Perfekte Dreiecke

Autor(en): Binz, J.

Objekttyp: Article

Zeitschrift: Elemente der Mathematik

Band (Jahr): 42 (1987)

Heft 2

PDF erstellt am: **28.04.2024**

Persistenter Link: https://doi.org/10.5169/seals-40032

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

c(x) und d(x) sind in diesem Intervall beide fallend und wegen |d'(x)| < 0.1 < 0.4 < |c'(x)| für $x \in (2.53, 2.55)$, wie man leicht sieht, ist ein solches x_2 eindeutig bestimmt.

(vii)
$$c(2.6) < c(2.55) < d(2.6)$$
 \Rightarrow $c(x) < d(x)$ für $2.55 \le x \le 2.6$.

(viii)
$$c(2.64) < c(2.6) < d(2.64) \Rightarrow c(x) < d(x)$$
 für $2.6 \le x \le 2.64$.

(ix)
$$c(2.64) < 1/\pi$$
 $\Rightarrow c(x) < d(x)$ für $2.64 \le x < \pi$.

Lemma 6 ist somit bewiesen.

Beweis von Lemma 3: Um zu beweisen, dass

$$e(x) := \frac{\sqrt{3}}{2} \frac{8(\pi - x)^3 - x^3}{[8(\pi - x)^2 + x^2]^{3/2}} = \frac{1}{2} - \frac{3}{2} \frac{1}{5 + 4\cos x} =: f(x)$$

genau drei Lösungen in $(0, \pi)$ hat, genügt es zu zeigen, dass e'(x) = f'(x) genau zwei Lösungen in $(0, \pi)$ hat. Da aber e'(x) = f'(x) zur Gleichung c(x) = d(x) von Lemma 6 äquivalent ist, ist Lemma 3 bewiesen.

Nach Abfassung dieser Note wurde ich darauf aufmerksam gemacht, dass Stroeker und Hoogland meine Ungleichungen (1) und (2) in [2] vermutet haben. Sie haben insbesondere auch versucht, die Vermutung numerisch glaubwürdig zu machen.

V. Mascioni, Math.-Departement ETH-Zürich

LITERATUR

- 1 V. Mascioni: Zur Abschätzung des Brocardschen Winkels, El. Math. 41, 98-101 (1986).
- 2 R. J. Stroeker, H. J. T. Hoogland: Brocardian geometry revisited, or some remarkable inequalities, Nieuw Arch. voor Wisk. (4) 2, 281-310 (1984).
- © 1987 Birkhäuser Verlag, Basel

0013-6018/87/020042-04\$1.50+0.20/0

Didaktik und Elementarmathematik

Perfekte Dreiecke

Wir nennen ein Dreieck perfekt, wenn seine Seitenlängen a, b, c, sein Flächeninhalt A, sein Inkreisradius ϱ und seine Ankreisradien ϱ_a , ϱ_b , ϱ_c ganzzahlig sind und wenn a, b, c, ϱ , ϱ_a , ϱ_b und ϱ_c teilerfremd sind. Beispiele sind am Schluss dieser Studie aufgeführt. Wir geben im folgenden alle rechtwinkligen und alle gleichschenkligen perfekten Dreiecke an. Dann zeigen wir, dass es zu jedem ϱ nur endlich viele perfekte Dreiecke gibt, wovon für $\varrho \geq 2$ je mindestens eines weder rechtwinklig noch gleichschenklig ist. Als nächstes beschreiben wir ein Verfahren, mit dem man zu gegebenem ϱ alle perfekten Dreiecke finden kann. Schliesslich geben wir alle perfekten Dreiecke mit $1 \leq \varrho \leq 5$ an.

El. Math., Vol. 42, 1987

Wir verwenden stillschweigend die Formeln $A^2 = s(s-a)(s-b)(s-c)$ mit $s = \frac{a+b+c}{2}$, $\varrho = \frac{A}{s}$, $\varrho_a = \frac{A}{s-a}$, $\varrho_b = \frac{A}{s-b}$, $\varrho_c = \frac{A}{s-c}$. Mit A ist auch s ganzzahlig.

Satz 1. Ein pythagoräisches Dreieck ist genau dann perfekt, wenn es primitiv ist.

Beweis: Durch $a = u^2 - v^2$, b = 2uv, $c = u^2 + v^2$ mit (u, v) = 1, u - v positiv ungerade, sind alle primitiven pythagoräischen Dreiecke gegeben. Man bestätigt unmittelbar A = uv(u+v)(u-v), $\varrho = v(u-v)$, $\varrho_a = u(u-v)$, $\varrho_b = v(u+v)$ und $\varrho_c = u(u+v)$. Die übrigen pyth. Dreiecke erhält man durch Streckung mit $k \ge 2$ aus den primitiven; sie können deshalb nicht perfekt sein.

Bemerkung: Zu jedem $\varrho \in N$ gibt es mindestens ein perfektes rechtwinkliges Dreieck, wie die Wahl $v = \varrho$, $u = \varrho + 1$ zeigt.

