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The Yang-Mills a-flow in vector bundles over four manifolds
and its applications

Min-Chun Hong, Gang Tian and Hao Yin

Abstract. In this paper we introduce an cr-flow for the Yang-Mills functional in vector bundles

over four dimensional Riemannian manifolds, and establish global existence of a unique smooth
solution to the a-flow with smooth initial value. We prove that the limit of the solutions of the

a-flow as a -* 1 is a weak solution to the Yang-Mills flow. By an application of the a-flow,
we then follow the idea of Sacks and Uhlenbeck [22] to prove some existence results for Yang-
Mills connections and improve the minimizing result of the Yang-Mills functional of Sedlacek
[26],

Mathematics Subject Classification (2010). 58E15.
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1. Introduction

Suppose that M is a connected compact four dimensional Riemannian manifold and
E is a vector bundle over M. For each connection Da, the Yang-Mills functional is

defined by

YM(4; M) / \FA\2dv,
Jm

where FA is the curvature of DA. In a local trivialization, we can express DA as
d + A, where A e T(End£ <g> T*M) is the connection matrix.

We say that a connection D A is a Yang-Mills connection if it is a critical point of
the Yang-Mills functional; i.e. DA satisfies the Yang-Mills equation

D*AFA= 0. (1.1)

Yang-Mills equations originated from the theory of classical fields in particle
physics. It turns out that Yang-Mills theory has substantial applications in pure
mathematics, especially in dimension 4. In [3], Atiyah, Hitchin, Drinfel'd and
Manin established the fundamental existence result of instantons on S4. Uhlenbeck
(33, 34] established important analytic theorems for Yang-Mills connections on
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4-manifolds Donaldson [7] successfully applied the Yang-Mills theory to four
dimensional geometric topology

The Yang-Mills equation is a typical example of partial differential equations
involving gauge invariant of a group action Besides its applications to geometry and

topology, the study of the existence of Yang-Mills connections is very interesting in
itself. Motivated by the seminal work of Eells-Sampson [10] on harmonic maps,
Atiyah and Bott [2] suggested to use the method of the Yang-Mills flow to establish
the existence of Yang-Mills connections. The Yang-Mills flow equation is

with initial condition D^(0) D0, where D0 is a given smooth connection on
E In [8], Donaldson used the Yang-Mills flow to establish the important result
that an irreducible holomorphic vector bundle E over a compact Kahler surface X
admits a unique Hermitian-Einstein connection if and only if it is stable Without the

holomorphic structure of the bundle E, it is still open whether the Yang-Mills flow in
four dimensional manifolds develop a singularity in finite time Struwe [30] proved
the existence of the weak solution to the Yang-Mills flow in vector bundles on tour
manifolds, where the weak solution is regular away from finitely many singularities
in M x (0. oc) Schlatter [24] gave the details tor the blow-up analysis at each

singular point and the longtime behaviour of the Yang-Mills flow in dimension four
If the Yang-Mills flow blows up at a finite time T > 0, the weak solution constructed

by Stiuwe [30] after the time T lies on the new vector bundle E, which might have

different second Chern number from the original bundle E

The Yang-Mills functional in dimension four is conformally invariant, which is
similar to the conformal invariance of the Dinchlet energy of maps in dimension

two, so there are general expectations that those results, which hold for harmonic

maps from surfaces, should remain true in some sense for Yang-Mills connections

in dimension four, if the gauge invariance problem is treated properly In their
celebrated paper [22], Sacks and Uhlenbeck proposed to study the perturbed energy
of a map u from M to AI

For a > 1, the functional Ea(u) satishes the Palais-Smale condition and therefore

it is not difficult to find critical points of Ea They then analyzed the limit of the

critical points when a goes to 1 In spite of the possible blow-up phenomena, several

interesting applications concerning the existence of haimonic maps were made One

of the major goals of this paper is to develop a parallel theory for the Yang-Mills
functional in dimension four Namely, we introduce the Yang-Mills a-functional

(1 2)
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The Euler-Lagrange equation for the functional YMa is

D*a((\ + \FA\2r~lFA) 0. (1.3)

A solution to the Yang-Mills a-equation (1.3) is called a Yang-Mills a-connection.
In order to show the existence of smooth a-connections, one maybe check the Palais-
Smale condition for YMa and then prove the regularity of the weak solution of (1.3).
Instead, in this paper we introduce the Yang-Mills a-flow

dA *(d \Fa\2 A*Fa)
m=~ a + „ ;+',^ c-4)

with initial condition A(0) A0. Then we apply the Yang-Mills a-flow to deform

any given connection to a smooth Yang-Mills a-connection. More precisely, we

prove

Theorem 1.1. For a given smooth connection Ao, there exists a unique global
smooth solution Aa(x, t) to the evolution problem (1.4) in M x [0, oo) for a — 1

sufficiently small. Moreover, for any —> oo, by passing to a subsequence, Aa{-, tj)
converges up to transformations to a limiting connection A£° in Ck(M) for any
k > 1, and the connection Ais a smooth solution of (1.3).

Remark. Recently, L. Schabrun [23] proved that the solution of the Yang-Mills a-
flow converges to a unique limit Af as t —* oo.

To prove the global existence of the smooth solution of the Yang-Mills a-flow
is not easy since the Yang-Mills a-flow is not parabolic. For the local existence of
the flow, we modify an idea of Donaldson [8] to study a equivalent flow. The main

difficulty in proving the global existence is to establish the local solution of the flow
for a fixed time to depending on initial values (see Theorem 2.4). Due to the energy
inequality, the Yang-Mills energy of the solution to the a-flow does not concentrate
at any time T > 0 for each fixed a > 1. However, we cannot follow the same

proof of Struwe in [29] to control the norm H2 of the curvature F since the extra
terms jM | V [4 dv and jM \F\4 dv come out due to the complexity of the a-flow.
Instead, we work on the gauge-equivalent flow and prove that for any t > 0, the

Yang-Mills a-flow has a smooth solution iniWx[(,/+ t0] for a fixed to > 0, which
depends on YMa(Aa), so that we can extend the smooth solution to M x [0. oo) (see
Theorem 2.3).

Following an idea from [17], we apply the Yang-Mills a-flow to obtain a new
proof of the existence of a weak solution of the Yang-Mills flow, which might be
a different global weak solution from the one obtained by Struwe in [30], as in the

following.

Theorem 1.2. Let Aa be the smooth solution of the Yang-Mills a-flow with the
same initial condition A0 for each a > 1. Then, there is a closed singularity set
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E c M x (0, oo) with finite 2-dimensional parabolic Hausdorff measure such that

E, E n (M x {/}) is at most a finite set for any t There is a smooth bundle E over
M x [0, oo) \ E with E|a/x{o} isomorphic to E and a smooth connection A^t) on

FIA/xp}\E/ s>uch that (1) /loo(0's a solution of the Yang-Mills flow, (2) for each

compact set K c M x [0, oo) \ E, there are gauge transformations <j)a over K with
<p*Aa converging smoothly to A^ over K as a —> 1

To prove Theorem 1 2, we establish a Bochner type estimate uniformly in a and a

local parabolic monotonicity formula for the Yang-Mills a flow, which is similar to

one in [29] and [16] Then we follow an idea of Schoen [25] (also see [29]) to obtain

a uniform estimate on | Fau | in a However, there is a technical difficulty that we do

not have Bochner formulas for higher order derivatives of Fau, so we cannot apply
the Moser estimate to obtain the unfoi m estimates of higher order derivatives of FAa
To overcome this difficulty, we obtain the uniform Sobolev norms of FAa for all

integers k > 1 by using the equation of Fau (see Lemma 3 6)

With the analytic tools developed in the proof of the previous two theorems, we

investigate fui ther applications of the a-flow It is not hard to establish an e-regularity
result for studying the blow-up of a sequence of Yang-Mills a-connections When
a blow-up phenomenon happens, we will study the change of the topology of the

bundle More precisely, the original bundle E, on which the blow-up sequence lies,

is the connected sum of the weak limit bundle over M and the bubbling bundles over
S4 Following the idea of Sacks and Uhlenbeck's paper [22], we apply the existence
of smooth Yang-Mills a-connections of Theorem 1 1 to show

Theorem 1.3. If ^3 (G) is a free abelian group of rank r, then there exist at least /

different Yang-Mills G-connections over S4

Remark. It is well known that any simple compact Lie group G has n^iG) Z So

the result is useful only for semi-simple compact Lie groups, for example 50(4)

Furthermore, we can apply the Yang-Mills a-flow to improve the minimizing
theory of the Yang-Mills functional on E In [26], Sedlacek studied the direct

minimizing method for the Yang-Mills functional in E More precisely, let £),

be a minimizing sequence in the given bundle E over M Using the weak

compactness result of Uhlenbeck [34], Sedlacek proved that D, weakly converges in
Wx 2(M\{x 1, x;}) to a limiting connection D^ which can be extended to a Yang-
Mills connection in a (possibly) new bundle E' over M with the same topological
invariant r\{E') — r)(E), which is an element ot H2(M,tt\(G)) Because there is

only W2 2 control ot the transition functions, one can not use the gluing argument
of Uhlenbeck in [34] to obtain a bundle map Therefore, the relation between the

original bundle and the limit bundle E' (which may be different) is not quite clear
It is known that the topology of a vector bundle over a 4-manitold is determined

by some p invariant, and the vectoi Pontryagin number (see the appendix in [26])
By using the a-flow, we modify the minimizing sequence to obtain a better control
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and new minimizing sequence, which converges to the same limit in the smooth

topology up to gauge transformation away from finite singular points. Moreover, for
the modified minimizing sequence, a blow-up analysis is discussed and an energy
identity is proved.

Theorem 1.4. Let £ be a vector bundle over M with structure group G. Assume
that D, is a minimizing sequence of the Yang-Mills functional YM among smooth
connections on E, which converges weakly to some limit connection D^ by
Sedlacek's result. There is a modified minimizing sequence D'r a finite set S C M
and a sequence of gauge transformations (p, defined on M \ S, such that for any

compact K c M \ S, (p* D', converges to D^ smoothly in K, where D^ is gauge
equivalent to the connection D^. Moreover, there are a finite number of bubble
bundles E\, • • £/ over S4 and Yang-Mills connections D\, • • • Dj such that

I

lim YMiD,) YMIDqc) + V YM(Dj).
I—>oo

7=1

This improves Theorem 5.5 of [26] because the convergence of (p* D', is smooth.
(See [18] for a similar discussion using Sobolev bundles and the weak convergence.)

