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RELATIONS ENTRE LA TOPOLOGIE
ET LA THEORIE DES INTEGRALES MULTIPLES?

PAR

Georges pE Ruam (Lausanne).

Le fait que la Topologie intervient dans des problémes relatifs
aux intégrales multiples a été apercu déja par les fondateurs
de la topologie des variétés: RiemaNN, BETTI et POINCARE, &
propos de I’étude des intégrales attachées a une variété algé-
brique. M. CARTAN, amené sur ce méme sujet par ses recherches
sur les groupes continus, a formulé pour la premiére fois d’une
maniére précise les deux premiers des trois théoremes dont je
vais parler au début, et qui résument, & mon avis, toutes les
relations entre la topologie et la théorie des intégrales partout
régulieres sur une variété close.

1. — LES TROIS THEOREMES GENERAUX.

Considérons une variété & n dimensions V, close et orientable.
Une intégrale p-uple sur cette variété est un nombre

1= {o

c

qui dépend de deux choses: I’élément différentiel o et le champ
d’intégration ¢.

1 Conférence faite le 21 octobre 1935 dans le \cycle des Conférences internationales
des Sciences mathématiques organisées par I'’Université de Genéve; série consacrée a
Quelques questions de Géoméirie et de Topologie.
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L’élément o, que j'appellerai forme de degré p ou p-forme,
est une expression de la forme

-
® — Z Ai1iz-..i¢) dxil dxl-2 dxl-p ,
(11... p)

1

les A sont des fonctions continues et & dérivées continues des
coordonnées x, %, ..., x, sur V. Le champ d’intégration ¢, que
Jappellerai champ & p dimensions ou p-champ, est formé par
une ou plusieurs variétés orientées a p dimensions tracées sur V.
Les p-champs peuvent étre additionnés, soustraits et multipliés
par un entier quelconque.

Ces Intégrales jouissent des mémes propriétés générales que
les intégrales curvilignes, de surface ou triples dans D’espace
ordinaire, qui en sont des cas particuliers. D’abord, I est fonction
linéaire du champ ¢, et fonction linéaire aussi de la forme w.
Ensuite, on a la formule générale de Stokes

>

{m’ = | o,

c o)
w est une p-forme réguliere quelconque, ¢ est un (p + 1)-champ
quelconque, o’ est la (p -+ 1)-forme appelée dérivée (extérieure)
de o, f(c) le p-champ frontiére de c. Cette formule générale
contient comme cas particuliers les formules bien connues
d’Ampére-Stokes, de Green et d’Ostrogradsky.

Remarquons ici ’analogie qui existe entre ’opération de
dérivation appliquée aux formes et celle du passage & la frontieére
appliquée aux champs. Elles sont toutes deux linéaires, et
répétées deux fois de suite, elles produisent toutes deux zéro:

Les champs dont la frontiere est nulle sont appelés champs
fermés ou cycles. Les formes dont la dérivée est nulle sont
appelées exactes. Par analogie avec la définition des homologies
entre les champs, je dirai que deux p-formes w; et w, sont homo-
logues, w; ~ w,, si leur différence w, — w, est identique a Ia
dérivée d’une (p — 1)-forme réguliére sur toute la variété V.

Un intérét particulier s’attache aux valeurs que peut prendre
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Iintégrale d’une forme exacte étendue & un cycle, valeurs qu’on
appelle périodes. La formule de Stokes permet de faire une
premiére remarque évidente: [intégrale d’une forme exacte
étendue @ un cycle homologue a zéro est nulle. Etendue & deux cycles
homologues entre eux, elle prend deux valeurs égales.

Si le p-ieme nombre de Betti de V est égal 4 B, on peut trouver,
comme on sait, un systeme de B p-cycles ¢, ¢, ..., ¢;, qui ne sont
reliés par aucune homologie et tels que tout p-cycle est homo-
logue a une combinaison linéaire a coefficients entiers de ces
B p-cycles. Un tel systeme est dit fondamental, les cycles qui le
constituent seront dits cycles fondamentauzx.

