
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 35 (1936)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: RELATIONS ENTRE LA TOPOLOGIE ET LA THÉORIE DES
INTÉGRALES MULTIPLES

Autor: de Rham, Georges

DOI: https://doi.org/10.5169/seals-27312

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-27312
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


RELATIONS ENTRE LA TOPOLOGIE

ET LA THÉORIE DES INTÉGRALES MULTIPLES1

PAR

Georges de Rham (Lausanne).

Le fait que la Topologie intervient dans des problèmes relatifs
aux intégrales multiples a été aperçu déjà par les fondateurs
de la topologie des variétés: Riemann, Betti et Poincaré, à

propos de l'étude des intégrales attachées à une variété
algébrique. M. Cartan, amené sur ce même sujet par ses recherches

sur les groupes continus, a formulé pour la première fois d'une
manière précise les deux premiers des trois théorèmes dont je
vais parler au début, et qui résument, à mon avis, toutes les

relations entre la topologie et la théorie des intégrales partout
régulières sur une variété close.

Considérons une variété à n dimensions V, close et orientable.
Une intégrale p-uiple sur cette variété est un nombre

qui dépend de deux choses: l'élément différentiel oo et le champ
d'intégration c.

1 Conférence faite le 21 octobre 1935 dans le cycle des Conférences internationales
des Sciences mathématiques organisées par l'Université de Genève; série consacrée à
Quelques questions de Géométrie et de Topologie.

1. — Les trois théorèmes généraux.

c
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L'élément où, que j'appellerai forme de degré p ou p-forme,
est une expression de la forme

<">=2 Ai1H...ii,dxi1dxH
(il... ip)VP

les A sont des fonctions continues et à dérivées continues des
coordonnées x1: x2, xn sur V. Le champ d'intégration c, que
j'appellerai champ à p dimensions ou p-champ, est formé par
une ou plusieurs variétés orientées à p dimensions tracées sur V.
Les p-champs peuvent être additionnés, soustraits et multipliés
par un entier quelconque.

Ces intégrales jouissent des mêmes propriétés générales que
les intégrales curvilignes, de surface ou triples dans l'espace
ordinaire, qui en sont des cas particuliers. D'abord, I est fonction
linéaire du champ c, et fonction linéaire aussi de la forme où.

Ensuite, on a la formule générale de Stokes

I co' I Cù

c m
où est une /?-forme régulière quelconque, c est un (p + l)-champ
quelconque, où' est la (p + l)-forme appelée dérivée (extérieure)
de où, f(c) le p-champ frontière de c. Cette formule générale
contient comme cas particuliers les formules bien connues
d'Ampère-Stokes, de Green et d'Ostrogradsky.

Remarquons ici l'analogie qui existe entre l'opération de

dérivation appliquée aux formes et celle du passage à la frontière
appliquée aux champs. Elles sont toutes deux linéaires, et

répétées deux fois de suite, elles produisent toutes deux zéro :

(CO')' 0 f(f(c)) 0

Les champs dont la frontière est nulle sont appelés champs
fermés ou cycles. Les formes dont la dérivée est nulle sont
appelées exactes. Par analogie avec la définition des homologies
entre les champs, je dirai que deux p-formes oq et où2 sont
homologues, oq ~ où2, si leur différence oq — où2 est identique à la
dérivée d'une (p — l)-forme régulière sur toute la variété V.

Un intérêt particulier s'attache aux valeurs que peut prendre
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l'intégrale d'une forme exacte étendue à un cycle, valeurs qu'on
appelle périodes. La formule de Stokes permet de faire une

première remarque évidente: Vintégrale d'une forme exacte

étendue à un cycle homologue. à zéro est nulle. Etendue à deux cycles

homologues entre eux1 elle prend deux valeurs égales.