Finally, we would like to discuss some potential application of the Yang-Mills
a-flow to the Morse theory of the Yang-Mills functional. It is well known that
the Yang-Mills functional in dimension four does not satisfy the Palais-Smale
condition. Many efforts have been made in this direction (see [32] and the references

therein). Following an idea in [22], one expects to study the limiting solutions of the

a-equations (1.3) as a goes to 1. It seems that the Yang-Mills a-flow provides a new
analytic tool to prove the existence of Yang-Mills connections. In Subsection 4.4, we
use it as the analytic tool to provide a new proof of the existence of the nonminimal
Yang-Mills connection on S4, which is due to Sibner, Sibner and Uhlenbeck [27],

The rest of the paper is organized as follows: In Section 2, we prove Theorem 1.1

and some other analytic results needed for the applications. In Section 3, we study
the limit of the a-flow as a goes to 1 and prove Theorem 1.2. In the final section, we
study serval applications of the a-flow.

2. Existence of the a-flow and its equivalent flow

2.1. Local existence of the a-flow. It is well known that (1.4) is not a parabolic
system and that this difficulty can be overcome by using a kind of Deturk trick.
Throughout this paper, let Dref be a fixed smooth background connection.

Let £>o Dref + A0 be a given smooth connection in E.
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Following (29], we consider an equivalent flow

dD *{d\Ff.\2 A *Fr,) -— -D*Fö + (a-l) '

t—— D(D a), (2.1)
i + |^d|

with D(?) Dref + a(t) and a(0) Ao- Then the equivalent flow is a nonlinear

parabolic system. By the well-known theory of partial differential equations, there
is a unique smooth solution of (2.1) defined on M x [0. T] for some T > 0. By the

theory of ordinary differential equations, there is a unique solution to the following
initial problem:

— S -S o(D*a), (2.2)
at

M x [0, T], with initial value 5(0) /. Here 5(0 is a global gauge transformation
and / is the trivial one.

Setting
D (S'l)*D,

we have (e.g. see [29], [14])

Fö=S~lFS. D(D*a) D o (D*a) — D*a o D.

Combining (2.1), (2.2) with the above facts yields

d dS dD dS~
— D —o Z) o S + 5 o o S + S o D o ——
dt dt dt dt

-* *(d\Fh\2 A *^f>) i
-D*FÖ + (a- 1)

D
2— SOj__ D' \ c-1

!+l^l
*(^|T"^|2 A *FA)

-D*FA + (a- 1) 5

This shows that D (S~1)* D satisfies the Yang-Mills cr-flow with D(0) D0 in

M x [0. T] for some T > 0.

Next, we remark that the smooth solution of the Yang-Mills a-flow is unique.
In fact, let D, Dref + A,(i 1.2) be two smooth solutions to the Yang-Mills
cr-flow with A,(0) A0. By the theory of parabolic equations, there is a unique
local smooth solution of the parabolic system of second order:

— 5, —(Dref + A,)*[Ai 5, + Dref 5,] (2.3)

with 5(0) /. By computation, we can check that the connections Ä S*(Dt)
are two solutions to the modified flow (2.1) with the same initial value. Hence,

D\ and Di are the same. Moreover, (2.3) is nothing but the ODE (2.2). By the

uniqueness of ODEs, we know St and hence Dt are the same.
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A similar method to prove uniqueness was used for the Ricci flow and also for the

Seiberg-Witten flow [15]. Therefore, we have shown that the «-How has a unique
solution in M x [0, T) for some T > 0.

2.2. Energy inequality of the «-flow.

Lemma 2.1. Let A(t) be a solution to the Yang-Mills «-flow in M x [0, T) with
initial value A(0) Ao- For each 0 < t < T, we have

/JM
(\ + \F\z)a dv + 2a ff<Jo Jm

(\+\F\2r~1
dA

ds
dv ds f (1 + |FAo\2)adv.

Jm
(2.4)

Proof. Note ^ D^. Then, multiplying (1.4) by (1 + 1 + ^)" ldtA and

integrating by parts, we have

dA i2w-i;

/Jm

d

dt jm
5- / (1 + |F\2)adv 2a f ((1 + l + l2)""1^ ~—)dv

Jm

dF

Tt

2« j^D*({\ + \F\2)a-lF)d-^jdv

-2« f
Jm

(i + \F\zy2\a — 1
dA

dt
dv.

Then (2.4) follows from integrating over [0. t].

Lemma 2.2. Let A(t) be a solution to the Yang-Mills «-flow in M x [0, T). For
each 0 < t\ < t2 < T, we have

/ (1 + \F\2f(t2)dv <
Jbk(x)

v -1JBlR
(1 + \F\ (ti)dv + c\^YMa(A{0)).

U) R
(2.5)

Proof. Let <p be a cut-off function supported in B2r(x) and (p 1 on Br(x).

dt A <pz(\ + \F\2)adv 2a I ^lD*((\ + \F\zr-lF).~
m JM \ (>t

f
Jm

l2\or— 1
dA

dA
+ <p(l + |F|2)a xF#S7(p#—dv

dt

< - f ^(1 + |FT)
Jm

2\a— I
dA

dt

+ (1 + \F\2)a~l\V<p\2\F\2dv.

The lemma follows from integration over [t\. t2}.
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We also need a similar result in the other direction.

Lemma 2.3. Let Aft) be a solution to the Yang-Mills a-flow in M x [0, T). For
each 0 < t\ < t2 < T, we have

2.3. Global existence of the a-flow. In this section, we will show that the solution
of the Yang-Mills a-flow (for small a — 1) exists in M x [0, T) for all T > 0.

Theorem 2.4. Let Do Dref + Ho be a smooth connection in E. Then there is

a smooth solution A to the a-flow (1.4) with initial value H0 in M x [0, to) for a

constant t0 > 0 depending only on YMa(D0).

We note that together with Lemma 2.1 and the uniqueness of smooth solution to

(1.4), Theorem 2.4 implies the global existence part of Theorem 1.1.

The proof involves higher order estimates for parabolic systems. For that

purpose, we resort to the modified flow (2.1) again. To start the proof, we need

the following lemma.

Lemma 2.5. Let D be a smooth connection on E with YMa(D) bounded, and let

Dref be some fixed reference connection on E. Then there exists a global smooth

gauge transformation s such that

Here C is some constant depending only on Dref and YMa(D).

Proof. Although not explicitly stated, the proof is essentially contained in the paper
[34] of Uhlenbeck. We briefly indicate how it follows from [34],

If the lemma is not true, then there exists a sequence of Dt with YMa(D,)
uniformly bounded such that for any smooth gauge transformation s,, we have

It is shown in [34] that by passing to some subsequence, there exists s, such that
s* D, converges weakly in Wl'p to some D^ for p 2a.

In the proof, Uhlenbeck chose some j sufficiently large and wrote s*D, in local
trivialization oa (j) as

Proof. The claim follows from the above proof in Lemma 2.2.

II S D Dref I 2a (M) - C.

||st Dt Ore/I Wl-2a(M) — '• (2.6)

d + pa\i)dpa(i) + pa\i)A(a,i)pa(i).
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Here we refer the reader to [34] to see the definitions of oa(i), pa(i) and A (a, /).
Moreover, Uhlenbeck proved that

Pa (i)dpa(i) + Pa (i)A{a,i)pa(i)

is bounded in Wx,p uniformly in i. Although the local expression of Dref in
the trivialization oa(j) has no explicit bound, it is independent of /. Hence

s*D, — Dref is bounded in Wx'p uniformly in i locally in the trivialization oa{j).
Since s* Dl — Dref is a tensor and we may show the same bound in Oß{j) for
ß ^ a. We get a contradiction with (2.6) and the lemma is proved.

With this lemma, we may assume without loss of generality that Ao in Theorem

2.4 has bounded Wx'2a norm.

Proofof Theorem 2.4. Instead of (1.4), we shall discuss (2.1). By our discussion in
Subsection 2.1, we know this is sufficient.

For some e > 0 to be determined later, the Holder inequality and Lemma 2.5

imply that there exist ro > 0 and C\ > 0 such that for all x M,

L Mo|2 + |^ref dx < e/2 (2.7)
I Br(l(x)

and

f \A0\2 + \VrefA0\2dx <Cj. (2.8)
Jm

Let {,v, £ M\i 1, L) be a finite number of points in M such that (Z?ro(x,)}
covers M and for each / there are at most k different j 's ball Bro(xj) with

Biroixi) Fl Bn)(Xj) ^4 0. Although L depends on s, it is important to note that
A: is a universal constant depending only on the dimension.

Let D(t) Dref + a(t) be the local solution to (2.1) defined on [0. T). Since

a(t) is smooth, there exists a t\ > 0 which is the maximal time in [0, T] such that
for all / 1. • • L,

0<7

and

sup / \a(t)\2 + |Vre/a(0|2dx < e (2.9)
<(<(! JBr,Ax,)

sup f \a(t)\2 + \Vrefa(t)\2 dx + f [
0<7<7, JM Jo JM

'if 2

dxdt <2Ci. (2.10)VrVfl

We shall find t0 depending on YMa(D0) and a alone (the exact value of to is

determined in the process of proof) and prove that T > fo, which concludes the

proof of the theorem. If not, then either t\ < T < t0 or t\ — T < t0. It suffices to
show that neither case is possible.
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Before we give the details of the proof, we outline the idea of the proof. By
Lemma 2.5, we have (2.7) and (2.8) for the initial value a(0). Step 1 below shows

that as long as the solution exists, (2.9) and (2.10) must remain true for t e [0. to]

for some to > 0 depending only on YMa{Do). The condition (2.9) is a 'smallness'
condition, which will enable us to prove higher derivative estimates for the nonlinear

parabolic system (2.11) of second order. This is done in Step 2 below.

Step 1: t\ < T < to is not possible.

To study the evolution of a(t), we rewrite the flow equation (2.1) as

da
— Arefa + (Vrefa#a + a#a#a) - DrefFref (2.11)

+ (a - l)f(FD)#(V2efa + a#Vrefa + a#a#a + VrefFref),

with the initial value a(0) A0, where Jr{Fo) is a bounded function depending on
Fd For any /, let 0, be a cut-off function supported in ß2r0(-vi) with 0, 1 on

Bro(x,). For simplicity, we write 0 when it applies to all 0,.