Für jedes ungerade $\varrho \ge 3$ gibt es mindestens ein weiteres rechtwinkliges perfektes Dreieck, nämlich für v = 1, $u = \varrho + 1$.

Satz 2. Alle gleichschenkligen perfekten Dreiecke sind durch die folgenden beiden Scharen gegeben:

(1)
$$a = b = u^4 - v^4$$
, $c = 4 u v (u^2 - v^2)$,

(2)
$$a = b = u v (u^2 + v^2)$$
, $c = 2 u v (u^2 - v^2)$,

wo die Parameter den Bedingungen (u, v) = 1, u - v positiv ungerade genügen.

Beweis: Wegen a = b ist die Basis c gerade, c = 2d. Für die Höhe h_c gilt $h_c = \frac{A}{d} = \frac{A}{s-a} = \varrho_a$; (d, ϱ_a, a) muss ein pythagoräisches Tripel sein.

- 1. Fall: d=2k u v, $\varrho_a=k$ (u^2-v^2) , a=k (u^2+v^2) , (u,v)=1, u-v positiv ungerade. Damit erhalten wir $\varrho=\frac{2k$ u v (u-v) und $\varrho_c=\frac{2k$ u v (u+v). Weil u+v zu 2, u, v und u-v teilerfremd ist, muss k=(u+v) (u-v) sein. Damit ist die Ganzzahligkeit der Daten $a=b=(u^2-v^2)$ (u^2+v^2) , c=4u v (u^2-v^2) , A=2u v $(u^2-v^2)^3$, $\varrho=2u$ v $(u-v)^2$, $\varrho_c=2u$ v $(u+v)^2$ und $\varrho_a=\varrho_b=(u^2-v^2)^2$ gesichert. Ein gemeinsamer Teiler t von a, c, ϱ , ϱ_a , ϱ_c ist ungerade, weil ϱ_a ungerade ist. Aus $t \mid (\varrho_c-\varrho+4\varrho_a+4a)$, $t \mid (\varrho_c-\varrho+4\varrho_a-4a)$ folgt $t \mid 8$ u^4 , $t \mid 8$ v^4 und deshalb t=1. Somit sind die Dreiecke perfekt.
- 2. Fall: $d = k (u^2 v^2)$, $\varrho_a = 2k u v$, $a = k (u^2 + v^2)$, (u, v) = 1, u v positiv ungerade. Damit werden $\varrho = \frac{k v (u^2 v^2)}{u}$ und $\varrho_c = \frac{k u (u^2 v^2)}{v}$. Diesmal muss k = u v sein, was die ganzzahligen Daten $a = b = u v (u^2 + v^2)$, $c = 2u v (u^2 v^2)$, $A = 2u^3 v^3 (u^2 v^2)$, $\varrho = v^2 (u^2 v^2)$, $\varrho_c = u^2 (u^2 v^2)$ und $\varrho_a = \varrho_b = 2u^2 v^2$ ergibt. Ein gemeinsamer Teiler t von $a, c, \varrho, \varrho_a, \varrho_c$ ist ungerade, weil genau eine der Zahlen ϱ, ϱ_c ungerade ist. Wie oben

El. Math., Vol. 42, 1987

schliesst man diesmal auf $t \mid (u+v)^4, t \mid (u-v)^4$ und deshalb auf t=1. Auch diese Dreiecke sind alle perfekt.

Satz 3. Zu jedem Inkreisradius ϱ gibt es nur endlich viele perfekte Dreiecke. Für $\varrho \ge 2$ ist mindestens eines davon weder rechtwinklig noch gleichschenklig; es gibt also unendlich viele perfekte Dreiecke, die weder rechtwinklig noch gleichschenklig sind.

Beweis: Es seien $a \le b \le c$; wir setzen s-a=x, s-b=y, s-c=z und erhalten s=x+y+z, $A^2=x\,y\,z\,(x+y+z)$, $\varrho^2=\frac{x\,y\,z}{x+y+z}$, $\varrho^2_a=\frac{y\,z}{x}\,(x+y+z)$, $\varrho^2_b=\frac{x\,z}{y}\,(x+y+z)$, $\varrho^2_c=\frac{x\,y}{z}\,(x+y+z)$, $\varrho^2_c=\frac{x\,y}{z}\,(x+y+z)$, $\varrho^2_c=\frac{x\,y}{z}\,(x+y+z)$, $\varrho^2_c=\frac{x\,z}{z}\,(x+y+z)$, $\varrho^2_c=\frac{x\,z}{z}\,(x+z)$

Gleichung (*) $x y z = \varrho^2(x+y+z)$ mit $x | \varrho(y+z), y | \varrho(x+z), z | \varrho(x+y)$ ein Dreieck mit den geforderten ganzzahligen Daten. Für $z > \varrho \sqrt{3}$ ist einerseits $x y z > 3 \varrho^2 x$, andererseits $\varrho^2(x+y+z) \le 3 \varrho^2 x$; es folgt $z < \varrho \sqrt{3}$. Wir notieren (*) in der Form $(x z - \varrho^2) (y z - \varrho^2) = \varrho^2(z^2 + \varrho^2)$; für jeden der endlich vielen Werte von z gibt es je nur endlich viele Lösungen von (*). Unter den so gefundenen endlich vielen Dreiecken befinden sich alle perfekten.