1l résulte de 13 que toute période d’une p-forme exacte est
égale & une combinaison linéaire & coefficients entiers des
périodes relatives aux cycles fondamentaux (ou périodes fonda-
mentales).

Existe-t-il des formes exactes, réguliéres sur toute la variété V,
ayant des périodes fondamentales arbitrairement choisies ? La
réponse est affirmative et constitue le

Tutorkmr 1. — Il existe toujours une p-forme exacte et réguliére
sur V, ayant des périodes fondamentales arbitrairement données d
lavarce.

La formule de Stokes conduit & une seconde remarque évi-
dente: c’est que les périodes d'une forme homologue d zéro sont
toutes nulles. Lie théoreme suivant affirme la réciproque.

TukoreME 1. — Toate p-forme exacte et réguliére sur V, dont
les périodes sont toutes nulles, est la dérivée d’une (p — 1)-forme
réguliére sur V.

On peut aussi énoncer ces théorémes de la maniére suivante:

. La condition nécessaire et suffisante pour que le p-cycle c
soit homologue & zéro est que

quelle que soit la p-forme exacte w.
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II. La condition nécessaire et suffisante pour que la p-forme
exacte o soit homologue a zéro est que

’w:().

quel que soit le p-cycle c.

Sous cette forme, ils font penser au théoréme suivant (théo-
reme de dualité de Poincaré), avec lequel ils sont en relation
etroite. Désignons par I (cP. " P) le nombre algébrique des
points d’intersections du p-cycle ¢ avec le (n — p)-cycle ¢"P.
Alors: la condition nécessaire et suffisante pour que le cycle c®
soit homologue a zéro, c’est que 1(cP.c"P) = 0 quel que soit le
cycle ¢"P.

Généralisons un peu la notion de cycle, en donnant encore ce
nom aux combinaisons linéaires & coefficients constants quel-
conques (et non nécessairement entiers) de cycles ordinaires. Le
symbole I(c¢". ¢"?) conserve sa signification, mais il n’est plus
nécessairement égal & un nombre entier. Il résulte du théoreme
de Poincaré qu’a toute p-forme exacte ® on peut associer un
(n — p)-cycle ¢ ? tel que

fco = [(cP . "P)

cP

quel que soit le p-cycle ¢P. 11 est clair que ce cycle associé n’est
déterminé qu’a une homologie prés, et que sa connaissance
équivaut a celle des périodes fondamentales de .

En tenant compte du théoréme de Poincaré, le contenu de nos
deux théorémes revient alors a ceci:

I. A tout (n — p)-cycle correspond une p-forme exacte

associée.
I1. Pour qu’une p-forme exacte soit homologue a zéro, il suffit

que le (n — p)-cycle associé le soit.

De deux formes w; et »,, de degrés p et ¢, on déduit une forme
bien déterminée de degré p + g, leur produit (extérieur) w; w,.
Si o, et w, sont des formes exactes, le produit ’est aussi. 11 est
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alors naturel de se demander comment les périodes du produit
dépendent de celles des facteurs. La réponse est fournie par le

TutoriMe 111, — Si ¢, et ¢, sont les cycles associés a wy el wy,
le cycle associé au produit o) o, est le cycle ¢, . ¢ intersection de ¢,
avec ¢y.

Supposons en particulier que ¢ = n—p; le produit ; ©,
est alors une n-forme dont la seule période fondamentale est

f‘ﬂl Wy
[ &

v

et le théoréme ITIT se réduit a I'égalite

jwlwz = I{ey - ¢p) -

¥

En combinant cette égalité avec le théoréme de dualité de
Poincaré, on obtient le résultat suivant:

Pour que la p-forme exacte w, soit homologue d zéro, il faut et il
suffit que

j(01(1)2:0,

<«
v

quelle que soit la (n — p)-forme exacte o,.

2. — APPLICATIONS ET COMPLEMENTS.