Multiplying (2.11) by a and using Young's inequality, we have

— f \a\2 dv + [ \Vrefd\2 dv
dt Jm Jm

<-[ \^refa\2 dv + C(a — 1) f \V2efa\2dv + C f \a\Adv + C. (2.12)
2 Jm JM JM

By our choice of t\, (2.10) and using the Sobolev embedding from W1'2 to L4, we
have for t < t\,

dv + C.f \a\2 dv + ^ f \Vrefü\2 dv < C(a - 1) f
dt JM 1 JM J a

Multiplying (2.11) by Are/a, we have

-77 / IVrefdl2dv+ f |Arefa\2dv
dt JM JM

^ f \Arefü\2dv + C(a — \ f |V2efa\2dv
2 Jm JM

+ [ (\Vrefa\2\a\2 + \a\6)dv + C. (2.13)
Jm

<~ 2
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By Holder's inequality and the Sobolev inequality, we obtain

85

/JA
\afdv S Ff

^ E

M JB,0(x,)
\a\6 dv

b,(} (x,)

1/2

|r/1 dv

< Cs

< Ce

?/.
I \^refa\2\a
JM

f \Vrefa\2\a\2dv + C.
JM

B} o (x/)

2 ,2 ,4< Cs y I |Vre/fl| \a\ + \a\ dv
i Bro(x,)

|2 + |tf|Vu

Similarly,

f \Vrefa\2\aY
JM

dv < f \Vrefa\2 \a\2 dv
JB,t)(x,)

s E ' Br{)(x,)

1/2

|Vre/r/|4 Ju

< Cs ?/.
Br{)(xi)

V2refa

Br() (xt)

+ | Vrey £/ |2 dv

< cs/jv,V + |Vre/a|2r/u

Using integration by parts, we have

f y2refa dv < f \Arefa\2dv + C f \Vrefa\2 dv,
JM JM JM

which implies

/JM

3

4 JM
dv < f I ^re/a\

JM
dv + C.

+ dv < C

In summary, by choosing a — 1 and s small, we have

77 f \"\2 + \^ref(j\2 dv + j [ \Vrefu\"
JM 4 Jm

for t e [0, /j ]. Integrating the above inequality yields that there exists t0 > 0 such
that (2.10) remains true for t\ < to.
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For (2.9), we need a local version of the above computation. Multiplying (2.11)
by (f>2a and using Young's inequality, we have

77 f \a\2tf dv+X- I \Vrefa\2<t>? dv
dt Jm 2 JM

< C(a - 1) f \V2refa\2tf dv + C. (2.14)
Jm

Here we have used the bound on | V0, | and fM \a\4 dv for t < t\. Multiplying (2.11)
by (p2Aref(i, we have

7- f \Vrefa\2<P? dv + d- f \Arefa\2<t>? dv
at Jm 1 Jm

<C(a-\)f \y2efa\2(p2 dv + f (\Vrefa\2\a\2(p2 + \a\6<J>?) dv + C
Jm JM

+ C f \Vrefa\2 |V0,|2dv. (2.15)
Jm

By integration by parts, we have

3 f y2efa <p2dv < f \Arefa\2 tfdv + C f |Vre/c/|2 + |V0, \2)dv
Jm Jm Jm

< [ \Arefd\2 <p?dv + C,
Jm

where we have used (2.10) for t < t\.
We can deal with the main nonlinear terms as before.

f \a\6 <p2dv < Cef | Vref(<pa2)\2 + ip2 \a\A dv
Jm JM

5 Cef (\VcpA2 +<pf)\a\4 + <j)2\a\2\Vrefa\2 dv
Jm

f <f>?\a\2 + \Vrefa\2 dv + C
Jm

< Cs

and

dv + C.

f <p2\a\2\Vrefa\2dv < Cef \Vref(4>, Vre/n)|2 + <f>2 |Vre/«|2 dv
Jm JM

A Cef V2e
Jm

In summary, for t < 11, we have

d C

— / (p2{\a\2 + \Vrefa\2)dv < C.
at Jm
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Therefore, by choosing to sufficiently small, we see that both (2.9) and (2.10) remain

true for t\ < to- By our definition of t\, this shows t\ < T < r0 is not possible.

Step 2: t\ T < to is not possible.

As pointed out before in Step 1, we now show thtat (2.9) and (2.10) together with
(2.11) imply higher order estimates up to T, so that the solution can be extended

beyond 77

For that purpose, we consider the evolution equation of a. Let <p be a cut-off
function in time. Precisely, cp(t) 0 for t < ?i/4 and <p(t) 1 for t e [o/4,fi].
Multiplying (2.11) with (p3 and applying the Lp estimate (see Theorem 9.1 of [19];

pages 341-342), we obtain for p 4,

W a\wj-\Mx[0,t{}) — C(a 0 Vrefa
3

LP(Mx[0,t\ ])

+ C I <P ^refa#a\\Lp^Mx[o ,,,])

+ C \\<P3a#a#a\\LP(Mx[0A]) + C.

We denote Wp'1 by the space of functions whose space derivatives up to second order
and first order time derivative belong to Lp. The Lp norm of p2dtpa is bounded by
(2.10), which is why we assume p — 4.

By choosing a — 1 sufficiently small and using Young's inequality, we have

II ^ a\w2A (Mx[0,ti]) —
C IIHIL.V(MX[0,O]) ^ ^refa \ L*Pt2(Mx[0,t\]) ^

Recall that M is covered by Bro(xi) and fBr ^ \a\4 dv < Ce2. For simplicity,
we write B; for Bn](xl). An interpolation theorem of Nirenberg (Theorem 1 in [20])
implies that

1/3
II<HIz7/>(5,) 5 C <p*Vfefa

^
\\a\\2^(B,) + C llöllz,4(ß,.)

This implies that

pf \<pa\3p dv < Cep I (p3V2efa
JB, JB,

dv + C.

Hence,

nJo Jm
\(pa\3p dv < ^0

i (xi

f'fJo Ja

\pa\3p dv

< Csp 9 Vrefa dv + C.
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That is

Similarly,

WyuW L.3P(M < Ce ^ref^a)
Lf(Mx[0,r,])

+ c.

3/2
W ^WöIz,3/>/2(A/X[0,( < Ce ^ref(^a) + C.

Lp(Mx[0,t\])

The proof is the same, except that we use another interpolation inequality

\<PZVrefa\\L3P/2(Bi) < C <p3V?efa
2/3

L"(B,)
aWXL*(B,) + C HallL4(B<)

2 1

By choosing e small, we obtain an Wp' bound on a for p 4, which allows us to
apply the estimates for linear parabolic system for higher order estimates. In fact,
the parabolic Sobolev embedding theorem (Lemma 3.3 of f 19]; page 80) implies that
cp2dt(pa is in LP(M x [0, n]) for any p > 1. We then repeat the above argument and

use the parabolic Sobolev embedding again to see that is Holder continuous.
The higher order estimates now follow from Schauder estimates and (2.11).

2.4. Convergence for t, —»• oo. We now complete the proof of Theorem 1.1 by
considering t, —> oo. We first claim that we have some gauge transformations a,
such that the a*(y4(/,-)) are uniformly bounded in any Ck norm. To see this, let to be

as in Theorem 2.4 and set x, /,• — to/2. Consider the solution Ä(t) to the modified
flow (2.1) with initial value Ä(s, A(s,-). The proof in Step 2 of Theorem 2.4
in fact established a Ck estimate for /1(h), which is gauge equivalent to /4(h) by
the discussion in Subsection 2.1. Therefore, there is a subsequence which converges
smoothly up to gauge transformations. By similar argument above, we have uniform

a bound on VkF(x. t) for any k. Due to (1.4), we have a uniform bound for as

well. Hence, there is C > 0 independent of t such that

~ f (l + l/T)
os JM

1\a—1 3/4

ds
dv < C.

Lemma 2.1 then implies that

lim [
00 JM

3/4

dt
dv 0.

Hence, the limit obtained above is a Yang-Mills a-connection. This completes the

proof of Theorem 1.1.
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2.5. Stability of the modified flow. The results in this subsection are prepared for
later applications. Since we shall use the Yang-Mills a-flow as a deformation in the

space of connections, we need to show that this flow depends at least continuously
on its initial value in some chosen topology.

Theorem 2.6. If Ö, Dref + /!,(? 1. 2) are two initial connections satisfying

IM' \\ck-P(M) —

then by Theorem 2.4, there exists to > 0. which now depends on K and the solution
A, (t) to the modified flow (2.1), which is defined on [0, t0] and satisfies A, (0) A,
and

IMi llc*-f(A/x[o,r0]) -
Moreover, for any e > 0, there exists 8(K) > 0 such that if

IMl -
then

IMlCO - A2(t)\\ck'HM) — s>

for t e [0, t0].

Proof. The proof of the first part is essentially contained in the proof of Theorem 2.4.

At that time, we didn't have good control over the initial value, hence a cut-off
function in time was used to produce higher order estimates on M x [to/2, to]. For
our purposes here, it suffices to remove the cut-off function ip in Step 2 of the proof
there.

The proof of the second part follows from theory of linear partial differential
equations and is perhaps well known. Both A\ and A2 satisfy the modified Yang-
Mills flow, which for our purposes here is written as

dA
—— A A, + (a — \)P(A,, V/4,)#V2A, + Q(Aj, VA,).
at

The exact form of P and Q is not important for us. It suffices to know that P and Q
are smooth functions of At and VA,-. Subtracting the two equations, we have

A(i4l-A2) + {a_ \)P(AuVAx)#S/2{Ax — A2)
Ot

+ (F(A1,V/l1)-P(/42,V/l2))#V2ff2
+ Q(Al,VAl)-Q(A2.VA2).

There are smooth functions R and S of Aj and VA,- such that

dAx — A2 7~ A(Ai-A2) + (a-\)P(Al,VAl)#V2{Al-A2)

+ R(A,, Vffj. V2A2)(A\ — A2) + S(ff,-, VA,, V2A2)(V/li — Vff2).
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If we take the above as a linear parabolic system for Hi — H2, then (i) the system is

strictly parabolic in the sense of Petrovskiy (see page 4 of [11] by noting that P is

always bounded and hence the principle part is a small perturbation of the Laplacian)
and (ii) the coefficients are bounded in the Ck~2'a norm.

For the strictly parabolic linear systems in the sense of Petrovskiy, Eidel'man
([11], pages 243-244) constructed the heat kernel Z explicitly. Moreover, the

solution to the linear system is expressed as the convolution

(H, - A2)(x,t) [ (Al-A2)(y,0)Z(x,t\y,0)dv.
Jm

Therefore

IMi — ^2|lc0(Mx[o,r0]) - C(K) ||Hi(-,0) - H2(-,0)||C0(M).

We can now apply the Schauder estimate to see

IIH1 (-, t) - H2(-, Ollc* fi(M) - IMl - ^2|lc*-ffiMx[0,ro])
< C(K) ||Hi(-, 0) — H2(-, 0)||C£,£(M).