Jetzt wählen wir z=1. Die Gleichung $(x-\varrho^2)(y-\varrho^2)=\varrho^2(\varrho^2+1)$ hat sicher die Lösung $x=\varrho^3+\varrho^2+\varrho$, $y=\varrho^2+\varrho$; sie erfüllt alle Nebenbedingungen. Die zugehörige Schar (ungleichschenkliger) perfekter Dreiecke ist $a=\varrho^2+\varrho+1$, $b=\varrho^3+\varrho^2+\varrho+1$, $c=\varrho^3+2\varrho^2+2\varrho$ mit den Daten $A=\varrho(\varrho+1)(\varrho^2+\varrho+1)=\varrho_c$, $\varrho_a=\varrho+1$, $\varrho_b=\varrho^2+\varrho+1$. In einem rechtwinkligen Dreieck müsste $\varrho=s-c=z$ gelten. Wegen z=1 sind für $\varrho\geq 2$ alle Dreiecke der Schar nicht rechtwinklig.

Damit ist Satz 3 vollständig bewiesen.

Der Beweis von Satz 3 zeigt uns ein Verfahren, das alle perfekten Dreiecke mit vorgegebenem Inkreisradius ϱ liefert:

- (A) Für jedes z mit $1 \le z < \varrho \sqrt{3}$ zerlegt man $\varrho^2(z^2 + \varrho^2)$ in zwei Faktoren AB, $A \ge B$.
- (B) Von den Paaren $(x, y) = \left(\frac{\varrho^2 + A}{z}, \frac{\varrho^2 + B}{z}\right)$ wählt man die ganzzahligen aus und eliminiert daraus diejenigen, die eine der Bedingungen $x | \varrho(y+z), y | \varrho(x+z), z | \varrho(x+y)$ oder $x \ge y \ge z$ verletzen.
- (C) Mit den verbleibenden Werten berechnet man $a, b, c, \varrho_a, \varrho_b, \varrho_c$.
- (D) Zuletzt scheidet man die Lösungen mit $(a, b, c, \varrho, \varrho_a, \varrho_b, \varrho_c) > 1$ aus.

Die folgende Tabelle ist nach diesem Verfahren aufgestellt worden und enthält alle perfekten Dreiecke mit Inkreisradius 5.

Q	а	ь	с	Qa	Qb	Qc	Л	
1	3	4	5	2	3	6	6	
2	7 5	15 12	20 13	3 3	4 10	42 15	42 30	

El. Math., Vol. 42, 1987

Q	а	b	c	Qa	QЬ	Qc	A
3	13	40	51	4	13	156	156
	16	25	39	5	8	120	120
	8	26	30	4	16	48	96
	7	24	25	4	21	28	84
	8	15	17	5	12	20	60
	10	10	12	8	8	12	48
4	21	85	104	5	21	420	420
	12	50	58	5	24	120	240
	18	20	34	8	9	72	144
	15	15	24	9	9	36	108
	9	40	41	5	36	45	180
5	31	156	185	6	31	930	930
	36	91	125	7	18	630	630
	17	87	100	6	34	255	510
	13	68	75	6	39	130	390
	11	60	61	6	55	66	330
	12	35	37	7	30	42	210

J. Binz, Universität Bern und Städt. Gymnasium Bern-Kirchenfeld

© 1987 Birkhäuser Verlag, Basel

0013-6018/87/020035-08\$1.50+0.20/0

Aufgaben

Aufgabe 938. Die folgenden Summen:

$$S_{0}(m,n) := \sum_{s=0}^{n} {2n+1 \choose 2s} {2n+m-s \choose 2n}$$

$$S_{1}(m,n) = \sum_{s=0}^{n} {2n+2 \choose 2s+1} {2n+1+m-s \choose 2n+1}, \quad m,n \in \mathbb{N}$$

sind geschlossen auszuwerten.

J. Binz, Bolligen

Lösung

1.
$$\binom{2n+1}{2s}$$
 ist der Koeffizient von x^{2s} in $(1+x)^{2n+1}$, $\binom{2n+m-s}{2n}$ ist der Koeffizient von $x^{2(m-s)}$ in $\frac{1}{(1-x^2)^{2n+1}}$.

Also ist $S_0(m, n)$ der Koeffizient von x^{2m} in

$$((1+x)/(1-x^2))^{2n+1} = (1-x)^{-(2n+1)} = \sum_{j=0}^{\infty} {j+2n \choose 2n} x^j.$$