Voici une application intéressante de ce dernier résultat.
Supposons que V soit la riemannienne a 4 dimensions quil
correspond & une surface algébrique, et o, I'élément d’une
intégrale double de premiére espéce attachée a cette surface.
S1 w, est I'imaginaire conjuguée de w;, on voit immédiatement

que
fwlwz >0 .

v

Done w; ne peut pas étre homologue & zéro: une intégrale double
de premiére espéce ne peut pas avoir toules ses périodes nulles.
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(Cest le théoreme démontré par M. W. V. D. Hopge en 1930.
(Dans cet ordre d’idées, le théoréme III est le véritable fonde-
ment topologique des relations de Riemann et de M. Hodge
entre les périodes des intégrales abéliennes.)

Dans un ordre d’idées voisin, je désire mentionner un complé-
ment important apporté par M. Hodge au théoreme I pour les
variétés V qui sont des espaces de Riemann.

Supposons d’abord que V soit une surface de genre p; le
premier nombre de Betti est égal a 2p, il y a donc 2p cycles
fondamentaux et une intégrale curviligne posséde 2p périodes
fondamentales. Or, depuis Riemann, on sait dans ce cas beaucoup
plus que ce que nous apprend le théoreme I, on sait en effet
qu’il existe une intégrale harmonique ayant des périodes fonda-
mentales arbitraires, et c¢’est ce théoréeme d’existence d’intégrales
harmoniques que M. Hodge a généralisé de la maniére suivante.

Dans Ie plan, avec des coordonnées rectangulaires xy, la
condition pour que

JAdx + Bdy

soit harmonique peut s’énoncer ainsi:

10 La forme o = Adx + Bdy doit étre exacte (o' = 0 ou
A, = B)).

20 La forme w* = — Bdx + Ady (que j’appellerai adjointe
4 ) doit étre aussi exacte (0* = 0 ou A, + B, = 0).

Si o = df, la premiere condition est automatiquement
vérifiée et la seconde se réduit & I’équation de Laplace Af = 0.
La notion de forme adjointe n’est pas topologique comme celles
de dérivée extérieure ou de produit extérieur, mais elle fait
intervenir la métrique; on peut considérer « comme le travail
élémentaire du vecteur ¢ = (A, B), o* est alors le travail
élémentaire du vecteur ¢* = (— B, A) qui se déduit de ¢ par
une rotation de 90 degrés. Remarquons aussi que I’élément de
Pintégrale de Dirichlet, (A% + B?) dx dy, n’est pas autre chose
que le produit de o par la forme adjointe w*.

Dans un espace de Riemann & n dimensions, toute p-forme
peut étre considérée comme le produit scalaire de I’élément de
variété a p dimensions par un systeme de p-vecteurs déterminé
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en chaque point de l'espace; la forme adjointe w*, de degré
n — p, est alors le produit scalaire de I’élément de variété a
n — p dimensions par le systéme des (n -— p)-vecteurs supplé-
mentaires 1. Toute p-forme o posséde donc une forme adjointe
o*, de degré n — p; et le produit ww*, égal au produit de 1’é1é-
ment de volume & n dimensions par le carré de la mesure du
systeme de p-vecteurs déterminant , est une n-forme essen-
tiellement positive.

On peut maintenant généraliser la notion d’intégrale harmo-
nique en disant que, o étant une p-forme réguliere sur 1’espace
de Riemann V, [ est harmonique si o et la forme adjointe w*
sont toutes deux exactes. Cette définition posée, M. Hodge
démontre 1’existence d’une intégrale p-uple harmonique ayant
des périodes arbitrairement données en suivant la méthode de
Riemann-Hilbert du principe de Dirichlet. Considérant la
famille de toutes les p-formes exactes et réguliéres sur I’espace V
et ayant les périodes fondamentales données, il prouve qu’il y en

a une qui rend intégrale n-uple [ ww* minimum et qui fournit
v
I'intégrale harmonique cherchée. Pour s’assurer de 'unicité, il

suffit de prouver qu’'une intégrale harmonique non identique-

ment nulle ne peut pas avoir toutes ses périodes nulles, et cela

résulte de 'inégalité [ww* > 0 (méme raisonnement que pour
v

les intégrales doubles de premiére espéce).