This proves our claim.

3. Convergence of a-flow solutions

In this section, we study the convergence of the a-flow solutions as a goes to 1.

We follow the same idea as in [17]. The key ingredients in the proof are a Bochner
formula and a monotonicity formula, which are well known techniques but should
still be computed for our new equation.

We start with the Bochner formula.

3.1. Bochner formula and the uniform bound of F. Let A{t) be a solution of the

Yang-Mills alpha flow; i.e.

3H
_ *((VF, F)a*F)

ä7=— 1)
i+IFp

(31)

where D Dref + A. We recall that the curvature F of D satisfies

dF „ *((VF, F) A *F)
— —DDF + 2(a — \)D~— ^(3.2)dt 1 + 1^1

For each point p e M, let e' be a normal frame of TM and a>' the corresponding
orthonormal basis of the cotangent bundle T* M. Then at p e M,

F ^ F,j (i)1 A a)1.

KJ

At p e M, we can assume that Vel — 0 and Vco' 0.
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In order to derive a Bochner type formula, we need

Lemma 3.1. Let
cp := (VF, F) cpkCok.

Then at p e M, we have

4 4

*(<? a *f) V' FiJMl
1 1 j \

Proof. At p e M, we have

F F12ÖJ1 A IX)2 + F13CU1 Act)3 + F14CU1 A IX)4

+ F23W2 A CU3 + F24CO2 A <X>4 + F34ÜJ3 A IX)4.

Applying the Hodge star operator *, we have

*F Fi2lX>3 AO)4 — Fi3(X)2 A IX)4 + F\4ü)2 a co3

-f- F23CO^ A m4 — F24CO^ A Ct)3 T" F341X)* A CO
2

Hence

(pA*F +cpi Fl2C01 a CO3 A CO4 — (Pi F13CO1 A CO2 A CO4 + cpi Fi4(Ol A CO2 A CO3

^ 1 < 1 1 A 1 •>

+ (p2Fi2CO A CO A CO —(P2F23CO A CO A CO +CP2F24CO A CO A CO

+ <£>3 F13U) A CO A CO —(P3F23CO A CO A CO + (P3F34CO A CO A CO

-\~CP4F\4C02 A CO3 A CO4 — (P4F24CO' A CO3 A CO4 + CP4F34CO' A CO2 A CO4.

Applying the Hodge star operator again, we have

*(<p A *F) (<p2Fi2 + <P3Fi3 + (P4F14W

+ —<Pl Fl2 + W2F23 + <^4^24)a>2

+ (—<Pl F\3 — cp2F23 + <P4F34)(03

+ (~cp\FU - (p2F24 - (P3F34)t04

1=1j=l

This proves our claim.

Lemma 3.2. (Bochner type formula 1) When cc — 1 is sufficiently small, there is a

constant C such that

^\F\2-Ve, ^ + 2(a - 1)^'^']^ |F|2j + |VF|2 < C |F|2 (1 + \F\).

(3.3)
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Proof. Recall that we use a local normal orthonomal frame {e,} and its dual {a>,} at

p. Noticing the fact that VeJ eJ 0 at p e M, we have

Let A DD* + D*D denote the Hodge Laplacian with respect to the connection
D. The well-known Weizenböck formula is

Here Ric is the Ricci curvature of A/, R is the curvature operator, and (Ric a g +
2R) is a linear mapping from 2 forms to 2 forms. We refer to Theorem (3.10) of [4]
for the exact statement and the proof. Since we are not interested in the exact form
of the last term and it is quadratic in F, we denote it by F#F.

Using Bianchi's identity DF 0, we have

V*V|F|2 -YJyeJVej\F\2
J /

and

EV.U (F-n=2'£{V„F.V,lF} + 2-£{r.^;„F).

AF V*VF + F o (Ric A g + 2R) + F#F.

-(DD*F, F) (Ve,Ve, F + F#F - F o (Ric Ag + 2R), F)

For simplicity, we set

Then we have

9

dt
(3.4)

2{F-lF)~2Ve' ^e'F.n-Ve, (blJVe/ |F|2)

2 / F, + DD*F) + (F, F#F - F o (Ric Ag + 2 R))
\ ' 9^

—2 | VF|2 — Vei (b„VeJ |F|2)

By Lemma 3.1, we have

*(tp A *F) Ftjü)'
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Let f{\a\) denote a function whose absolute value is smaller than a constant

multiple of \a|; i.e. \f(a)\ < C |a| for a constant C > 0. Then at p, we have

*(w A *F) D(*(w A *F))D-— ^ + d(l + F A *(<p A *F)
1 + |F| l + l^l

_ +/(|VF|2
I

}
1 + \F\2

- '

|F|

ljl" "" +/(iv/r—)<pi;kFlj(Ok AO)' 2_1
1 + IFI2 /U |F

which implies

D*(<p A *F) \ ^-AF^Fkj) /(|Vf|2^
1 + |F| / 1 + |F|

On the other hand, we have at 75

(^V,y|F|2) V, La - 1)^^+ 2^) (3-5)

(F/;, F/;) F#F#VF#VF
4(Q,~1} iTiFf^;'+ t +

„F#F#(F,VF)2
(a }

(1 + |F|2)2
*(<p A *F)

1 + IFI
> 4(a - 1)(D-^—^, F)-C(a-1)]VF|2.

Since p is an arbitrary point of M, we may combine (3.2), (3.4) and (3.5) to get
(when a — 1 small),

^|F|2-Ve, ((8,j + btJ)Vej |F|2) + I VF |2

<C|F|3-(F, Fo(fiicAg + 2fi)). (3.6)

Since the manifold is compact and the curvatures are bounded, the lemma follows
trivially from (3.6). We shall use this shaper estimate later to prove a gap theorem
for Yang-Mills «-connections on S4.

As a consequence of Lemma 3.2 we have

Lemma 3.3. (Bochner type formula 2) For each a > 1, let A be the smooth solution
of the Yang-Mills a-flow and F := Fa the curvature of A. Thenfora—1 sufficiently
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small, we have

1(1 + |F|2)« _ ^ + 2(a - l)i^llj)V,y (1 + |F|2r j
< C(1 + |F|2)a(l + |F|) (3.7)

for a constant C > 0.

Proof. In fact, one sees

1(1 + |F|2)<* =a(l + (jp|2r-i
9 |jP|

31 31

and

yej(\ + |F|2f «(1 + |F|2)a_1 |F|2.

For simplicity, we set

al} =S„ +2(a- \)(Flj\Fl'l
1 + |F|2

Then we have

Vei(aiJVej(l+\F\2f) ayei(au(\ +\F\2f~1Vej\F\2)
a(\ + \Fa\2r-lVei(aijye/F\2)

+a(a-\)(\ + \F\2r-2ai]Ve,\F\2Ve/\F\2

By Lemma 3.2, we obtain

l(l + |F|2f - Ve,{alJVej{\+\F\2T)

«(1 + 1 F\z)2\a-\ l|F|2-Ve,(fli7VeJF|2)

|2\a-2„ V7 I T7 l2V7 I JT|2— a(a— 1)(1 + \F\ )a ciijVe, |F| Ve/ |F|

< C(1 + |F|2)a"'|F|2(l + |F|).

This proves our claim.

3.2. Monotonicity formula. The global parabolic monotonicity formula for
harmonic maps was first established by Struwe in [28], and for the Yang-Mills flow
in [5] and [13]. Next, we will derive a local parabolic type of monotonicity for the

Yang-Mills a-flow as similar to one in [16].
Let i(M) be the injectivity radius of M. For z0 (xq. to) e M x M+, we write

Tr(zq) {z (x, t) : t0 — 4R2 < t < to — R2.x M)
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When there is no ambiguity for z0, we write Tr only.

If we take the normal coordinates {x1} in B,(m)(xo), dv ^g(x)dx and the

Euclidean backward heat kernel to the (backward) heat equation with singularity at

z0 is

As before, we write G(x, t) when zo is obvious.

For a small Rq S i(M) and some fixed xo e M, let (/> be a cut-off function

supported in Bro(x0) with <p 1 on Bro/2(x0). Assume that A is a solution of the

a-flow (1.4) in M x R+. For any zq (xq, to) e M x [0, T], we set

Lemma 3.4. (Focal Monotonicity) Let A be a regular solution of the a-flow (1.4).
Then, for zo (xoJo) G M x (0, oo) and for any two numbers R\, R2 with
0 < Ri < R2 < Ro, we have

A; zo) £ C exp(C(R2 - * zo) + c(Rl - Ä?)YMa(A0).

Proof. Although the main idea of the proof is similar to one for the Yang-Mills flow
in [16], the proof becomes much more involved, so we have to give more details
here.

Since the computation is local, we choose normal coordinates {xl} around xo
and assume without loss of generality that t0 0 and x0 0.

In (3.8), we set x Rx and t R2t to obtain

(\ + \F(z)\2)a <p2(x-x0)GZo(z) Jgdxdt. (3.8)

R*a( 1 + |F|2(x, t))a f2(Rx) G(z) y/g(Rx) dz

where dz dx dt.
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Then we compute

-r
4aR4a~

— [>a[l + \F\2(Rx,R2t)]a <p2(Rx) i/g(Rx) ] G(z) dz

+ aR4a

aR4a

L

L

1 f [1 + \F\2{Rx, R2t)]a 4>2(Rx)^g(Rx)G(z)dz
JT1T1

[1 + \F\2(Rx,R2t)]a-xxk

X Vg(Rx)G(z)

2 Aia—l'

dz

[1 + \F\2(Rx, R2t)]a~l2Rt

9
x — \F\2(Rx, R2t) <f>2(Rx) g{Rx) G(z)

at
dz

+ f R4<*[1 + \F\2(Rx, R2t)\a xk-^-r ((/)2y/g)(Rx) G(z) dz
JTi 0Xk

:= 11 + I2 + I3 + h

In order to estimate 1\ and /2, we note that in local coordinates, we have

F — -Fudxl A dxJ.
2 '

Let k F FlJdxl A dxJ be the gauge-covariant derivative of F with

respect to ^ satisfying VAxk F„ + [Ak, FtJ} - J^s T°kFSJ - ^ TsjkFls.
Since A is compatible with the Riemannian structure, we have