Si le p-ième nombre de Betti de V est égal à B, on peut trouver,
comme on sait, un système de B ^-cycles e3, c2, cB, qui ne sont
reliés par aucune homologie et tels que tout p-cycle est homologue

à une combinaison linéaire à coefficients entiers de ces

B p-cycles. Un tel système est dit fondamental, les cycles qui le

constituent seront dits cycles fondamentaux.
Il résulte de là que toute période d'une /?-forme exacte est

égale à une combinaison linéaire à coefficients entiers des

périodes relatives aux cycles fondamentaux (ou périodes
fondamentales).

Existe-t-il des formes exactes, régulières sur toute la variété V,
ayant des périodes fondamentales arbitrairement choisies La
réponse est affirmative et constitue le

Theoreme I. — Il existe toujours une p-forme exacte et régulière
sur V, ayant des périodes fondamentales arbitrairement données à
l'avance.

La formule de Stokes conduit à une seconde remarque
évidente: c'est que les périodes d'une forme homologue à zéro sont
toutes nulles. Le théorème suivant affirme la réciproque.

Théorème IL — Toute p-forme exacte et régulière sur V, dont
les périodes sont toutes nulles, est la dérivée d'une (p — 1 )-forme
régulière sur V.

On peut aussi énoncer ces théorèmes de la manière suivante:

I. La condition nécessaire et suffisante pour que le p-cycle c
soit homologue à zéro est que

c

quelle que soit la p-forme exacte oo.
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II. La condition nécessaire et suffisante pour que la p-forme
exacte oo soit homologue à zéro est que

quel que soit le p-cycle c.

Sous cette forme, ils font penser au théorème suivant (théorème

de dualité de Poincaré), avec lequel ils sont en relation
étroite. Désignons par I (cv. cn~p) le nombre algébrique des»

points d'intersections du p-cycle cv avec le (n — p)-cycle cn~p.

Alors: la condition nécessaire et suffisante pour que le cycle cp

soit homologue à zéro, c'est que I (cp. cn~p) 0 quel que soit le

cycle cn~p.

Généralisons un peu la notion de cycle, en donnant encore ce

nom aux combinaisons linéaires à coefficients constants
quelconques (et non nécessairement entiers) de cycles ordinaires. Le
symbole I (cn. cn~p) conserve sa signification, mais il n'est plus
nécessairement égal à un nombre entier. Il résulte du théorème
de Poincaré qu'à toute p-forme exacte oo on peut associer un
(n -— p)-cycle cn~p tel que

quel que soit le p-cycle cp. Il est clair que ce cycle associé n'est
déterminé qu'à une homologie près, et que sa connaissance

équivaut à celle des périodes fondamentales de co.

En tenant compte du théorème de Poincaré, le contenu de nos
I

deux théorèmes revient alors à ceci :

I. A tout (n — p)-cycle correspond une p-forme exacte
j associée.

II. Pour qu'une p-forme exacte soit homologue à zéro, il suffit
i que le (n — p)-cycle associé le soit.

De deux formes cox et oo2, de degrés p et q^ on déduit une forme
jj bien déterminée de degré p + <7, leur produit (extérieur) oox o2.
| Si o^1 et oo2 sont des formes exactes, le produit l'est aussi. Il est

co 0

c
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alors naturel de se demander comment les périodes du produit

dépendent de celles des facteurs. La réponse est fournie par le

Théorème III. — Si et c2 sont les cycles associés à oq et w2,

le cycle associé au produit eq oq est le cycle c2 c1 intersection de c2

avec cx.

Supposons en particulier que q — n — p ; le produit oq co2

est alors une ii-forme dont la seule période fondamentale est

j'ou cù2

V

et le théorème' III se réduit à l'égalité

j cojCùa I (c2 - Cj)

V

En combinant cette égalité avec le théorème de dualité de

Poincaré, on obtient le résultat suivant:

Pour que la ip-forme exacte co1 soit homologue à zéro, il faut et il
suffit que

j OU CO 2 0

Y

quelle que soit la (n — p)-forme exacte cù2.

2. — Applications et compléments.