Voici un autre théoréme qui apporte un complément analogue
au théoreme II:

o étant une (p -+ 1)-forme réguliére sur Uespace de Riemann V,
et homologue a zéro, iUl existe une forme @, réguliére sur V, telle que
@' = w et dont la forme adjointe est homologue a zéro. Ceite forme @,
unique, est caractérisée, dans la famille de toutes les formes régu-
lieres dont la dérivée est égale @ w, par la propriété de rendre ' inté-

grale [@®* minimum.
v

Dans le cas n = 2 et p = 1, cela revient a affirmer Pexistence

1 Voir, par exemple: E. CARTAN, La Géométrie des espaces de Riemann (Memomal
des Sciences mathématiques).
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d’une fonction uniforme sur une surface donnée S, dont le lapla-

cien soit égal & une fonction donnée f telle que [ fdo = 0.
S

3. — PRINCIPE DE LA DEMONSTRATION DU THEOREME I.

Considérons, pour fixer les idées, une variété a 3 dimensions
sur laquelle on a un cycle a4 2 dimensions ¢ non homologue a
zéro. 1l s’agit de construire une forme exacte de degré 2, régu-
liere sur toute la variété, dont la période relative & ¢* ne soit
pas nulle. Une telle forme

o = Adydz + Bdzdx + Cdxdy

peut étre considérée comme I’expression du débit élémentaire
d’un courant électrique (stationnaire) de volume, son intégrale
étendue & un champ ¢ & 2 dimensions est alors le débit total a
travers ¢ et la condition que la forme soit exacte (o" = 0 ou
A, + B, + C, = 0) exprime que le courant est conservatif.
Notre probléme consiste donc & construire un courant de
volume, régulier et conservatif sur toute la variété, dont le débit
total & travers c¢2 ne soit pas nul.

D’aprés le théoréme de dualité de Poincaré, 1l existe un cycle
a une dimension ¢!, dont le nombre algébrique des points d’in-
tersections avec ¢ n’est pas nul: I(c?.c')>=0. Imaginons que
les lignes constituant ¢! (lignes fermées et orientées) soient des
fils métalliques parcourus par un courant électrique d’intensité
constante égale & un. Le débit de ce courant a travers c* est égal
a I(c?.cl), donc non nul. Ce courant est d’ailleurs conservatif
(car ¢! est fermé). On concoit ensuite la possibilité d’étaler un

~ peu ce courant, de maniére qu’il remplisse une sorte de tube

entourant ¢!, avec une intensité de volume continue a 'intérieur
du tube et nulle sur sa frontiére. La forme o, égale au débit
élémentaire de ce courant dans le tube et nulle en dehors,
satisfait & toutes les conditions requises.

On voit que, dans ’espace ordinaire, une méme entité phy-
sique (le courant électrique), est représentée dans un cas par
un champ a une dimension (courant linéaire), dans un autre
cas par une forme de degré deux (courant de volume). Cela




TOPOLOGIE ET INTEGRALES MULTIPLES 221

suggére I’idée que dans une variété a n dimensions V, un p-champ
et une (n — p)-forme doivent étre deux aspects d’une méme
notion plus générale, que j’appellerai courant a p dimensions.
Telle est I'idée qui m’a conduit & la démoustration des trois
théorémes dont on vient de parler. Je vais maintenant esquisser
la théorie de ces courants et montrer comment elle conduit de
maniére trés naturelle & la théorie des résidus d’intégrales
doubles.

4. — THEORIE DES COURANTS.

D&riNiTioNs. — Un p-courant élémentaire est ’ensemble
(P, ") d’un (p + k)-champ c®** et d’une k-forme  (définie
au moins sur ¢®**). p est la dimension du courant. Comme
O=Zp+k=net 0=Fk=n, Pentier k£ ne peut prendre que
les n—p + 1 valeurs 0,1, ..., (n —p); il y a (n—p + 1)
types de p-courants élémentaires.

Un p-courant est la réunion d’un nombre fini de p-courants
élémentaires.

