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Introduction

We consider the following game between a questioner and a responder, first proposed by
Ulam [9]. A variation of this game was independently proposed by Rényi, see [5].) Both
Rényi and Ulam were motivated by questions arising from communication over noisy
channels. The responder thinks of an integer x {1, n} and the questioner must
determine x by asking questions whose answer is ‘Yes’ or ‘No’. The responder is allowed
to lie at most k times during the game. Let qk(n) be the maximum number of questions
needed by the questioner, under an optimal strategy, to determine x under these rules. In
particular,Ulam asked for the value of q1(106) as this is related to the well-known ‘twenty
questions’ game). It follows from an observation of Berlekamp [1] that q1(106) 25 and

Es wird ein Spiel mit den Spielern A und B betrachtet: A überlegt sich eine Zahl x

zwischen 1 und 106. B will nun die Zahl x durch Fragen ermitteln, die von A mit ja“”oder nein“ beantwortet werden. Es ist leicht zu sehen, dass B mittels binärer Suche
”die Zahl x mit 20 Fragen herausfinden kann, 19 Fragen aber nicht immer ausreichen.

1976 fragte Ulam, was die von B benötigte Anzahl Fragen ist, wenn A einmal eine
falsche Antwort geben darf. Pelc zeigte 1990, dass B den Wert von x mit 25 Fragen
ermitteln kann. Berlekamp hatte zuvor beobachtet, dass 24 Fragen nicht immer ausreichen.

Die Autoren geben in diesem Artikel einen kurzen Beweis für das Ergebnis von
Pelc und betrachten auch etwas allgemeinere Fragestellungen. Die Motivation für die
Untersuchung dieses Spiels kommt aus der Kodierungstheorie.
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Rivest et al. [6] as well as Spencer [7] gave bounds which imply that q1(106) 26.
Pelc [4] was then able to determine q1(n) exactly for all n:

Theorem 1 ([5]) For even n N, q1(n) is the smallest integer q which satisfies n
2q/(q + 1). For odd n N, q1(n) is the smallest integer q which satisfies n 2q - q +
1)/(q + 1).

In particular, his result shows that the lower bound of Berlekamp for n 106 was correct.
Shortly afterwards, Spencer [7] determined qk(n) asymptotically i.e. for fixed k and large
n). The values of qk 106) have been determined for all k. These and many other related
results are surveyed by Hill [3], Pelc [5] and Cicalese [2]. Here, we give a simple strategy
and analysis for the game with at most one lie which implies the above result of Pelc for
many values of n.

Theorem 2 If n 2 2q/(q + 1) for some integer then the questioner has a strategy
which identifies x in q questions if at most one lie is allowed. In particular, q1(n) q.

Below, we will give a self contained argument Proposition 3) which shows that if n also
satisfies n > 2q-1/q, then the strategy in Theorem 2 is optimal. This implies that the
bound in Theorem 2 is optimal if n 2 for some N. More generally, Theorem 1
implies that for even n, Theorem 2 gives the correct bound if and only if we can find
a binary power 2 with n 2 2q/(q + 1), where q is the smallest integer with
n 2q/(q + 1). Similarly, one can read off a more complicated condition for odd n as

well.) In particular, if n 106, we obtain q1(106) 25. To check this, note that for
q 25 and 20, we have

2q-1/q 671088 < n 1048576 2 < 1290555 2q/(q + 1)

If one compares the bounds from Theorems 1 and 2, then one can check that the smallest

value where the latter gives a worse bound is n 17, where Theorem 2 requires 9
questions whereas q1(17) 8. The smaller values are q1(2) 3, q1(3) q1(4) 5,

q1(5) q1(8) 6 and q1(9) q1(16) 7.

More generally, it is easy to see that for any n the strategy in Theorem 2 uses at most
two questions more than an optimal strategy. Indeed, given n, let and q be the smallest
integers satisfying n 2 2q/(q + 1). So Theorem 2 implies that q questions suffice.
Proposition 3 implies that if n > 2q-3/(q - 2), then any successful strategy needs at

least q - 2 questions in the worst case. To see that n > 2q-3/(q - 2), suppose that this
is not the case. Then by assumption on we have 2 -1 < n 2q-3/(q - 2). So if
q 4 which we may assume in view of the above discussion of small values), we have

2 < 2q-2/(q - 2) 2q-1/q. This contradicts the choice of q.

Our proof of Theorem 2 uses ideas from Cicalese [2] and Spencer [8]. It gives a flavour
of some techniques which are typical for the area. Elsholtz personal communication) has

obtained another short proof for the case n 106. Throughout, all logarithms are binary.
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From now on, we consider only the game in which at most one lie is allowed. For the
purposes of the analysis, it is convenient to allow the responder to play an adversarial
strategy, i.e. the responder does not have to think of the integer x in advance but does

answer the questions so that there always is at least one integer x which fits all but at most
one of the previous answers). The questioner has then determined x as soon as there is

exactly one integer which fits all but at most one of the previous answers. We analyze the
game by associating a sequence of states a, b) with the game. The state is updated after
each answer. The variable a denotes the number of integers which fit all previous answers,
and b is the number of integers which fit all but exactly one answer. So initially, a n and

b 0. The questioner has won as soon as a + b 1. If there are j questions remaining in
the game and the state is a, b), then we associate a weight wj a,b) := j + 1)a + b with
this state. Also, we call the integers which fit all answers but exactly one pennies note
that each of these contributes exactly one to the weight of the state).

For completeness, we now give a proof of the lower bound mentioned in the introduction.
As mentioned above, the fact is due to Berlekamp [1], see also [2, 4, 6] for the argument.
The proof has a very elegant probabilistic formulation which generalizes more easily to
the case of k 1 lies see Spencer [8]).