Voici une application intéressante de ce dernier résultat.
Supposons que V soit la riemannienne à 4 dimensions qui
correspond à une surface algébrique, et oq l'élément d'une
intégrale double de première espèce attachée à cette surface.
Si g)2 est l'imaginaire conjuguée de oq, on voit immédiatement

que

J cOjCOg > 0

Donc oq ne peut pas être homologue à zéro : une intégrale double
de première espèce ne peut pas avoir toutes ses périodes nulles.
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C'est le théorème démontré par M. W. V. D. Hodge en 1930.

(Dans cet ordre d'idées, le théorème III est le véritable fondement

topologique des relations de Riemann et de M. Hodge
entre les périodes des intégrales abéliennes.)

Dans un ordre d'idées voisin, je désire mentionner un complément

important apporté par M. Hodge au théorème I pour les
variétés V qui sont des espaces de Riemann.

Supposons d'abord que V soit une surface de genre p; le

premier nombre de Betti est égal à 2p, il y a donc 2p cycles
fondamentaux et une intégrale curviligne possède 2p périodes
fondamentales. Or, depuis Riemann, on sait dans ce cas beaucoup
plus que ce que nous apprend le théorème I, on sait en effet

qu'il existe une intégrale harmonique ayant des périodes
fondamentales arbitraires, et c'est ce théorème dé existence d'intégrales
harmoniques que M. Hodge a généralisé de la manière suivante.

Dans le plan, avec des coordonnées rectangulaires xy, la
condition pour que

J + Brfy

soit harmonique peut s'énoncer ainsi:
1° La forme to Adx + Bdy doit être exacte (to' 0 ou

Ay RX)'
2° La forme to* — Bdx -f- Ady (que j'appellerai adjointe

à to) doit être aussi exacte (to*' *** 0 ou A^ + By 0).
Si to df, la première condition est automatiquement

vérifiée et la seconde se réduit à l'équation de Laplace A/ 0.

La notion de forme adjointe n'est pas topologique comme celles
de dérivée extérieure ou de produit extérieur, mais elle fait
intervenir la métrique; on peut considérer to comme le travail
élémentaire du vecteur v (A, B), to* est alors le travail
élémentaire du vecteur c* (— B, A) qui se déduit de 9 par
une rotation de 90 degrés. Remarquons aussi que l'élément de

l'intégrale de Dirichlet, (A2 + B2) dx dy, n'est pas autre chose

que le produit de to par la forme adjointe to*.
Dans un espace de Riemann à n dimensions, toute p-forme to

peut être considérée comme le produit scalaire de l'élément de

variété à p dimensions par un système de /^-vecteurs déterminé
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en chaque point de l'espace; la forme adjointe où*, de degré

n — p, est alors le produit scalaire de l'élément de variété à

n — p dimensions par le système des (n — p)-vecteurs
supplémentaires 1. Toute p-forme où possède donc une forme adjointe
où*, de degré n — p; et le produit oùoù*, égal au produit de

l'élément de volume à n dimensions par le carré de la mesure du

système de p-vecteurs déterminant où, est une tt-forme
essentiellement positive.

On peut maintenant généraliser la notion d'intégrale harmonique

en disant que, où étant une p-forme régulière sur l'espace
de Riemann V, /où est harmonique si où et la forme adjointe où*

sont toutes deux exactes. Cette définition posée, M. Hodge
démontre l'existence d'une intégrale p-uple harmonique ayant
des périodes arbitrairement données en suivant la méthode de

Riemann-Hilbert du principe de Dirichlet. Considérant la
famille de toutes les p-formes exactes et régulières sur l'espace V
et ayant les périodes fondamentales données, il prouve qu'il y en
a une qui rend l'intégrale ft-uple / oùoù* minimum et qui fournit

y
l'intégrale harmonique cherchée. Pour s'assurer de l'unicité, il
suffit de prouver qu'une intégrale harmonique non identiquement

nulle ne peut pas avoir toutes ses périodes nulles, et cela
résulte de l'inégalité f oùoù* > 0 (même raisonnement que pour

y
les intégrales doubles de première espèce).