Addition et multiplication par un nombre. — La somme C; + C,
de deux p-courants C; et C, est le p-courant formé par la réunion
des p-courants élémentaires constituant C; et C,.

Le produit du p-courant élémentaire G = (¢, ) par le nombre A
est le p-courant élémentaire C = (¢, Aw). Pour multiplier un
courant quelconque par A, on multipliera chacun des courants
élémentaires qui le constitue par A.

Conventions de simplification.

(c,w) =0 si ¢c=0 ousi @w =0 surec.
(Ae, o) = Ale, o) .
(cla C‘)) T (02’ (.0) - (cl + Ca) “)) . (C, (’)1;' —+ (C, (")2) = (C, 0, + (’*)2) .
Produit de deuz courants. — Le produit du p-courant élémen-

taire (c’**, ") par le g-courant élémentaire (c?*. ') est le
(p + ¢ — n)-courant élémentaire.

(cp+k, mh) (cq+l : wl) — (___ ,l)h('n~q—-l) (cp—l—k . Cq+.l , wl wh)
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ot P ¥t est Iintersection de ¢ avec ¢t et w'w” le pro-

duit (extérieur) de o' par o”.

Le produit de deux courants quelconques s’obtient par la
régle de distribution (tout courant étant la somme de courants
élémentaires).

Dérwé d’un courant. — Le dérivé du p-courant élémentaire
PR W) est le (p — 1)-courant
?

d(cP T o) = (¢, o) + (— DR (fle), o)

ol o est la (k + 1)-forme égale a la dérivée extérieure de o"
et f(c) le (p + k — 1)-champ frontiére du (p + k)-champ c?*".

Le dérivé d’un courant est la somme des dérivés des courants
elémentaires qui le constituent.

Indice d’un o-courant. — On appellera indice du o-courant
élémentaire C® = (c*, ") le nombre

R(k+1)
/ 2
I(c9) = (—1) of .

L’indice d’un courant quelconque est égal par définition & la
somme des indices des courants élémentaires qui le constituent.
Si k=0, ¢* est un o-champ, c’est-a-dire un systéme de

points P; (en nombre fini) affectés de coefficients &;: ¢® = D1 #;P;;
]
" est une fonction de point w® = f(P) et le signe [ " est alors

défini par *

fmo = D k(P -

c0

PROPRIETES DES OPERATIONS DEFINIES. —- a) Lies p-courants
forment un espace vectoriel.

b) La multiplication de deux courants est une opération
distributive par rapport a l'addition, associative, et pseudo-
commutative: CP.(C% == (— 1) P C1_CP, p et ¢ étant les
dimensions de CP et G4

¢) La dérivation est une opération linéaire: d(AC; 4+ nGCy)




-
e
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= AdC; 4 udC,. Le second dérivé est toujours nul: d(dC) = 0.
Le dérivé d’un produit est donné par la formule

d(CP.CY = QP . dCY + (— 1) PdCP - 2 .

d) L’indice d’un o-courant est fonction linéaire de ce o-courant,
et si C0 = dCt, I(C%) = I(dC) = 0.

ReEMARQUES. — a) La théorie précédente contient les deux
théories des champs et des formes.

Appliquées a Uintérieur du systéme des courants du type (c, 1),
les opérations définies n’en font pas sortir et coincident avec
les opérations de la théorie des champs appliquées & c: la multi-
plication et la dérivation coincident respectivement avec I'inter-
section et le passage a la frontiére. I’indice d’un o-courant de
ce type, I(c, 1), est égal & la somme des coeflicients des points
du o-champ ¢, et si ¢ = c?.c¢" P, I(c.1) est égal au nombre
I(cP.c"P) des points d’'intersection de ¢ avec ¢"P.

Appliquées a I'intérieur du systeme des courants du type
(V, ), les opérations définies n’en font. pas sortir et coincident
avec les opérations de méme nom de la théorie des formes appli-
quées & w. L’'indice d’un o-courant (V, o) de ce type est égal
(au signe prés) & l'intégrale de la forme o étendue a V.

