		200	12011
171	29 453	$\begin{vmatrix} 204 \\ 205 \end{vmatrix}$	$41 \times 1 021$ $41 \times 1 031$	238	56 923		270	179×409
172	83×359	206	42 683	239	61×941		271	131×563
173	43×701	207	71×607	200	01 / 341		272	74 297
174	30 491	208	53×821	240	57 881		273	74 843
175	30 841	209	197×223	241	58 363		274	75 391
176	31 193	200	131 / 220	242	83× 709		275	75 941
177	31 547	210	44 351	243	59 333		276	76 493
178	61×523	211	44 773	244	163×367		277	77 047
179	32 261	212	45 197	245	41×1471	.	278	71×1 093
1.0	02 201	213	43×1 061	246	41×1483		279	47×1663
180	32 621	214	46 051	247	61 297			
181	32 983	215	53× 877	248	61×1013		280	78 721
182	33 347	216	43×1 091	249	167×373		281	79 283
183	33 713	217	113×419			ĺ	282	79 847
184	173×197	218	71×673	250	62 791	·	283	97×829
185	. 47×733	219	48 221	251	167×379		284	47×1723
186	97×359			252	131×487		285	81 551
187	61×577	220	48 661	253	64 303		286	41×2 003
188	35 573	221	49 103	254	64 811		287	41×2017
189	35 951	222	49 547	255	83×787		288	83 273
		223	49 993	256	43×1531		289	71×1 181
190	47×773	224	50 441	257	66 347			
191	36 713	225	50 891	258	66 863		290	84 431
192	37 097	226	51 343	259	43×1567		291	151×563
193	37 483	227	51 797				292	85 597
194	37 871	228	52 253	260	67 901		293	86 183
195	38 261	229	52 711	261	53×1291	4 .	294	86 771
196	38 653			262	68 947		295	199×439
197	39 047	230	53 171	263	69 473		296	281×313
198	39 443	231	53 633	264	70 001		297	88 547
199	39 841	232	47×1 151	265	251×281		298	97×919
200	40 241	233	54 563	266	179×397	1	299	43×2087

Au-delà de F(40), on inscrit les premiers nombres premiers de la table devant les valeurs qu'ils divisent, on obtient les sept décompositions indiquées, puis $F(81) = 41 \times 163$, qui comporte un diviseur premier non encore obtenu, ou de racine minimum 81.

A toute valeur F(c), pour c compris entre 7 et 80 inclus, exception faite des valeurs de décomposition, on peut appliquer le raisonnement de récurrence précédent. Tout F(x), de F(6) à F(c) exclus, étant

supposé premier, de racine minimum x, sa racine conjuguée est supérieure à 81, car:

$$F(x)-x-1 = x^2+40 \ge 49+40 = 89.$$

Il ne divise donc pas F(c), qui n'étant pas divisible par les valeurs de F(0) à F(6) est un nombre premier de racine minium c.

Pour toutes les valeurs de x, au-delà de 80 et telles que:

$$F(x) \leqslant (2 \times 80 + 1)^2 \quad \Rightarrow \quad x \leqslant 161,$$

les quotients obtenus (après division éventuelle par les monômes des nombres premiers précédents, qui peuvent être limités aux douze premiers), sont des nombres premiers ou sont égaux à 1.

Certains sont diviseurs de valeurs ultérieures du tableau concurremment avec des nombres premiers déjà trouvés. On les inscrit et on forme les quotients qui sont tous premiers ou égaux à 1, dans la limite de la table, dont les valeurs restantes sont inférieures à $(2\times161+1)^2$.

On a indiqué, en caractère gras, les nombres premiers obtenus comme facteur d'une décomposition effective. Leur fréquence augmente naturellement, dans le prolongement de la table. On peut même trouver une suite de valeurs F(x), en nombre H, arbitrairement grand, dont aucune ne soit un nombre premier.

Il suffit de prendre x compris entre P et P+H, le nombre P étant le produit des facteurs premiers qui divisent les H premières valeurs |F(c)|. Il est manifeste que chacune des valeurs F(x), ainsi considérées est divisible par au moins un de ces nombres premiers, sans lui être égal (H étant pris au moins égal à r).

Cependant on ne peut pas affirmer qu'il n'y a qu'un nombre fini de valeurs F(x) qui soient des nombres premiers.

Le tableau VIII donne trois autres exemples, de types différents, limités chacun aux soixante premières valeurs des trinômes.

Pour le trinôme, de discriminant D positif, impair;

$$F(x) = x^2 + x - 109;$$
 $D = 347 = (-19) \times (-23);$

les vingt-huit premières valeurs sont des nombres premiers.

Pour chacune d'elles la deuxième racine est supérieure à 27;

(pour F(9) = -19, et F(11) = +23, qui sont diviseurs du discriminant, les deux progressions sont confondues).