Voici un autre théorème qui apporte un complément analogue
au théorème II:

où étant une (p -f 1 )-forme régulière sur Vespace de Riemann V,
et homologue à zéro, il existe une forme ®, régulière sur V, telle que
W oo et dont la forme adjointe est homologue à zéro. Cette forme
unique, est caractérisée, dans la famille de toutes les formes régulières

dont la dérivée est égale à où, par la propriété de rendre Vintégrale

f ®sö* minimum.
V

Dans le cas n 2 et p 1, cela revient à affirmer l'existence

i Voir, par exemple: E. Cartan, La Géométrie des espaces de Riemann (Mémorial
des Sciences mathématiques).
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d'une fonction uniforme sur une surface donnée S, dont le lapla-
cien soit égal à une fonction donnée / telle que /fda 0.

s

3. — Principe de la démonstration du théorème I.

Considérons, pour fixer les idées, une variété à 3 dimensions
sur laquelle on a un cycle à 2 dimensions c2 non homologue à

zéro. Il s'agit de construire une forme exacte de degré 2, régulière

sur toute la variété, dont la période relative à c2 ne soit
pas nulle. Une telle forme

co A dy dz + B dzdx + Cdxdy

peut être considérée comme l'expression du débit élémentaire
d'un courant électrique (stationnaire) de volume, son intégrale
étendue à un champ c à 2 dimensions est alors le débit total à

traver-s c et la condition que la forme soit exacte (oL 0 ou

+ By + C'z 0) exprime que le courant est conservatif.
Notre problème consiste donc à construire un courant de

volume, régulier et conservatif sur toute la variété, dont le débit
total à travers c2 ne soit pas nul.

D'après le théorème de dualité de Poincaré, il existe un cycle
à une dimension c\ dont le nombre algébrique des points
d'intersections avec c2 n'est pas nul: l (c2. c1) ^±0. Imaginons que
les lignes constituant c1 (lignes fermées et orientées) soient des

fils métalliques parcourus par un courant électrique d'intensité
constante égale à un. Le débit de ce courant à travers c2 est égal
à I (c2 c1), donc non nul. Ce courant est d'ailleurs conservatif
(car c1 est fermé). On conçoit ensuite la possibilité d'étaler un

peu ce courant, de manière qu'il remplisse une sorte de tube
entourant c1, avec une intensité de volume continue à l'intérieur
du tube et nulle sur sa frontière. La forme to, égale au débit
élémentaire de ce courant dans le tube et nulle en dehors,
satisfait à toutes les conditions requises.

On voit que, dans l'espace ordinaire, une même entité
physique (le courant électrique), est représentée dans un cas par
un champ à une dimension (courant linéaire), dans un autre
cas par une forme de degré deux (courant de volume). Cela
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suggère l'idée que dans une variété à n dimensions V, un p-champ
et une (n — p)-forme doivent être deux aspects d'une même
notion plus générale, que j'appellerai courant à p dimensions.
Telle est l'idée qui m'a conduit à la démonstration des trois
théorèmes dont on vient de parler. Je vais maintenant esquisser
la théorie de ces courants et montrer comment elle conduit de

manière très naturelle à la théorie des résidus d'intégrales
doubles.

4. — Théorie des courants.

Définitions. — Un p-courant élémentaire est l'ensemble
(cp+fe, cùk) d'un (p + &)-champ cv+k et d'une k-forme co (définie

j au moins sur cv+k). p est la dimension du courant. Comme

| 0 ^ p -f h ^ n et 0 ^ k ^ n1 l'entier k ne peut prendre que
y les n — p + 1 valeurs 0, 1, (n — p) ; il y a (n — p + 1)

types de p-courants élémentaires.

| Un p-courant est la réunion d'un nombre fini de p-courants
f élémentaires.