Nous conviendrons par suite de considérer (V, o) et w comme
identiques, de méme que (c, 1) et c.

Remarquons encore que, comme (¢, ) = (¢, 1) (V, w), tout
courant, est une somme de produits d’un champ par une forme.
Le n-courant (V, 1), identique & la fois au n-champ V et a la
o-forme 1, joue le role d’unité dans la multiplication.

Dans le langage des algébristes, les systémes des courants, des
formes et des champs sont des algebres, et I’algébre des courants
est le produit direct de 1’algébre des formes et de I’algébre des
champs.

b) Pour que cette notion de courant ne paraisse pas trop
artificielle, indiquons une interprétation physique des 1-courants
et des o-courants dans I’espace ordinaire.

Un courant électrique (stationnaire) peut toujours &tre
représenté par un 1-courant. Les trois types possibles de 1-cou-
rants dans lespace, (¢**, o*) (k = 0, 1, 2), représentent respec-
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tivement les courants linéaires (k = 0), superficiels (k = 1), ou
de volume (k = 2). ¢**' est le support (a (k 4 1) dimensions)
du courant, " est le débit élémentaire & travers I’élément de
variété a k dimensions tracé sur ¢+,

Une distribution de masse dans I'espace est représentée par
un o-courant. Les quatre types possibles de o-courants, (c*, »")
(pour £ =0, 1, 2, 3) représentent respectivement les masses
ponctuelles (k = 0), linéaires (k = 1), superficielles (£ = 2), ou
de volume (k = 3). c* est le support des masses, »" mesure la
masse contenue dans un élément de c*.

L’indice d’un o-courant a aussi une interprétation physique
simple. Soit C! le 1-courant qui représente un courant électrique,
¢ un champ & 2 dimensions. Le produit (¢?, 1) . C! est un o-cou-
rant, son indice est le débit d’électricité-a travers ¢ (quel que
soit le type de C!, méme §’il est une somme de courants des
trois types).

Soit encore C° le o-courant qui représente une distribution
de masses, ¢ un 3-champ. Le produit (c3, 1).C? est un o-cou-
rant dont l’indice est la quantité de masse contenue dans c3. L’indice
de CO est la masse totale répartie dans tout I'espace.

Considérons enfin la dérivation. Si1 C! est un 1-courant qui
représente un courant électrique, son dérivé dC! est le o-courant
qui représente la répartition des sources (positives et néga-
tives) d’électricité.

c) A tout (n — p)-courant C*P correspond une fonctionnelle
linéaire de p-courant

F(CP) = I(CP.C"P) .

Cela permet, dans des cas assez généraux, de déterminer le
(n — p)-courant C™P par les valeurs de la fonctionnelle corres-
pondante sur un certain ensemble de p-courants. C’est ainsi
qu’une p-forme o est déterminée par les valeurs de I'intégrale fm
pour tout champ c.

Il faut remarquer toutefois que, 'intersection de deux champs
pouvant étre indéterminée, le produit CP.C"P et par suite
Pindice I(C? . C"?) ne sont pas déterminés pour tous les couples
de courants C?, C"P,
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5. — THEORIE DES RESIDUS.

Nous avons supposé que les formes « introduites dans la
théorie des courants étaient partout réguliéres sur la variété V.
Si Pon admet des formes qui présentent des singularités, pour
que les lois essentielles de la théorie subsistent, la définition du
dérivé doit étre complétée. Lorsque o présente des singularités,
le dérivé de (V, ) se compose non seulement de (V, ') — ce qui
serait le cas si o était réguliere —, mais encore d’autres termes
provenant des singularités de » et qu’on peut appeler les résidus
de w.

Je vais examiner & ce point de vue les formes différentielles
algébriques dans le domaine complexe, ce qui nous conduira &
la théorie des résidus de Cauchy et de Poincaré. Cette étude est
basée sur la formule suivante.