Dans les dix-neuf valeurs suivantes, seize sont des nombres premiers, les trois autres étant des produits de nombres premiers déjà obtenus:

$$F(28) = 19 \times 37;$$
 $F(34) = 23 \times 47;$ $F(45) = 37 \times 53.$

(Le raisonnement fait par récurrence dans l'exemple précédent reste valable.)

La valeur suivante F(47) est divisible par 19; mais le quotient est un nouveau nombre premier, ou de racine minimum 47.

Tous les quotients des valeurs restantes sont des nombres premiers ou sont égaux à 1.

Pour le trinôme de discriminant D positif, multiple de 4:

$$F(x) = x^2 - 83;$$
 $D = 332 = (-4) \times (-83)$

2 étant diviseur du discriminant, toutes les valeurs, pour x impair sont divisibles par 2, mais non par 4.

Les vingt-quatre premières valeurs sont des nombres premiers ou des doubles de nombres premiers. Toutefois deux facteurs premiers se trouvent deux fois et un d'eux est égal à 1:

17 =
$$|F(7)|$$
: 2 = $F(10)$; 19 = $|F(8)|$ = $F(11)$: 2;
1 = $|F(9)|$: 2.

Dans les vingt valeurs suivantes: treize sont des nombres premiers ou des doubles de nombres premiers; les sept autres sont des produits ou des doubles de produits des nombres premiers impairs, précédemment obtenus.

Tous les quotients des valeurs restantes de la table, au-delà de F(43), qui sont différents de 1 et de 2, sont des nombres premiers.

Pour le trinôme de discriminant négatif, multiple de 4:

$$F(x) = x^2 + 37;$$
 $D = -148 = (-4) \times (+37);$

2 est encore diviseur du discriminant; toutes les valeurs pour x impair sont divisibles par 2, mais non par 4.

Les dix-huit premières valeurs, ou leurs moitiés, sont des nombres premiers. Dans les trente-huit valeurs suivantes, vingt-neuf sont des nombres premiers ou des doubles de nombres premiers; les neuf autres, ou leurs moitiés sont des produits des nombres premiers impairs déjà obtenus.

TABLEAU VIII.

-37)		0 937	$1 2 \times 499$	0	$3 \times 2 \times 563$	4 1193	3×6	31	$2 \times 19 \times$	1 48	9 2×19×41	0 1 637	∞			19	2×103	2 1 5	2×112	2 34	$9 \mid 2 \times 23 \times 53$	$0 \mid 43 \times 59$	2×13	27	2×142	295	$\frac{5}{2 \times 1531}$	6 19×167	$2 \times 31 \times$	49×179
(+)×(+—)= 	<u> </u>	7 3	9	1 3	3	3	1 3	3	3	1 3	6	7 4	6	1 4	3 4	3 4	4	3 4	3 47	9	9 6	5	9	1 5	3	3 2	1 5	I	3	1 5
D=	F(C)	<i>ස</i>	2×1	7	2×2	5	2×3		5×4	~~	2×5	13	2×7		2×10	23	2×13	29	2×16	X 6	2×19	19×2	2×23	52	2×28	61	\times	23×3	\times	85
,	သ ၁	0	Ţ	જ	က	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22			25	56	27	

3;	F(c)	9×4	2×439	941	X	X	X	CS	2×643		2×719	×	$2\times17\times47$		2×883	17×109	X	19×107		2 221	$2 \times 19 \times 61$	0 1.47	1 6	2.62	7 ×	2 83	1	43×7	2×1583	7×19	~
8	0	30	31	32	33	34	35	36	37		39	40.	41	42	43	77	45	97	747	87	49	7.			53	54	55	26	57	58	59
$F(x) = x^2$ $D = (-4) \times$	F(c)		-2×41	- 79		67	-2×29	7	-2×17	_	-2×1	+ 17	2×19	61	2×43	$\overline{}$	2×71		0	C.	2×139	317	2×179	7	2×223	X	2×271	593		7	2×379
	၁	0	-	۶۲	က	7	7.0	9	~	∞	6	10	11	12	13	14	15	16	17	18	19	20	2.1	22	23	-24	25	56	27	28	

;;	F(c)	821	823	176	1 013		1151	1 223	1 297	37	1 451	1 531	1 613	1 697	1 783	1 871	\times	2 053	19×113	2 243		2 441	54	2 647	1	∞	6	0	191 191	3 313	47×73
$x - 109 \times (-23)$	0	30	31	32	33	34	35	36		38	99	40	41	42	43	77	45	97	47	87	67	50	51	55	53	54	55	99	57	58	29
$F(x) = x^2 + D = (-19)$	F(c)	-109	-107	—103	- 97	68 —	79	67		- 37		+	23	2.57			3	163	6	3		$\overline{}$	5	6	677	491	541	593	647	19×37	761
		0	-	2	က	7	2	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	25	56	27	28	53

(à suivre)