Proposition 3 If n > 2q-1/q, then the questioner does not have a strategy which
determines x with q - 1 questions.

Proof Note that our assumption implies that the initial weight satisfies wq-1(n, 0) >
2q-1. It is easy to check that before each answer, the sum of the weights of the two
possible new states ayes,byes) and ano, bno) is equal to the weight of the current state

a,b), i.e.

wj a, b) wj-1(ayes, byes) + wj-1(ano,bno). 1)

To see this, observe that a ayes + ano and a + b byes + bno and substitute this into the
definition of the weight functions. 1) implies that the responder can always ensure that
the new state a b with j questions remaining) satisfies

wj a b wj+1(a, b)/2 wq-1(n, 0)2-(q-1- j > 2 j 2)

Thus the responder can ensure that the final state has weight greater than one. We also
claim that this game never goes into state 1, 0). Together, this implies that the final
state consists of more than one penny, which means that the responder wins). To prove the
claim, suppose that we are in state 1,0) with j-1 questions remaining. Then the previous
state must have been 1, t) for some t > 0. Note that 2) implies that wj 1,t) > 2 j. On
the other hand, the assumption on the strategy of the responder implies that wj-1(1,0)

wj-1(0,t). Combined with 1), this means that wj 1, t) wj-1(1,0) + wj-1(0,t)
2wj-1(1,0) 2 j. But 2j < 2 j has no solution for j 1, and so we have a contradiction.

Proof of Theorem 2

Note that the weight of the initial state is wq n, 0) n(q + 1) 2q By making n larger if
necessary, we may assume that log n for some N. So q - log(q + 1). Since
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N, this implies

q - log(q + 1) 3)

Consider each integer 2 in its binary form, i.e. we have 2 strings of length The
questioner performs a binary search on these numbers by asking questions of the form
‘Is the value of x in position i a 1?’. The binary search on the search space {1, n}
uses exactly questions and as a result we obtain + 1 possible numbers for x: There
is exactly one integer which satisfies all the answers, and there are also integers which
satisfy all but one answer. Therefore, after the binary search has been performed we are in
state 1, Moreover, wq- 1, 1 · q - + 1) + · 1 q + 1.

Let p q - By 3), it now suffices to identify x within p := log(q + 1) questions.
Note that the weight of the state satisfies 2p-1 < wq- 1, 2p. Suppose that q +1 is

not a power of 2. It is easy to see that we can add pennies to the state until the total weight
is equal to 2p, as the addition of pennieswill only make the game harder for the questioner.
Suppose that we now have r pennies in total, so we obtain the new state P* 1,r with
r where the weight of P* equals 2p. Thus

p + 1 + r wp(1,r 2p 4)

We now have two cases to consider:

Case 1: If r < p + 1, then 4) implies that p + 1 > 2p-1, which holds if and only if
p 2. This means that we have one nonpenny and at most two pennies. It is easy to see

that the questioner can easily identify x using two more questions in this case.

Case 2: Supposer p+1. This implies that 2p-1

p+1 and thus p > 2. We know that
the total weight of this state is even and so we wish to find a set, say Ap, such that when a

question is asked about it, regardless of the responder’s reply, the weight is exactly halved.
Assume that Ap contains the nonpenny and y pennies and that the weight of Ap is equal to
2p-1. Suppose that the answer to ‘Is x Ap?’ is ‘Yes’. Then the weight of the resulting
state is p + y since we are left with one nonpenny of weight p and y pennies). If the
answer is ‘No’, the resulting state has weight r +1- y since the nonpenny has turned into
a penny and the y pennies have been excluded). Thus we wish to solve r +1- y p+ y,
which gives

y
1

2
r + 1- p). 5)

Note also that 4) implies r +1- p is even and so y is an integer. Moreover, the condition
r p + 1 implies that y 1.

Sosuppose that the questioner chooses Ap as aboveand asks ‘Is x Ap?’. If the responder
replies ‘Yes’, we obtain a position P which consists of one nonpenny and y pennies,
i.e. P 1, y), which has weight 2p-1. If p- 1 2, then by Case 1, the questioner can
easily identify x. If p - 1 > 2, we redefine r such that r := y and then calculate the new
value of y by 5), to obtain a new set Ap-1. The questioner continues inductively with

Ap-1 instead of Ap, so the next question will be ‘Is x Ap-1?’. If the responder replies
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‘No’ to the original question ‘Is x Ap?’ then we obtain a position P which consists
only of pennies, i.e. P 0,r - y + 1). Again, this has weight 2p-1. Sincewe have

p - 1 questions remaining we perform a binary search on the r - y - 1 2p-1 pennies

remaining and after p- 1 questions we will have identified x.

Note that eventually, the answer to the question ‘Is x Ai?’ must be either ‘No’ or it is

‘Yes’ and we have i - 1 2 as well as a new weight of 2i-1 in which case there are 2
questions and at most one nonpenny and two pennies remaining). By the abovearguments,
the questioner can find the integer x in the required total number q of questions in both
cases, which completes the proof of the theorem.

In case n 106, the above strategy would mean that after 20 questions, we would be

in state 1, 20) and have weight w5(1, 20) 26. Our aim is to find x within 5 more
questions. We add 6 pennies to obtain the state 1,r with r 26 and weight 2p, where
p 5. Thus 5) gives y 11. So A5 consists of the nonpenny and 11 pennies. If the
answer is ‘Yes’, then A4 consists of the nonpenny and 4 pennies. If the answer is ‘No’, we
have 16 pennies left and can find x after 4 more questions by using binary search.
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