Soient C; et C, deux courants dont la somme des dimensions
est (n + 1), n étant la dimension de la variété considérée;
C; . G, est alors un 1-courant, et 'indice de son dérivé d(C; . C,)
est nul, ce qui donne

1(CydGy) = 4= I(CpdCy) . (A)

Cette formule est trés importante. Si C; et Gy sont des champs,
elle traduit la pseudo-commutativité du coefficient d’enlacement
des deux cycles dC; et dC,. S1 C; et C, sont des formes, c’est la
formule d’intégration par parties. Si G, est un champ et C, une
forme, c’est la formule de Stokes. Dans les cas que nous allons
examiner, elle se réduira aux formules des résidus de Cauchy et
Poincaré.

Considérons d’abord une différentielle rationnelle f(z)dz sur
la sphére de Riemann S de la variable complexe z. Soient
z, (k= 1,2, ...) ses points singuliers, r, les résidus correspon-
dants. Nous définissons le dérivé du 1-courant C' = (S, f (z) dz)
par la formule

dCt = >\ (g, 2inry)
k

L’Enseignement mathém., 35me année, 1936. 15
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Soit ¢ un domaine sur S (ou 2-champ) de frontiére c'; ¢2 est un
2-courant dont le dérivé est ¢'. Appliquons la formule (A). On a

Gl-de* = (8, fla)dz) - (', 1) = — (¢, f(2)dz) ,
done
1(CL de?) = ff(z) dz
&
Ensuite
- dCt = (2, 1) - D\ (5, 2imry) = > (- 7, 2inr,) .
k k

Comme 2.z, = z, ou 0 suivant que z, est a l'intérieur ou a
3 R 3
Iextérieur de ¢2, il vient

I{c?.dCl) = 2in (somme des résidus intérieurs a c2)

et la formule (A) se réduit a la formule des résidus de Cauchy.
La formule I(dC!) = 0 exprime que la somme des résidus est
nulle.

Considérons ensuite un élément d’intégrale double

o = f(x, y)dedy ,

f (xz,y) étant une fonction rationnelle, z et y des coordonnées
non homogenes dans le plan projectif complexe V a 4 dimensions
réelles. Sa dérivée est nulle, mais elle a des points singuliers qui
forment un nombre fini de courbes algébriques (donc des
2-champs) Sy, Sy, S;, ... Ce sont les courbes polaires de la fonc-
tion f(x, y) et éventuellement la droite de 'infini.

Poincaré a montré qu’a chacune de ces courbes est attachée

une différentielle abélienne déterminée par w. Si par exemple
_ Play) : A oy .
f= Q) Ry’ P, Q, R étant des polynomes, la différentielle

attachée a la courbe Q = 0 est

2:wP - dx
b 5G9
R_b?/‘
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Soit «, la différentielle attachée a S,. Nous définissons le
dérivé du 2-courant C2 = (V, o) par la formule

dcz = D\ (S, o) -
R

Soit ¢3 un champ 4 3 dimensions sur V, dont la frontiére ¢* ne
rencontre pas les courbes singuliéres S, .c® est un 3-courant
dont le dérivé est c2. Appliquons la formule (A). On a

C2.dC* = (V, o) - (¢, 1) = (&, o) ,
d’ou
1(C2 - dC?) = — j "
c2
Ensuite
C3-dC2 = (3, 1) - D\ (S, wp) = D)8y, wp)
kR k
d’out

et la formule (A) devient

fff(xy)dxdy = + > f oy -

k 03.Sk

C’est la formule de réduction (de Poincaré) d’une période polaire
d’intégrale double a des périodes (polaires ou cycliques) des
intégrales abéliennes attachées aux courbes S,.

En résumé, si les résidus d’une intégrale simple attachée a
une courbe algébrique apparaissent comme un systéme de points
affectés de coefficients, les résidus d’une intégrale double attachée
a une surface algébrique se présentent sous la forme d’un systéme
de courbes algébriques affectées d’intégrales simples. Plus
généralement, les résidus d’une intégrale p-uple attachée & une
variété algébrique & n dimensions (complexes) apparaissent
comme un systéme de variétés algébriques & (n — 1) dimensions
(complexes) affectées d’intégrales (p — 1)-uples.
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