1

^l^l2 ^A^Fijdx1 A dxJ, Fimdxl A dxm^j

In local coordinates, the Bianchi identity DF 0 is equivalent to

Yd,xk Fij Yd,x' Fkj — Y4,xJ Fki

Using the Bianchi identity, we have

xk — \F\2 -
9

dxk
|2 ^xk A x, Fkj -VA xJ Fkl)dxl A dxJ, Fimdxl A dxm^

{vA^x,{xkFk])dxl A dxJ, F!mdxl A dxm^j — 4|F|2

— (xkFSJ Fskldxl A dxJ, F{mdxl A dxm^j,



Vol. 90 (2015) The Yang-Mills a-flow 97

where VAtX,(xkFkj) := ^r(xkFkj) + [At,xkFkj] - xkFksrs]t is the gauge-

covariant derivative of xk Fkj with respect to Changing back to {x, t), we have

I\ + I2 ctR4a—3 I (1 + I^T) 4(1 F|2 + 1) +X1

aR4a—3

TR

IJ
.d\F\2

dxk
ip2 G yfg dz

o + im2\a-l

4 + [vA x, (xkFkj)dxl A dxJ, Fimdxl a dx" G Vg dz

— aR4a—3 L L(i + iF|2r_1

x [xkFSJ rskldx' A dxJ, Fimdxl A dxmj (p2 G

Note that

D*[( 1 + |F|2)a_1 F] -gllVA,x,[{\ + \F\2r~lFlm]dxm

Then using Stokes' formula, we have

J (1 + IF12)"—1 l^x, (xkFk/)dx' A dxJ, Fjmdxl A dxm^j (p2 G *Jg dz

2j (1 + |F|2)a_1 (vx, (xk Fkj )dxJ, gllF/mdxm]j cp2 G Jg dz

2^ (xkFkjdx', Z)*[(1 + |F|2)a-1F]j (p2 G J~g dz

-2 j (1 + IF I2)"-1 (xk Fkjdx>, g'1 Fimdxm^j <p2 g dz

-4 j (1 + |F|2)a_1 (xk Fkjdx>, g'lFimdxm^j <p ^ G Jgdz

dz.

'Tr
Using the fact that

dxk

dG xl
ä? 27c-\gij(x)-S,j\ < CjxI2,

we have

h + I2 > 2aF4a"3 J (xkFkjdx] ,D*{{ 1 + |F|2)a_1 F)^j (p2 G «Jgdz

+ aR4^ [ (1 +\F\2T-l\xlglkFkjdx'\2±-G<p2 ^dzJtr lu

- Ca«4""3 f (1 + |F|2)a(|x]202 + \x\\Vcp\ + ^-<p2) G Jgdz
JTr, \t\
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To estimate /3,we note that the a-flow (1.4) is equivalent to

(i + -D* (d + i/fr-'F).
Then using Stokes' formula, we have

h 2aR4ot~3
>tr

4aR4a~3

f (1 + I/7!2)**-1 t^-\F\2 <p2 G Jg dz
Jtr 31

^(l + lfl2)«-1^ D(^)J <p2 G Jgdz

4aR401'3 j t(r>* [(1 + |F|2)a_1f], (j>2 G Jg dz

-4<xR4a~3 fT t(\ + \F\2r~l 1^, g'1 Flmdxm^^<p2 + 2<p^G^) Jgdl
C RA

4aR4a-3 / \t\(\ + \F\2)"-*\ — \2<l>2GJgdz
Jtr 31

- 2aR4a~3 fT (1 + |F|2)"-1 x'g'lFlmdxm^4>2G Jgdz

-4aR4"~3JT t(\ + \F\2r~i g'1 Flmdxm^J2<p^G J^dz.

Using above estimates and also Young's inequality, we obtain

—A) I\ + I2 + I3 + I4
dR

1 p aa xl 2

>-aR4a~3 \t\(\ + \F\2)a~l 2j---g'lFimdxm ^GJidz
2 Jtr |/|

(1 + |F|2)a(|x|V + \x\\V<p\ + ^02 + U||V0|2) G Vgdz,
Jtr '- CR4a~3
>Tr

where C is a constant depending on the geometry of M. We know that

R~l\x\2G < C(1 + G), F_1 |?p'|x|4G < C(1 + G) on 7*.

Moreover, since V</> 0 for |x| < Ro/2, we see that

(M]V</>| + |t| IV0|2)G < C on Tr.

Combining these estimates with Lemma 2.1, we obtain

d
— <&(/?; A) > -C<S>(R\u, A) - CFYMa(T0).
dR

The claim for 4> follows from integrating the above inequality in R.



Vol. 90 (2015) The Yang-Mills a-flow 99

3.3. The s—regularity and convergence.

Lemma 3.5. There exists a positive constant e0 < /(M) such that for a solution A
,1/2

to (1.4), if for some R with 0 < R < min{e0. -%-} the inequality

R4a—6 L (1 + \F\2)advdt < s0

holds, we have

f«Uo,'o)

sup \F\ < CR
P I „(xo.fo)

4

where the constant C depends on M and the bound of YMa(4o).

Proof. Without loss of generality, assume that (.Yo. to) (0- 0)- For simplicity, we
set r\ jR. As in [25], we choose r0 < ri such that

(p - r0)4a sup(l + |F|2)a max
Pr0 °-r-ri

and find (*,. t\) e Pr() such that

(n -r)4a sup(l + \F\2)a
Pr

2\a
e0 := (1 + \F\ )a{x\J\) sup(l + \F\

p,ro

We claim that

e0 < 24a(ri - r0) —4a (3.9)

Otherwise, we have

Rescale

and

„ _ p-k <
r> ~ r°

Po - <?o 5 —-—

B(x) po A(xi + pox, 11 + pit).

ePo:= (Po + i^i2r PS" (i + i^i2)"-
Then we have

1 cPo(0, 0) < supeA)(i,i) p40a sup (1 + |P(x./)|2)2\a

< Po
4a

P\ Pp0(x 1.0)

— rn\ -4a /I-, — m\ 4a(^) (^) su>> " +
n +ro

(^)"4°(r,-r0)"f0 2r
with P, := { (jc Ö : (x.t) e 5,(0) x [-1, 1]}.
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This implies that

\Fb\2 < 16 on P\.

Combining this with Lemma 3.3, we have

Po2+4a 1(1 + \F\2f - Ve, ((SIJ + 2(a - (1 + |F|2)2\a
dt V- ' ' -I ' — -'j + |F|2''G

< CeP(), in Pi

where the constant C depends on /(M) and sup^g^ \ Rm\. Then Moser's parabolic
Harnack inequality yields

1 <?A)(0, 0) <C f ePo dx dt Cp40a 6 f
J Pl J F

(1 + \F\2)advdt. (3.10)

Taking a 2p0 and noting that z\ (xi. t\) 6 Pro and a + r0 < -f, we apply
Lemma 3.4 with Ri — |, R2 Ro \R to obtain

Poa~6 f (1 + \F\2)advdt (3.11)
JPpq (z 1

<c [ a4a~2(\ + \F\2f dv dt
JTu{x\ ,t| +2<r2)

<C / F4a"2(l+ |F|2)aGUl,n+2a2)02^^
1''1

+ CFYMa(/lo)

< CR4a~6 f (1 + |F|2)" dv dt + CFYMa(/lo) < Ce0.
JpR

where we used the fact that for t\ + la2 — R2 < t <t\ +2a2 — ^ and x e Br(xi),
there is a constant C such that

1 (*-*i)2 \ ^ n—4
Gx,,r,+2a2

(4jr(ti + 2a2 — t))2
6XP

v 4(t, + 2a2 — t) ~ '

Letting s0 be sufficiently small, (3.11) contradicts (3.10). Therefore, we have proved
the claim (3.9), which implies

sup (1 + |F|2r < (^)"4>, - r0)4ae0 < 24aR~4a
PR/4 2

This proves Lemma 3.5.
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With the curvature bound obtained by Lemma 3.5, we may obtain higher order
derivative estimates of F.

Lemma 3.6. Suppose that A is a solution of the flow equation (3.1) on some

parabolic ball Pr(.\o. to) and that

sup \F\ < C.
Pi (xoAi)

Then for each k, there is a constant Ck such that

sup
Pi /2(jcO.'O)

WkF <C(k).

Proof. Assume that r 1 and write Pr for Pr(x0, t0). Recall that F satisfies

3F *((VF. F) A *F)
— -DD*F + 2(a - 1 )D— -.dt i + |F|2

By the Bianchi identity and Weizenbbck formula, we have

3F *((VF, F) A *F)
— AF + 2(a-l)D— -31 1 + IF

AF + 2(a- 1 )D
_

' + F#F + Rm#F, (3.12)

where A is the covanant Laplacian and Rm is the Riemannian curvature of M. The

proof is by induction. Let cp be a cut-off function supported in B\ with cp 1 on

£3/4. Multiplying both sides of (3.12) by cp2 F and integrating over B\, we have

-4- [ <p2 \ F\2 civ + f cp2\VF\2dv<C(a-\) [ cp2 |V F|2 dv + C,
2 dt JBx JBx JBx

where £ contains all 'lower order teims'.
In the above equation, it includes /ß| cp2 [F|3 dv and /ß| cp2 \F\2 dv, which are

unded, and

shall see that
bounded, and /ß| |V^|<p|VF||F|c/v, which arises in the integration by parts. We

£<r][ cp2 \VF\2 dv + C. (3.13)
J B\

In fact,

f \Vcp\cp\V F\\F\dv < C + T) f cp2 |VF|2 dv.
JBi JB1

By choosing a — 1 and r] small, we conclude that

/JPy4

IVFI2 dvdt < C.

We may choose a good time slice on which the space integration of
I VF [ is bounded. Instead ol further shrinking the neighborhood, we assume
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fp |VF|2 dvdt < C and fB |V_F|2 —1 )dv S C, which is the starting point for
the next step of induction.

Applying V on (3.12), multiplying by <p4VF and integrating over B\, we have

1 d

2 dt L~ I <P4\VF\2dv+ f <p4\V2F\2dv
Jb i

fJ B\
< C(a — 1) / (p4\V2F\2+ ip4\S7F\4dv + C.

The lower order terms (still denoted by £) which arise from switching the order
_9_

31

i4

of covariant derivatives, integration by parts and interchanging V and can be

controlled by rj fB ]VF| + (p4 ]V2F] dv + C as before. For example,

/ |V2T| |VF|\V(<p4)\dv < c[ \(p2V2F\\<pS?F\\V(p\dv
JB\ JB\

< 1 fJ B\
<p4 |V F\4 + <p4 |V2 F\2 dv + C

Thanks to the boundedness of F, we have

L q>4\VF\4dv f (p4{VF, VF) |V£|2 dv
Jbi

(3.14)

< cf cp4\V2F\\VF\2 dv + C f \Vcp\(p3\VF\3dv
JB\ JBx

< - [ <p4\VF\4+ C+ C [ (p4\V2F\2dv.
2 Jbi JBI

By taking a — 1 small, we have that /p \^2F\dvdt is bounded, due to the

boundedness of fB{ |VF|2 (-, — \)dv.
For k > 2, we give an indication of how the above process works. By a similar

computation,

1 d r
2 dt JB]

VkF dv + f tp Vk+lF
2

dv
Jbi

< C(a --i)I-Fn ya'F\bi +£.

