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Some characterizations of complex normed ö-algebras

A complex normed algebra A with unit 1 is a normed vector space over C where a

multiplication A x A -+ A is defined such that

||x-.Hl \\x\\ \\y\\ for all x,yeA,

where • denotes the multiplication and | || the norm on A. With respect to this
multiplication the unit 1 of A has of course the property 1 • x x • 1 x for every xeA.
The normed algebras we usually meet in the apphcations and in introductory
functional analysis courses are the so-called Banach algebras. These are normed algebras
such that the norm induces a complete topology (i.e. one such that Cauchy sequences
converge).
Now, every second year mathematics Student knows that the set of all invertible
elements of a Banach algebra A is open (xeA is invertible if there is a y eA such that
x - y y - x 1. In such case we write y=: x~l. The set of invertibles of A is denoted by
Inv (A)). The point is that the converse of this Statement is false: just take a look at the
algebra R (D) of all complex rational functions defined on the closed unit disk of C,
endowed with the norm || q || := sup | q (z) |. q e R (D) is invertible if and only if it has

no zeros in D, and thus Inv (R (D)) is open in R (D)9 by the Maximum Principle. On
the other hand, R(D) is clearly no Banach algebra since there are analytic functions
on D which are not rational (e.g. sin (z)!).
Since the condition that Inv (A) be open has a well-mixed topological and algebraic
nature, it seems interesting to define Q-algebras (or open algebras, as they are some-
times called) as those algebras (with unit!) which satisfy it. Of course, all Banach

algebras are ß-algebras.
Our purpose is to show that almost all fundamental properties of Banach algebras are
shared by the larger class of normed Q-algebras. Quite surprisingly, it turns out that some

of these properties do actually characterize the normed Q-algebras among the normed
algebras with unit.
In the following A will be a complex normed algebra with unit 1 and norm || • ||.

Fuster and Marquina [3] have proved the equivalence ofthe Statements

(Q) Aisa ß-algebra

(Öfmi) 3 5 e (0,1]: x eA and || 1 -x \\ < ö imply x e Inv(A)

(6fm2) 3 6 e (0,1 ]: x e A and || jc || < ö imply that Yl xn converges in A.

In an unpublished paper [4] Th. W. Palmer has given a further characterization:

(ßP) A is inverse-closed in its completion, that is, ifA* is the completion of A9

then Inv(_4*) nA c Inv(.4).

Let's now State our theorem:
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Theorem. Let Abe a complex normed algebra with unit 1. Then the following conditions
are equivalent:

(Q) A is a Q-algebra

(ßi) If xeA and || 1 -x || < 1 then xe Inv(_4)

(62) If x eA and | x || < 1 then Ylxn converges inA

(03) r (x) lim 1 xn \\l/n inf \\xn\\l/n for all xeA
n n

(ß4) sup r(x) < oo
l-v 11 1

(ßi) r(jc)_s |x|| for all xeA
(Qs) dInv(_4)c=TDZ(_4)

(ß6) Rad (A) is closed and A/Rad (A) is a Q-algebra

(Qf) o:A^> P(<£), x h* Sp (x) is upper semicontinuous

(Qi) g is upper semicontinuous at 0 e A

(ß8) D: x h+ diam (Sp (x)) is upper semicontinuous

(Qs) F> is continuous atO eA.

Remarks on notation: 1. TDZ(_4) in (ß5) is the set of topological divisors of zero in A.
Recall that x is in TDZ (A) if there is a sequence (w„) in A with || wn || 1 for all n,
and such that lim wnx 0 \imxwn (see [2], p. 12).

n n

2. Rad (A) is defined as the intersection of all maximal left ideals in A (see [2], p. 124).
Rad Stands for radical.
3. If xeA, then Sp(x) := {k e C : k 1 -x$ Inv(_4)} is the spectrum of x (in A).
r (x): sup {| A |: k e Sp (x)} is the spectral radius of x.
4. If A. is a subset of A, dK is the boundary of K in _4, i.e. dK K\K, where K is the
closure of K and K is the set of its inner points.
5. Upper semicontinuous in (ß7) means that, for each xeA and each open subset U of
C such that Sp(x)cz JJ, there is a ö > 0 with ||^-jc || < ö=> Sp(y)cz U.

