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L’Hopital’s rule, a counterexample

1. Introduction

In a recent article, Boas, [1], showed how to construct counterexamples to L’Hopital’s

fx) o f1x)

rule, lim—— = lim
g(x) g'(x)

sized that the trouble lies in changes of sign of the derivative ¢g’, not the mere presence

of zeros of g'. The sign changes of g, however, imply the existence of zeros, by the

intermediate value property of the derivative. This is not true for one-sided derivatives

and in Section 3 we give an example where the right-hand derivative never vanishes but

changes sign «too often» so that the rule fails. This counterexample brings out clearly the

, when the condition g’ (x) % 0 is not satisfied. Boas also empha-

X)

geometry behind the failure and has the additional advantage that lim% actually
g(x

exists. A suitable theorem for one-sided derivatives and monotonic g precedes this in

Section 2.

2. L’Hopital rules

Theorem 1. Let f and g be continuous on (a,b) and suppose that g is monotonic. If

lim f (x) = 0 = lim g (x)

xth xth

and

lim S _
x1b g4 (%)

then
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xtb g(x)

Proof. We may assume that g is increasing. (If it is decreasing we consider — g.) For any
¢ > 0, the following holds. There exists §, with 0 < § < b — a, such that, for xe (b — 6, b),

I

f+(x) and ¢, (x) exist and makes sense and therefore g, (x) + 0 and

gy (x)

f+(x)
-3 R I+
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During the rest of the proof x will be restricted to the interval (b — d,b). Since g is
increasing and g, (x) # 0, ¢’, (x) > 0. Hence

e\ , e\
(1—5)g+(X)<f+(X)<(l+§)9+(X)- (1)

The functions (l + §>g(x) — f(x) and f(x) — (l — %)g(x) are monotonic increasing

because they are continuous and have by (1) positive right-hand derivatives (see
Theorem 1 of [5]). Hence, for any y such that b — 6 < x < y < b,

(l — —g)(g(y) —g() <fO)-fx)< (l + §>(g(y) ~g(x). @)

Letting y approach b from below we obtain

- (l——g)g(x) = —f)=s ~<l+ -;—)g(x).

Since lim g (x) = 0 and g is strictly increasing, g (x) < 0. Hence
xth

J(x)

l—e<—<l+ec¢.
g(x)

Remark. Theorems similar to Theorem 1 hold for limits from the right, limits, and also
limits at + o0 or — oo. Also, the right-hand derivatives can be replaced by left-hand
derivatives in the theorem without affecting its validity. There is also no difficulty in
modifying the proof if | = + o0 or — oo.

We now consider the case of the indeterminate form “co/00”. It is convenient to consider
the following special case first.

Theorem 2. If f is continuous on (a, ) and lim f, (x) =, then

lim IE—)=I.

x—+owo X

Proof. It is sufficient to prove the theorem with [ = 0. With | & 0, we could then consider
the function f(x) — I x.
For all ¢ > 0 there exists R > 0 such that, for x > R,

—§<f},(x)<-§.
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Hence, using the same argument which was used to derive (2) from (1) in Theorem 1, we
have, for x > R,

~fx-R<fW-fRI<Z(x—R).

So for x > R,

€ € f(x) f(R) ¢ R ¢
“‘z‘<“5(1";‘) < T % < 5(1‘;)<5

1.e.
£ SR fl & J@R)
2 X X 2 X
Thus, for x > max( “ lfS(R)l)
—& <ﬂ)i) <e.

Theorem 3. Let f and g be continuous on (a, c0) and suppose that g is monotonic. If

lim (g()| = + 0 and lim 22—,

X x- o0 g5 (X)
then

lim f—(i)—l

x- o g(x)

We need three prerequisites for the proof. Firstly, the usual rule for differentiation of the
inverse function holds for one-sided derivatives; secondly, the chain rule holds for one-
sided derivatives if the inner function is strictly increasing; thirdly, for the limit of a
composite function we have lim F(G(x)) = lim F(y) if lim G(x) = + oo.