Here the summation is over all possible (a,, h,) satisfying (I) a, — 1, • ,k + 1,

b, e N with i 1, • • / for some I e N and (2) Yl[=i ai^i 2(k + 1). The sum

of those terms with Yl[=i ai^i < 2(k + 1) are denoted by C.
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By Young's inequality, we have

I k+1C ,v i * /» 2(A*-

/ <pJ2U^a'F\b' dv^cJl/ HV'FP
tßi /=1 ;=] JbI

2(A' + 1)

dv.

We now claim that for each / 1 • • • k, we have

f 2 (Ar +1 > r 2 (A" +1 >

/ <p|V'F| ' dv < C f <p\V, + lF\ ,+1 r/u + C+£.
JB\ JB\

The claim can be proved by induction from / 1, which is essentially (3.14).
For/ > 1,

2(A + 1)

dv + C.
i

r 2«.-+1) r
/ <p\VlF| ' dv < C I tp |V'"1 \Vl + lF\ |V'F

JBX JBi
r 2{k +1) r 2(A + n

< rj I <p\V F\ ' dv + r) I ^(V'-1/7) ,_1 dv
JB\ J B\

f 2{k +1)
+ Cfj I cp\V' + lF\ ' + ' dv + C +£.

J ß.

By the induction assumption and choosing rj small, we see that the claim is true.

Once we know that the Ck norm of the curvature is bounded in some parabolic
neighborhood, it is natural to expect a good 'gauge' in which the connection form is

bounded in Ck+l. This will be the parabolic analogue of Uhlenbeck's gauge fixing
theorem. The precise statement and the proof of such a result will be interesting in

its own right. For our purposes, since we have all Ck bounds and the connection is

a solution of a parabolic equation, we can reduce the following result to its elliptic
counterpart.

Lemma 3.7. Let D(t) be a solution to the Yang-Mills cr-flow defined on B x [ti, t2]-
Assume that

sup
ßx[r,,(2]

VkF < C(k).

Then there is a trivialization (independent of t) in which D(t) d + A(t) and all
derivatives (space and time) of A{t) are bounded.

Proof. For t t\ fixed, we may apply Uhlenbeck's gauge fixing to find a

trivialization such that at least all Ck norms of A(t\) are bounded (see Lemma 2.3.11
in (9]). We can now use (3.1) to see that is bounded for B x [t\, f2]- The Newton-
Leibnitz formula

f' 3A
A(t) A(t\) + J| —ds

then implies that A(t) is uniformly bounded in M x [u, t2\. If we take derivatives of
(3.1) both in space and time, by noticing that the right hand side involves only F, we
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know that are bounded on B x [/i, ^2] - By using the Newton-Leibnitz formula
again, the space derivatives of A are uniformly bounded on B x [/1, ^2] - Since A

is bounded, one can argue inductively that both covariant derivatives and the partial
derivatives are bounded.

We now prove Theorem 1.2.

Proof. Let Aa be the smooth solution of the Yang-Mills a-flow in M x [0, 00) with
the same initial value A0 for each a > I. The concentration set £ is defined by

£ O (z G M x [0, 00) : lim inf R4a~6 f (l + \Fau\2)a dv dt > sq\

0<r<Rm
' a^1 JPRU)

for some so > 0. It is standard to show that £ is closed. The same argument as in
[17] also yields that for any two positive t\ and t2, 7?2(£ D (M x [t\. t2])) is finite,
where V2 denotes the 2-dimensional parabolic Hausdorff measure. Moreover, for
any 1 e (0, +00), £, £ fl (M x {/}) consists of at most finitely many points.

For a point z0 outside £, there is a constant R > 0 such that for sequence of
a —> 1, we have

R4"-6 f (1+1 FAa\2r dvdt <s0.
JPrUO)

Then applying Lemma 3.5, we know that Fa„ is uniformly bounded in a inside

PrI2(^0)-
Lemma 3.6 and Lemma 3.7 then imply that there is a trivialization on Pr/2{zq)

such that Aa{t) is bounded in any Ck norm. We then choose a sequence of such

neighborhoods {P,} covering M x [0, 00) \ £. Denote the transition functions by
a". The Ck bound of a" follows from those of A".

By taking a subsequence, we may assume that a" converges to cq, and A" to A,

smoothly as a goes to 1. The au's define a bundle £00 over M x [0, 00) \ £ and the

A, 's define a connection Doo of £00 Since the convergence is strong, we know from
the evolution equation of A" that At (/) is a solution to the Yang-Mills flow.

Before we conclude this section, we would like to make some remarks. Both are
related to the singular set £.

Remark 3.8. Let T inf(x ,)6s t be the first concentration time in Theorem 1.2.

We may follow from the argument of Theorem 1.3 in (17] to show that T is the same

as the first singular time T' of the Yang-Mills flow.

As in [17], one may ask what more we can say about the singular set £. For the

general case, not much is known. However, we do know something for a minimizing
sequence.
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Precisely, we have

Proposition 3.9. Let D, be a minimizing sequence of YM(-) among all smooth

connections of the bundle E. Then we choose a subsequence of a,- —> 1 such that

YMai(D,) < YM(D,) + V(M) + j, where V(M) denotes the volumeofM. Denote

by D,(t) the a,—flow solution with initial value D,. If we consider / —» oo, then

the concentration set E as defined above satisfies

/

s U {pA x
/=1

Proof. By the same proof of Theorem 1.2, the singular set E has the following form:

E= O |z e M x [0. oo) : liminf R4a~6 f (\ + \Fp tt\\2)a'dv dt > e0\

o<r<RM
I a'~*' Jp«W '

For completeness, we give a proof of the finiteness of Er E (T (M x {t}). Let
{.Yj}' j be any finite subset of E,. By the definition of E, we know

lim inf R4a>~6 f (1 + \Fp <t\\2)a' dvdt > So

for any R < Rm. Let R be small positive number such that Br(x,), i 1, •

are mutually disjoint. Hence, for a close to 1, we have

R -2 / (1 + D. U)
~)a' dvdt > soR4'401' > Ce0,

because R is small and a > 1. Summing over / yields

ICso < R -2 f l (1 +
Jt-R2 JM

F
D, (/) 'f'dvdt.

By Lemma 2.1, / is bounded by a uniform bound of the total energy YM(Di) and

£o. which implies the finiteness of E,.
For any > tj > 0, since £>, is a minimizing sequence, by our suitable choice

of a, -> 1 we have

V(M) + YM(D,) + - > YMa,(D,) > YMai(D,(t3))

> YMUi {D, (/4)) > V(M) + YM(D,).

where we have used Lemma 2.1.
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By Lemma 2.1 again, we have

ft4

lim I"4 f (1 + |FÖ,(0|2)2\a, —1 dD, (t)
dt

dvdt 0. (3.15)

Moreover, the convergence is uniform with respect to t3 and t4. For any t2.'i > 0,

if (x,/i) E, we will show (XJ2) S either. Since (x,t\) <£ E, we have some

r\ > 0 such that for a subsequence (for simplicity, we still denote the subsequence

by i),
La,/.

Br. (x)
(1 + \FD,(tl)\2f'dv <

Let 1-p be some cut-off function supported in Bri (x). Then

j- f (p2{l + \FDl\2)a'dv
at Jm

f al<p2(l + IFD/12)"'-1 (Foi, —^L
JM Ot

)dv

+ 2a,?(l + \FD\2r'-l\V<p\\FDi
dD,

dt
dv

< f al(p2(l + \FDi\2)a'~l
JM

3D,

dt
dv

+ C[f al(p2(\ + \FDi\2)a'~l
\Jm

3D,

dt

1/2

dv

f a, |V^|2(1 + \FDi\2f~x \ FD\2dv
M

1/2

The term in the last line above is bounded by a constant depending on iq but not on

i. Therefore, if we integrate from t\ to t3 and let i —> 00, we have, thanks to (3.15),

lim f (p2(\ + \FDt\2)a'(t3)dv < e0/2.
1^00 JM

Hence, by taking every t3 e [t2 — r2, t2 + rf], we have (for some subsequence which
we labeled by /)

lim r\a' 6
J (1 + I Fd, 12)a' dvdt < sq.

l^Oo Jpr,(x,t2)

Therefore (x, t2) is not in E and the proof is done.
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4. Applications

In this section, we study the applications of the Yang Mills a-flow and the Yang
Mills a-connection produced as the limit of the flow. The outline is as follows:
in Subsection 4.1, we will prove the e-regularity estimate for smooth Yang Mills
a-connections. In Subsection 4.2, we will recall some facts about the topology
of bundles and prove Theorem 1.3. In Subsection 4.3, we discuss a minimizing
sequence of YM(-) and prove Theorem 1.4. Finally, we show how the Yang-Mills
a-flow can be used to obtain a nonminimal Yang-Mills connections over S4.

4.1. An e-regularity lemma. This is an analogue of what Sacks and Uhlenbeck
called 'main estimate'. It is necessary for the blow-up analysis. Please note that

we use the a-flow to obtain a Yang-Mills a-connection as the limit as /, -> oo. It
follows from Theorem 1.1 that the a-connection is smooth.

Lemma 4.1. There is m >0 such that if D is a smooth a-Yang-Mills connection
defined on B\ with fB^ \F\2 dv < s\, then in some trivialization with D d + A,

Although we can prove it directly, we show a parabolic version, from which
Lemma 4.1 follows obviously.

Theorem 4.2. There is some m > 0 such that if D(t) is a smooth solution to the

a-Yang-Mills flow on P\ B\ x [— 1, 0] and

The proof is omitted because it is rather well known and follows the same method
as in Lemma 3.5. It suffices to use the first Bochner formula (3.3). Moreover, the

same method can be used to prove a stronger result by choosing a different blow-up
factor. We need the following for the blow-up analysis

Theorem 4.3. There exists si > 0 such that if D(t) is a smooth solution to the

a-Yang-Mills flow satisfying

WA\\ck(Bi/2) - II^IIl2(5|) •

sup
re[—1,0]

then

sup sup S7k F < C(k).
([-1/4,0] Bu2

sup /
[(()—7?2,(()] JBr(XO)

then we have
Ce1/2

SUP 1^1 < —
B r/2(xo)x[h)-R2 /4,to]
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where

e := sup j \F\2 dV.
JBk(xo)

Proof. By scaling and translation, we may assume that R 1, x0 0 and to 0.