1 Addition et multiplication par un nombre. — La somme C3 + C2
de deux p-courants C3 et C2 est le p-courant formé par la réunion

é des p-courants élémentaires constituant G1 et C2.

I Le produit du p-courant élémentaire C (c, co) par le nombre X

I le p-courant élémentaire C — (c, Aoo). Pour multiplier un
I courant quelconque par X, on multipliera chacun des courants

élémentaires qui le constitue par X.

Conventions de simplification.

(e, co) 0 si c 0 ou si co 0 sur c

(X C CO) «aap X (C CO)

(cl> Co) + (c2, co) (cx + c2, co) (c, coj + (c, co2) — (c, cox -h co2)

Produit de deux courants. — Le produit du p-courant élémentaire

(cp+&, iùh) par le g-courant élémentaire {cq+\ co*) est le
(p + g — ft)-courant élémentaire.

(cV+h C0fe) (C«+1 co*) (— i)Hn-q-l) (cv+k cq+l J^
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où cv+h cq+l est l'intersection de cv+k avec cq+l et cùl(ùk le
produit (extérieur) de <7 par oA

Le produit de deux courants quelconques s'obtient par la
règle de distribution (tout courant étant la somme de courants
élémentaires).

Dérivé d'un courant. — Le dérivé du p-courant élémentaire
(cp+fe, cùk) est le (p — l)-courant

d(cp+\ A) (c, of) -f (- 1 )k(f(c), o>)

où (x)f est la (k + l)-forme égale à la dérivée extérieure de o7

et f(c) le (p -f k — l)-champ frontière du (p + /c)-champ cp+fl.

Le dérivé d'un courant est la somme des dérivés des courants
élémentaires qui le constituent.

Indice d'un o-courant. — On appellera indice du o-courant
élémentaire C° (cfe, cofe) le nombre

m±l1
I(c°) (— 1)

2

L'indice d'un courant quelconque est égal par définition à la
somme des indices des courants élémentaires qui le constituent.

Si k 0, ch est un o-champ, c'est-à-dire un système de

points Pt (en nombre fini) affectés de coefficients /q: c° ^/qP^,
i

coft est une fonction de point où0 / (P) et le signe f cùk est alors
défini par °k

c0 l

Propriétés des opérations définies. — a) Les p-courants
forment un espace vectoriel.

b) La multiplication de deux courants est une opération
distributive par rapport à l'addition, associative, et pseudo-
commutative: (7 Cq — (— l)(nvp)(n-g) Qq

^ p ei g étant les

dimensions de Cp et Cq.

c) La dérivation est une opération linéaire: d(k+ qC2)
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XdCj. + \idC?j. Le second dérivé est toujours nul: d(dC) 0.

Le dérivé d'un produit est donné par la formule

d[CP Cq) Cp dGq + (— i)n'vdCv • Gq

d) L'indice d'un ö-courant est fonction linéaire de ce ö-courant,
et si C° dC\ I (G0) « I (dC1) 0.

Remarques. — a) La théorie précédente contient les deux
théories des champs et des formes.

Appliquées à l'intérieur du système des courants du type (c, 1),
les opérations définies n'en font pas sortir et coïncident avec
les opérations de la théorie des champs appliquées à c: la
multiplication et la dérivation coïncident respectivement avec l'intersection

et le passage à la frontière. L'indice d'un o-courant de

ce type, I (c, 1), est égal à la somme des coefficients des points
du o-champ c, et si c cv cn~p, I (c 1) est égal au nombre
I (cv cn~v) des points d'intersection de cv avec cn~v.

Appliquées à l'intérieur du système des courants du type
(V, où), les opérations définies n'en font pas sortir et coïncident
avec les opérations de même nom de la théorie des formes appliquées

à où. L'indice d'un o-courant (V, co) de ce type est égal
(au signe près) à l'intégrale de la forme où étendue à V.

Nous conviendrons par suite de considérer (Y, co) et co comme
identiques, de même que (c, 1) et c.