Proof:
(Q) => (ßFMi)- This is trivial since if ln\(A) is open then 1 is an inner point of lnv(A),
that is, there exists a <5> 0 with {y: \\ 1 —y || < 6} c Inv(_4). Since 0 ^ Inv(_4), clearly
ö*l.

Ilxll
(ßFMi)=> (ß4): Let <5e(0,l] be as in (ßFMi). We have r^)^—- for all xeA,
hence sup r(x) _i l/ö.

!l-v|| i

(ß4> => (ß3>: The formulas r (a) i_ lim || an \Vn inf || a" ||,/w and Sp (a) ¥= 0 are true in
n n

all complex normed algebras (see [2], Prop. 2.8 and Th. 5.7). It remains to prove that
r(x) _ü lim 1 xn||l/n for all xeA. Since Sp(#(*)) q(Sp(x)) for all nonconstant poly-
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normals q ([2], Prop 5 5), we have, for neN,

r(x)n=r(xn) _§i M- || xn ||

where 0 < M sup r (y) < oo. Now it follows immediately that
M-»

r (x) hm My" \\ xn \\l/n hm || xn ||x,n.
n n

(03) => (04): r(x) inf || x" fll/n _. | x fl, for all xeA.
n

(ß4)=>(ßi): Letxe_4and ||l-x|<l Then r(l-x) < 1, that is, l^Sp(l-Jc),
hence x 1 - (1 - x) e Inv (A).

N

(ßi)=> (ß2): (see [3]) Let (ß,) hold and let \\x\\ < 1 Define sN:= Yl xn for all
n 0

N 0 (x° := 1). By (Qx), 1 - x is invertible. Let j := (1 - jc)-1 We have then

\\sN-y\\ \\y(l-x)sN-y\\^\\y\\ \\(l-x)sN-l\\
\\y\\ ii^+ii^ibi n*r+i.

Since || x || < 1, we get hm sN y, that is, Yl xn converges.
N

(ß2)=>(ßi): Let xeA and ||l-x||<l. It follows from (ß2) that Z(l-x)w
converges to some y eA. Now, since

l-x Y, (l~x)n
n 0

N N

1 + (1-jc) Z (l-x)n- Yl (1 —JC)"
n«0 n=0

||(i-*)N + \ I *ll-* ll/V+1

we get xy 1. Similarly, yx 1 and thus x is invertible.

(ßi) => (ß)- Let x be invertible, and let yeA with || x-y \\ < l/\\ x~l \\. This implies

|| l-x~ly\\ I x~l(x-y) | < 1

that is, x~xy is invertible, by (ßi). Let w:= (jc^^)"1. It is clear that (wx~x)y=l, and
thus y is left invertible. Analogously we prove that yx~l is invertible and, with
z := (yx"l)~l, we have y (x~lz) 1. Since y is left and nght invertible, y must be
invertible. This proves that Inv (A) is open.

For completeness' sake we prove

(ß) => (ß?)* Let x eAn Inv (_4*), x-1 6 A*\A, where _4* is the completion of A. If we
had x e dlnv(_4), there would exist (xn) e Inv(_4)N such hmx„ x Since hmx^^x"1

in A*9 we would have in particular that M:=sup || x„l\\ < oo. Taking n sufficiently
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large, we would get M • | x - x„ \\ < 1 and x x„ (1 + x~l (x - xn)) e Inv (A), by
(ß) <=> (ßi)- a contradiction. Hence x $ dlnv (A).
Since lnv(A*) is open in A*, we get thus a neighbourhood U of x in .4* such that
U c Inv (.4*) and U n Inv (_4) 0. Since a »-? a~x is a homeomorphism in A* ([2], Prop.
2.6), we have that U~x is open in _4* and f/-1 n_4 0, which contradicts the denseness

ofA in _4*.

(ß) => (ßs): Let x eA n dlnv(_4), (x„) e Inv(_4)N such that limx„ x. We claim that
n

sup || x^11| oo. In fact, if we assume that || x^11| _§ N < oo for all n, we have
n

II x-1 — x_1 II II x~x (x — x x~x II _s: N2 • II r — r II
II Am •*» II II Am vA/i Am/ ¦*« II iV II •*» Am II •

It follows that (x"1) is a Cauchy sequence in A (say, with limit yeA*, A* the
completion of _4). Then xy yx l by continuity of multiplication and thus
x e Inv (_4*). By (QP) <= (Q), x e Inv (_4), which is a contradiction.
Without loss of generality let also || x^11| ^ n, for all n, and define wn:=x^x/\ x~x ||.