Set

Pr(x, t) {(x', t')\x' e Br(x) and t — r2 < t' < t).

It is sup^>|/2 |F| that we want to estimate. Find (x\. f,) in Pi/2 such that

71 Ut.G) > ^ sup |F|
3|/22/>,

It now suffices to bound /', := \F\ (jv:i, /1). If we are lucky, then we have

sup \F\ < \bf\. (4.1)
^1/4(^1,0)

If not, we can find (x2. t2) in P\/a(x\ t,) such that

\F\(x2J2) 16/,.

By induction, we claim that after finitely many times, we have k e N, such that

\F\(xk.tk)= 16^7,

and

sup \F\<\6\F\(xk,tk)=\6kft.
pW4.k(xk,tk)

In fact, if we write dp for parabolic distance, then we have

1

<Jp((xk-tk)-(xk-i-tk-\)) <
4^-1 '

Since (.v,./,) is in P,/2, we know (x^.t^) e P5/6 for all k. However, F is smooth
in P\ and hence supp5/fi \ F\ is bounded.

We do a scaling and translation on P\/4k (x^. tk) to get A such that

sup |Fj| < 16 and |F/|(0,0) 1 (4.2)
pi 1/2

4 '1

and
f _ 19

< £.

[-/l/l
sup f \fä\L dV
r\ /16,0] JB

J ,/2
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Applying (4.2) to Theorem 4.2 and noticing Lemma 3.2, we have

9
i ,2 i 2 i 12-A-l +clf4 •

Consider g(x,t) e~Ct \F^\2 which is a subsolution to the heat equation. By
Theorem 4.2, we know f\ is bounded by a constant. Hence

f [ g(x,t)dxdt <C f f
J—fi/16 JB .1/2 J—fi/16 JB

2
Fr\ (x,t)dxdt.

-/|/16 JB 1/2 J-f]/l6 J B
t 1/2

4M 4 M

By Mean Value inequality for linear heat equation,

i g(o,o)<c/r2£,

which finishes the proof of this lemma.

4.2. Connected sum of vector bundles. We recall some topological facts about

vector bundles (principal bundles). Let G be a connected compact Lie group. There
is a topological space BG, which is called the classifying space of G, and a G-
bundle EG with BG as its base, which is called the universal bundle, such that for
any G—bundle E over M, there is a map / : M — BG such that E is just the pull
back bundle f*(EG). Moreover, the isomorphism classes of G-bundles are in one to

one correspondence with the homotopy classes of maps from M to BG. Therefore,
the classification of bundles is equivalent to the classification of continuous maps
from M to BG.

The topology of BG is closely related to that of G. Since EG is contractible, the

exact sequence of homotopy groups implies that

n, + {(BG) Jt,(G).

Moreover, it is known that for all connected Lie groups G, tti(G) is a finitely
generated abelian group, n2{G) 0 and ^(G) is a finitely generated free abelian

group. An invariant of the classifying map /(hence of E) related to tti(G) is

called an q invariant. It was defined via Cech cohomology in [26]. In particular,
if 7i\{G) 0 or M S4, then r) is always trivial. There is another invariant
called the vector Pontryagin number related to n-i(G). For our purposes, we shall

restrict ourselves to the case M S4 below. Hence, it is nothing but an element in
TU (BG) 7T3 (G) ll.

To define the connected sum of bundles, let us consider two bundles Et over M,
for / 1,2. Pick any p, e M, and let B, be a small ball around p, such that
Et |

b, are trivial bundles. We obtain two manifolds with boundary Mt \ B, and two
bundles £,|a/,\b;- We identify dB, with orientation taken into account to obtain
the connected sum M M\#M2. Such an identification is uniquely determined
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topologically. We still need an identification of Ei |ag;. Although they are trivial
bundles over S3, there are many different bundle isomorphisms between them.

Among those isomorphisms, there is a natural one. E,\qb, admits a trivialization
inherited from the trivialization of E,\bi By identifying the two trivializations,
we obtain the natural isomorphism and a bundle E over M, which is called the

connected sum of E\ and E2. Since we will always consider connected manifolds
M,, the definition is independent of the choice of pt and the size of (small) B,. We

remark that M#S4 M for any closed 4-manifold M.

It is well known that when we consider the convergence of a sequence of Yang-
Mills connections on bundle E with bounded energy, blow-up occurs. In fact, the

same discussion works for a-Yang-Mills connections, or any other sequence of
connections as long as we have the e-regularity and a total energy bound. This results
in a weak limit on some different bundle E' and finitely many bubble connections

on E, over S4 for / 1 • • • / The point is that E E'#E]#• • •#£/. This follows
from the removable singularity theorem of Uhlenbeck and some analysis on the neck

region, which we briefly recall as follows.

Assume for simplicity that there is only one bubble. That is A,, after gauge
transformations, converges on M \ B$ to the weak limit A', and after scaling, A, \bx r
converges on Br to the bubble connection A. Since 8 and R can be arbitrary, A' is

defined on M \ {p} and A is defined on M4. The removable singularity theorem
claims that in fact A' and A are smooth connections of E' over M and E over S4.

Topologically, there are different ways to extend a bundle over M \ {p} to M. This
amounts to the choice of a trivialization of E\aßs (up to topological equivalence).
There is one naturally dictated by the converging sequence A,. By the s—regularity,
if we restrict A, to B$ \ Bg/2 and scale to B2 \ Bi, it is a connection with arbitrarily
small curvature (in any norm). This decides a trivialization (see Lemma 2.4 in [33]).
Similar analysis works for the bubble connection on Z?2A, R \ Bl, R-

To see that E is the connected sum of E' and E, it suffices to show that the

trivialization of E on Bg \ Bg/2 and B2i:r \ Bx,r agree with each other. This is
related to how the bubble tree is constructed. If one follows the process of Ding and

Tian [6], we know that the energy of the A, restricted to B, \ Bt/2 are smaller than

any given £i for t e [2A, R,S], For each t, the smallness of energy and e—regularity
implies a choice of trivialization. As t changes from 2Ar to 8, we see that the

two trivialization can be continuously deformed to each other. If one follows the

construction of Parker [21 ], we have the total energy over the neck region Bg \ B2x r
is small (see (1.3) and (1.6) in [21 ]), say smaller than £]. Using the trivialization over
B2x, r \ Br, we may extend the connection to Br with a controlled amount of the

energy. We can do the same at the infinity to obtain a smooth connection over S4

whose energy is smaller than a multiple of E\. Hence, the bundle must be trivial and

it implies that the two trivialization agree with each other.
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The proof of Theorem 1.3 depends on the following lemma, which is well known.

Lemma 4.4. Let ai. a2 be two elements in 7r3 (G) and £1 and £2 be the corresponding

bundles over S4. If E E\#E2, then E corresponds to the element a1 + «2 in

7r3(G).

Proof. The key proof is to clarify the correspondence between homotopy class of
maps from S3 to G and the bundle over S4. This can be done via the clutching
functions.

Let S4 be the unit sphere in R5 with coordinates x\, X5. Let S^ be the north

hemisphere given by {x5 > 0} and be the south hemisphere. We also identify
the equator {X5 0} by S3. For any G bundle E over S4, its restrictions to both

hemispheres are trivial. Hence, we may choose the trivialization on both and

S^. The topology of E is encoded in the gluing map 9 : S3 —> G, which we call
a clutching function. It is obvious that the isomorphism class of E corresponds to

homotopic class of clutching functions 8.

Next, we study the connected sum of bundles in this setting. Let E\ and E2 be

two bundles over V4 as assumed. By abuse of notations, we may write a 1 and «2
for the clutching functions of E\ and £2 respectively. In doing connected sum, we
identify the trivialization on the south hemisphere part of E\ with the trivialization
on the north hemisphere part of £2. Hence, the new bundle is glued from three

pieces. The central one is a trivial bundle over S3 x [0, 1], If we remove the

central piece, we see the clutching function of the new bundle is a\ a2 (Lie group
multiplication).

It remains to see that the homotopy class of a\ • «2 is just the sum of a 1 and «2-
In fact, we may pick a map homotopic to a 1 (or a2), still denoted by ci\ (or a2),
such that its restriction to a neighborhood of south (or north) hemisphere is the unit
of G. Then, by the definition of group structure of 713(G) (as given on page 341

ot Hatcher's book [12]), the homotopic class of a\ 02 is the sum of a 1 and a2 in

7r3(G).

We now prove Theorem 1.3.

Proof of Theorem 1.3. Recall that G-bundles over £4 correspond to the homotopy

classes of maps from S4 to the classifying space BG of G, and that

tt4(BG) 713(G). Assume the theorem is not true. Then there are at most
'' — 1 G-bundles which admit Yang-Mills G—connections. Let ,ar-\ be

elements in tt4(BG) corresponding to these G-bundles. By our assumption, there is

« jt4(BG) which is not generated by {ci\, • • • ar-\}.
Let £ be the bundle corresponding to a. Pick any smooth connection on £.

Consider the a-flow starting from it. Theorem 1.1 gives a Yang-Mills a-connection
Aa for each a > 1. Since £ is not a trivial bundle and £4 is simply connected, Aa
cannot be flat. Take the limit as a to 1.
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If the convergence is strong, then we find a Yang-Mills G-connection, which
contradicts the choice of a. If not, the bundle E splits into a connected sum of
Ei,...,Ei over S4, and each admits a Yang-Mills G-connection. By our assumption,

Ei(i — 1, • • • / corresponds to one of a\, • • • ar-\. Moreover, by Lemma 4.4, the

fact that E is a connected sum of Ei,--- £/ implies that a is a combination of
a i, • • ar-1 in n^(BG) jz3(G). This is a contradiction to our choice of a.

4.3. Minimizing sequences of YM(-). In this subsection, we prove Theorem 1.4.

For a closed 4—manifold M and the G-bundle E, let m(E) be the infimum of
YM(A) for all G—connections A of E.

First, let us show a general result which has nothing to do with the blow-up.

Proposition 4.5. If E — E'#E]# • •#£/, where E' is a bundle over M and E, are

bundles over S4, then
l

m(E) < m(E') + m(El).
i t

Proof. For simplicity, consider / 1. If suffices to show that for any e > 0 and

any two connections D\ and D2 of E' and E\ respectively, we may construct a

connection D of E such that

YM(D) < YM(Di) + YM(D2) + £.