Remarquons encore que, comme (c, co) (c, 1) (V, co), tout
courant est une somme de produits d'un champ par une forme.
Le 72-courant (V, 1), identique à la fois au /i-champ V et à la
o-forme 1, joue le rôle d'unité dans la multiplication.

Dans le langage des algébristes, les systèmes des courants, des
formes et des champs sont des algèbres, et l'algèbre des courants
est le produit direct de l'algèbre des formes et de l'algèbre des

champs.
b) Pour que cette notion de courant ne paraisse pas trop

artificielle, indiquons une interprétation physique des 1-courants
et des 0-courants dans l'espace ordinaire.

Un courant électrique (stationnaire) peut toujours être
représenté par un 1-courant. Les trois types possibles de 1-courants

dans l'espace, (cfe+1, cùk) (k =- 0, 1, 2), représentent respec-
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tivement les courants linéaires (k 0), superficiels (k — 1), ou
de volume (k 2). ch+i est le support (à (k + 1) dimensions)
du courant, oA est le débit élémentaire à travers l'élément de

variété à k dimensions tracé sur ch+i.
Une distribution de masse dans l'espace est représentée par

un o-courant. Les quatre types possibles de o-courants, (ofe, cùk)

(pour k — 0, 1, 2, 3) représentent respectivement les masses
ponctuelles (k 0), linéaires (k — 1), superficielles (k 2), ou
de volume (k 3). ck est le support des masses, mesure la
masse contenue dans un élément de ck.

L'indice d'un o-courant a aussi une interprétation physique
simple. Soit C1 le 1-courant qui représente un courant électrique,
c2 un champ à 2 dimensions. Le produit (c2, 1) G1 est un o-cou-
rant, son indice est le débit d*électricité • à travers c2 (quel que
soit le type de C1, même s'il est une somme de courants des

trois types).
Soit encore G0 le o-courant qui représente une distribution

de masses, c3 un 3-champ. Le produit (c3, 1). C° est un o-courant

dont Vindice est la quantité de masse contenue dans c3. L'indice
de C° est la masse totale répartie dans tout l'espace.

Considérons enfin la dérivation. Si G1 est un 1-courant qui
représente un courant électrique, son dérivé dC1 est le o-courant
qui représente la répartition des sources (positives et négatives)

d'électricité.
c) A tout (n — /?)-courant Cn_p correspond une fonctionnelle

linéaire de /^-courant

F (Cp) I (Gp - Cn-P)

Cela permet, dans des cas assez généraux, de déterminer le

(n — p)-courant Cn-P par les valeurs de la fonctionnelle
correspondante sur un certain ensemble de p-courants. C'est ainsi

qu'une p-forme oo est déterminée parles valeurs de l'intégrale / o
pour tout champ c. c

Il faut remarquer toutefois que, l'intersection de deux champs

pouvant être indéterminée, le produit Cp Cn_p et par suite
l'indice I (Cp Gn_p) ne sont pas déterminés pour tous les couples
de courants Cp, Cn~p.
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5. — Théorie des résidus.

Nous avons supposé que les formes co introduites dans la
théorie des courants étaient partout régulières sur la variété V.
Si l'on admet des formes qui présentent des singularités, pour
que les lois essentielles de la théorie subsistent, la définition du
dérivé doit être complétée. Lorsque oo présente des singularités,
le dérivé de (Y, co) se compose non seulement de (V, o/) — ce qui
serait le cas si co était régulière —, mais encore d'autres termes

provenant des singularités de ca et qu'on peut appeler les résidus
de co.

Je vais examiner à ce point de vue les formes différentielles
algébriques dans le domaine complexe, ce qui nous conduira à

la théorie des résidus de Cauehy et de Poincaré. Cette étude est
basée sur la formule suivante.