It is now easy to see that lim xw„= lim w„x 0, that is, x e TDZ (.4).
n n

(ßs) => (ß)' If-4 were not a ß-algebra, there would exist x e Inv (A) n ^Inv (_4). Since

x g Inv (v4), x cannot be in TDZ (A), contradicting (ß5).

(ß) =>(ß6)- If-4 is a ß-algebra, then maximal left ideals are closed. This is an easy
consequence of / cz„4\Inv(_4) for every proper left ideal J. It is also an easy task to
prove that A/I is a ß-algebra for every ideal /.

(Qe)=> (ß3): We have that

Rad (A) {x: l-xye Inv(_4) and l-yx e Inv(_4) for all ye Ä)

([2], Prop. 24.16, Cor. 24.17). Using this result, we may follow Aupetit ([1], Lemme
1,1.2) to obtain

Sp(x) Sp(x)

for all x eA, where x denotes the class of x in A/Rad(A). Let xeA. Since A/Rad(A)
is a ß-algebra, (ß) <=> (ß3) gives

r(x) lim||xw||,/w
n

and thus

lim fl x" 1x,n ^r(x) lim || xn \\l/n ss lim || xn ||1/n,
n w n

which was to be proved (the first inequality follows from the general theorem already
quoted in the proof of (ß4) => (Qi)).
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(ß) =* (Qi): Let a be not upper continuous at x eA. Choose U open in C such that
Sp(x)aU and (xn)G_4N, (q„) e CN such that limx„ x, q„e Sp(x„)\U. Since (by
(ß) <=> (ßi))

sup | q„ | ^ sup r (xn) _£ sup || x„ ||,
n n n

we may assume that the x„ are chosen in such a way that (oc„) converges. Let q := lim q„.
n

Then q ^ £/ and since q„ 1 - xn $ Inv (.4) for all n, and since q 1 - x lim ol„ 1 - x„, we
n

have that q ^ Sp (x) and q 1 - x 6 Inv (A) n dlnv (_4), a contradiction with (ß).

(Qi) => (Qi) => (Qi) and (Qn) => (ß8) => (ßi) are clear.

(ßg) => (ß): Choose ö > 0 such that || x || < ö implies Sp (x) c C/1/2(0). It follows that
0 £ Sp (1 - x) 1 - Sp (x), that is, 1 - x e Inv (A). (Q) <=> (Qx) now does the rest.

Remarks: 1. As regards Palmer's characterization (Qp), the implication (QP) => (Q)
is very easy to prove: if x e A and | 1 - x || < 1, then x e Inv (_4*), since _4* is a Banach

algebra, but this implies x e Inv (_4) by (ß/>).

2. I believe that our Theorem may sufficiently increase the popularity of normed
ß-algebras. It is now clear that lots of elementary results about Banach algebras are
true for ß-algebras, too: it is unfortunate that they are usually confusingly proved
under completeness assumptions (see, for instance, [5], Chapter 18).

3. Our Theorem clearly has many apphcations. One may use the Standard Banach-
algebra-proofs to obtain, for instance, the following "Gelfand-Theorems":

Theorem (*): Commutative complex normed Q-algebras are exactly those A, for which
there exist a compact space K and an isomorphism cj) ofA/Rad (A) onto afull subalgebra
of'C(K), which is separating in C(K) and contains lK.

Theorem (**): Commutative Q*-algebras (defined analogously to C*-algebras) are the

füll dense subalgebras of C(K) which are separating and contain lK, for a certain
compact space K.

(Recall that a subalgebra B of A is füll if B contains the unity of A and if, whenever
b e B has an inverse b~x in A, b~x is in B. A subalgebra of C(K) is separating if, given
points p and q in K, there is an / in _4 with f(p) =£ f(q).) It is a very useful exercise to
prove these theorems!

Vania Mascioni, Mathematik-Departement, ETH Zürich
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