X = @ y = o X

l

Proof. For sufficiently large x, f} (x) and g, (x) exist and makes sense and therefore

g’ (x)
g’ (x) = 0. Consequently g is strictly monotonic and we may assume that g is strictly

increasing because if g is strictly decreasing we consider — g. Let F(x) = f (g~ ! (x)).
Then

filg™' )

F, ()= 29 %)
M= )
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so that

o fi@TN)
Jm F )= b e )
i W
yo o+ ()
=1.

Hence, by Theorem 2

F
l= lim—(—x)

x>0 X

e S0

Remark. Theorem 3 also holds if the right-hand derivatives are replaced by left-hand
derivatives. Also the proof of Theorem 2 can be modified to allow the cases [ = + oo or
I = — oo so that Theorem 3 holds for these cases as well.

3. A counterexample

In this example g is not monotonic and the conclusion of Theorem 3 is shown to be false.
Let {x,} be a strictly increasing sequence of real numbers satisfying

lim x, =+ and Ilim(x,,;—x,)=0,

n—+ n-— oo

n 1
eg x,= 3, . Let f(x) = x and let g be the function whose graph is the union of line
k=1
segments which join the pairs of points (x,,_,,x,,_; — 1) and (x,,,x,, + 1), n=1,2, ...
and the pairs of points (x,,,x,, +1) and (x,,4,%X5,+1 — 1), n=1,2,... (see figure 1).
So

(x) _ Xap 1+ [1 + 2(x2n - xZn—-l)‘l](x - x2n)’ X2n-1 SEX= X2n
= Xop+1+[1—2(x3,41 — xz,,)"l](x —~ X2n)s Xap SX = Xpp4q '

i ()

- =0 and therefore lim f+ &)
g's (x)

- = 0. However,
x-w gy (X

Since lim |g’, (x)] = + o0, lim

X = o© X = ®©

x—1=g(x)sx+1,
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and consequently, for x > 1,

X f(x)< x
x+17g(x) " x—-1

IIA

J(x)

Hence lim ——= = 1.
x—w g(X)

4. Historical remarks and supplements

Figure 1.

Although theorems like the ones discussed here bear the name of Marquis de L’'Hopital
the rule was discovered by Johann Bernoulli. For sake of brevity let us call theorems
which deduce monotonicity of a function from the sign of its derivative (or derivates)
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monotonicity theorems. The use of these in the proof of I'Hopital’s rule was made by
Lettenmeyer [4]. Since monotonicity theorems are known to hold for Dini derivates, it is
clear from our exposition that the right-hand derivatives can be replaced in Theorem 1-2
without affecting their validity by Dini derivates. The following counterexample:

f(x) = x + sin x Cos X, g(x) = f(x) esinx

. f'(x) e J(X) , :
lim " = 0 and no limit for T as x — oo was given already in 1879 by O. Stolz [6],
x=w g (X g\x

who also showed that Theorem 3 (with ordinary rather than one-sided derivatives) can
be deduced from Theorem 2. A simple proof based on the Newton-Leibniz formula was

given by Boas [2] but one may conjecture that the method was already known to
Huntington [3].

R. Vyborny and R. Nester
University of Queensland, St. Lucia (Australia)
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An extension of the isoperimetric
inequality on the sphere

We shall consider the n-dimensional sphere $" = {xe R"*!:|x| = 1}, endowed with the
spherical distance function d (x, y) and the (normalized) Lebesgue measure u. For xe §"
and 0 < 6 <, the spherical cap of centre x and radius 6 is C(x,0) = {yeS":d(x,y) < 0}.
It is well known that if 4 = $" and u(A4) = u(C) for some spherical cap C, then the
diameter of A is at least as large as the diameter of C. This is usually considered to be
a variant of the isoperimetric inequality on the sphere S”; it is, in fact, an immediate
consequence of the isoperimetric inequality. Our aim is to extend this inequality and
thereby answer a question raised by Paul Erdos [4].
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