Soient Cx et C2 deux courants dont la somme des dimensions
est (n + 1), n étant la dimension de la variété considérée;
C3 C2 est alors un 1-courant, et l'indice de son dérivé d(Cx C2)

est nul, ce qui donne

I(C^C2) — ± ItC^C,) (A)

Cette formule est très importante. Si Cx et C2 sont des champs,
elle traduit la pseudo-commutativité du coefficient d'enlacement
des deux cycles dCx et dC2. Si Cx et C2 sont des formes, c'est la
formule d'intégration par parties. Si C3 est un champ et C2 une
forme, c'est la formule de Stokes. Dans les cas que nous allons
examiner, elle se réduira aux formules des résidus de Cauchy et
Poincaré.

Considérons d'abord une différentielle rationnelle f(z)dz sur
la sphère de Riemann S de la variable complexe 2. Soient
zk(k 1,2, ses points singuliers, rh les résidus correspondants.

Nous définissons le dérivé du 1-courant C1 (S, / (z)dz)
par la formule

d,C12(zfc, t)
•

k

L'Enseignement mathém., 35me année, 1936. 15
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Soit c2 un domaine sur S (ou 2-champ) de frontière c1; c2 est un
2-courant dont le dérivé est c1. Appliquons la formule (A). On a

G1 • de2 (S, f(z)dz) • (c1, 1) — [c1, f(z)dz)

donc

I (G1 • de2) j / (z) dz

ci

Ensuite

c2 dC1 (c2, 1) • 2 (zk,2inrk)y (c2 • 2

k k

Comme c2 zk zk ou 0 suivant que zk est à l'intérieur ou à
l'extérieur de c2, il vient

I (c2 - dC1) — 2 iiz (somme des résidus intérieurs à c2)

et la formule (A) se réduit à la formule des résidus de Cauchy.
La formule I (rfC1) 0 exprime que la somme des résidus est
nulle.

Considérons ensuite un élément d'intégrale double

« f(%, y) dxdy

/ (#, y) étant une fonction rationnelle, x et y des coordonnées

non homogènes dans le plan projectif complexe V à 4 dimensions
réelles. Sa dérivée est nulle, mais elle a des points singuliers qui
forment un nombre fini de courbes algébriques (donc des

2-champs) Sl5 S2, S3, Ce sont les courbes polaires de la fonction

f(x1 y) et éventuellement la droite de l'infini.
Poincaré a montré qu'à chacune de ces courbes est attachée

une différentielle abélienne déterminée par co. Si par exemple

/ Q(xy\XR\xy) > ^ Q> ^ des polynômes, la différentielle

attachée à la courbe Q 0 est

2 i re P • dx
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Soit <ùk la différentielle attachée à Sk. Nous définissons le

dérivé du 2-courant C2 (V, <ù) par la formule

dC* <*k)

k

Soit c3 un champ à 3 dimensions sur Y, dont la frontière c2 ne

rencontre pas les courbes singulières Sh est un 3-courant

dont le dérivé est c2.Appliquons la formule (A). On a

c2 • dC3(V, <o) • (c2, 1) (c2, Ol)

d'où

I (G2 • c?G3) — oi

C2

Ensuite
C3 • dC2(c3, 1) • 2 (Sft, "ft) S <cS • "ri >

k k

d'où

I (G3 • dC3)2 f "ft
k CK SÄ

et la formule (A) devient

C'est la formule de réduction (de Poincaré) d'une période polaire
d'intégrale double à des périodes (polaires ou cycliques) des

intégrales abéliennes attachées aux courbes S/r
En résumé, si les résidus d'une intégrale simple attachée à

une courbe algébrique apparaissent comme un système de points
affectés de coefficients, les résidus d'une intégrale double attachée
à une surface algébrique se présentent sous la forme d'un système
de courbes algébriques affectées d'intégrales simples. Plus
généralement, les résidus d'une intégrale p-uple attachée à une
variété algébrique à n dimensions (complexes) apparaissent
comme un système de variétés algébriques à {n — 1) dimensions
(complexes) affectées d'intégrales (p — l)-uples.
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