(This is exactly Lemma 5.7 in [18]). For completeness, we also give a proof here.

Given any smooth connection Dt and a trivialization of the bundle over some ball

B, by multiplying by a cut-off function, we may assume that D, is flat in a smaller
ball at the expense of any small change of the energy. More precisely, for any s > 0,

there is a 8 > 0 and we have another connection Dj such that

(1) D, D[ outside B$\

(2) D\ d on Bs/2\

(3) |ta/(d;)-tm(d,)| < e.

Indeed, if D, d + A, on B, due to the smoothness of A,, there exists 8 > 0

such that if we scale Bs to B2, Dt becomes d + At with ||/L ||cA as small as we
need.

Let (p be a cut-off function: <p
1 on B2\ B3/2 and ip 0 in B\. Consider a

new connection d + {tpA^. It agrees with d + A, outside B3/2 and is d in Bt. We
scale d + (q)A,) back to Ba and denote the new connection by D'r It remains to

see that the change in the energy is small. Due to the scaling invariance of energy, it
suffices to check that any Ck norm of F d((pA,) + [tpA,. ipÄt\ is small on B2.

Fix p e M and q e S4. By the above construction, we may assume that in

Bs(p) and Bg(q), there is a trivialization such that the connection is just d. Via the

stereographic projection, D\ is a connection over M4, which outside Br is nothing
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but d in some trivialization. We further scale it down to assume that R <5/2. We

can now obtain a new connection by gluing D' on M \ Bg/2 and D\ on Br. Since
there is no energy at all in the overlap domain, the lemma is proved.

We then consider a minimizing sequence. For a given bundle E, let O, be a

minimizing sequence with

lim YM(D,) m(E).
I —>CO

Since D, is smooth, we can find a, close to 1 such that

YMa,(D,) <YM(Dl) + V(M) +

Let D,(t) be the solution of the a,-Yang-Mills flow from D, and set D't .0,(1).
Then,

YM(D[) + V(M) < YMai{D[) < YM(D,) + V(M) + j.
This implies that D't is another minimizing sequence.

In order to do the blow-up analysis for D'r we need the following e—regularity
result.

Lemma 4.6. There exists s > 0 such that if Br{x) C M satisfies

2
lim sup

<—>•00 JB, (x)
Fd> dv < s,

then

VD' Fd'
C(>(ßr/4U))

< Cr —k—2

Proof. The proof relies on Theorem 4.2 and s will be determined by ei and the

energy bound for our minimizing sequence.
By our choice of a,, we have

lim
1-+OQ

/„(1 + M) ~(' + F.d: dv 0.

Hence,

lim sup / (1 +
i -*-oo JB, (y)

F.o; )«» -\dv< 2s.

The local energy inequality (Lemma 2.3) implies that there exists a > 0 depending
on the total energy and e such that for / sufficiently large,

sup /
fe[l—ar2,l] JBBr/2(x)

(1 + 1^,(01)"' — \ dv < 3e.
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Therefore,

sup / |^D,(o|2 dv - 4e-

te[l—or2,l] JBr/2(x)

Set s and the proof follows from Theorem 4.2.

Now we can do the well-known blow-up analysis for D'r If there are nontrivial
bubbles and £ £'#£i#-••#£/, then

777 (£) lim YM(D'l)>m(E') + y^ m(Et).
I V/Vi ' ^

This together with Proposition 4.5 will imply the energy identity:

Proposition 4.7. Let Dt be a minimizing sequence of the Yang-Mills functional

among all smooth connections of the bundle £ over M. Then, there exist bundles

£' over M and E\.--- £; over S4 for some I > 0 and Yang-Mills connections

D'qq and D\. - - Di such that

l

lim TA/(D,) YM(D'00) + J"YM(Di).
I—*00 '

1 1

Next, it remains to study the relation between the limit connection D^ and the

weak limit DaQ of Sedlacek [26].
We try to prove that the two limit (two Yang-Mills connection on two smooth

bundles) are globally the same up to gauge transformations. This is the best one
could hope for.

Let S be the union of energy concentration sets, both for D, in the Sedlacek limit
and for D[ above. Let {Ube an open cover of M \ S. We shall consider three

bundles.

(1) The original one where the minimizing sequences and their a-flow lies on is

denoted by £.

(2) The weak limit bundle, £i, where the weak limit of D, lies. In the paper of
Sedlacek, it is given by transition functions. However, it is convenient to think
of it as an abstract bundle, with a set of trivialization.

(3) The strong limit bundle, £2, where the weak limit of D' lies.

For each D,, there is a trivialization e; in which £), d + At where

is bounded. g^Y will denote the transition functions, by which we mean

W\.2

<?f gfyeY. (4.3)
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There is a trivialization e^ of E\ when restricted to M \ S, in which the weak limit
Doo — d + A^q. We denote the transition functions by g^y, which means that

eß „ßYeY_ (4.4)

The convergence of the minimizing sequence D, on E in [26] can be reformulated
as follows. By part e) of Theorem 3.1 in [26], we have

Aß -At
W I 2

0.

By part c) of the same theorem, gßr converges to g^y weakly in IV1'4.

Remark 4.8. This convergence was shown to be weakly W1 '2 in [26] and was shown

to be strong by Isobe in [18],

There is a bundle map (pß : E\Uß —»• (ßi)!^p by identifying trivialization eß

and The above convergence can be written as

cvh*Dc D,
W1 2(U")

0. (4.5)

In [26], ip, and cpY cannot be fitted together to get a larger bundle map. However,
we have the following relation between them.

Let v be any vector of E\upnuv. Suppose that

- ß ßy~ yv ve{ — gj ve[

By definition of v and (4.3), (4.4),

<ef (u) veß (4.6)

gßyver

gßvv((pje*)

<pJ(gßYgJßveß)

gßrgYß<PY(v)-

The relation (4.6) will be important for us later.

Next, we describe the strong convergence of D[ to D,0O. We know there is a

sequence of bundle maps a, from to E2\m\s such that

KDoo D[ I

i IICk(K)

for any compact K in M \ S. For any ß, we have

0

IIT ^oo || ([/A) 0. (4.7)
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By our construction, we know

\\Dl-D'l\\L2-,0.

Hence,

(<pf)*Doo — <T* D'qq 0.
mufi)

That is

Doo-WYD* fV
oo -> 0, (4.8)

LHU»)

where ct, o (<p") 1 is a bundle map from E\\v$ to E2\Uß.

We claim that rfx converges to in weak IV1,2 topology and D^ D'^
on U&. To see this, consider the meaning of (4.8) in trivialization and f&. (Here

is a trivialization of E2 on U&.) Since D00 d + A^ and D^ — d + A'^, we
have

fl/loo-Cs, ds, +st HO0^)||L2(t/^) < C.

• 0 m ' 1 oHere s, is the map in a trivialization. Hence st is bounded in W ' and our claim
follows. Moreover, although the convergence is only weakly VK1'2, r\& is smooth
since it maps smooth connections to smooth connections.

We next claim that and r]v agree over U& n UY. Hence, this gives a global
bundle map rj from Di |m\s to E2\m\s- To see this, it suffices to check that

lim ct, o (rpf)~l lim ct, o
I —too i—>oo

Due to the smoothness of rj® and rjy, it suffices to check the above for a dense

set of x G UP H UY. Thanks to (4.6) and the IV1'4 weak convergence of gfy to
gßy (Theorem 3.1 in [26]), we have a dense set W such that for x e W and any
v e (Ei)x,we have

(y?f)"'(") - (<P?)~l(v) -»• 0.

Because ct, is a linear map and ct, lies in G C SO(r) (r is the rank of E), we have

lim ct, o («/if )_1 (v) - ct, o (cpy)_1 (v) 0.
l—> OO

Now we have a bundle map rj defined on M\ S satisfying rj* D'^ D^. Finally,
since and D'^ are smooth connections, rj extends automatically to a global
smooth gauge transformation with rj* D'^ Doo- In fact, locally on B \ [0],

^oo r)~xdr) +

which implies rj and all its derivatives are bounded on B \ {0} since A^ and A'^ are

smooth over B.

Hence, we finish the proof of Theorem 1.4.
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4.4. Another approach for Min-Max of the Yang-Mills functional. It is well
known that the Yang-Mills functional in dimension 4 does not satisfy the Palais-
Smale condition, which caused great difficulty in applying Morse theory to show the

existence of a nonminimal critical point. In 1989, Sibner, Sibner and Uhlenbeck [27]
proved the existence of nonminimal Yang-Mills connections on the trivial 5(7(2)
bundle over 54. They used the fundamental relationship between m—equivariant

gauge fields on 54 and monopoles on hyperbolic 3—space H3 as presented by Atiyah
[ 1 ]. If we identify S4 with R4 U {oo} by stereographic projection, we may introduce
the following coordinates

(z, 9. (x, y)) i-> (z cos 9, z sin 9, x, y) e R4.

Hence, one can define a (7( 1) action on 54 by

q(9')(z, 9, (x, y)) — (z.9 + 0'(mod27r), (x, _y))

and leaving other points in S4 not represented by this coordinate system fixed.

Let be a standard basis for su(2) and s(9) eimd(m > 2) be a

homeomorphism from (7(1) to 5(7(2). A connection D is called an m-equivariant
connection if

q(9)*D s(9)~l o Dos(9)

for all 9 e (7(1). Denote the set of all w-equivariant connections of the trivial 5(7(2)
bundle over 54 by A4.

The authors of [27] followed a construction of Taubes [31] to find a non-
contractible loop of connections DY(y e S1) of m-equivariant connections in A4,
satisfying

YM(DV) < 8ttm. (4.9)

The connections in Lemma 2 of [27] are in IT1'00, but by approximation, we can

assume that they are smooth and (4.9) remains true. Since they are smooth, we know

YMa{Dy) < 8nm + (1)4

for sufficiently small a. Here o>4 is the volume of 54.

We can now apply the Yang-Mills a-flow to the loop. The a-flow preserves
symmetry, so that the flow stays in A4. By Theorem 2.6, we obtain a deformation of
the circle in A4. We then claim that we obtain a nontrivial Yang-Mills a-connection
Da with YMa(Da) < Sirm + 004. Otherwise, the flow will converge to the flat
connection for any y £ 51, which will result in a contraction of the loop to a single
point in A4. This is not possible.

The energy of these Yang-Mills a-connections Da has a uniform lower bound.
This is a generalized gap theorem similar to the result of Bourguignon and Lawson
[4],
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Lemma 4.9. There is k > 0 depending only on G such that any nontrivial Yang-
Mills «-connection Da on S"4 satisfies

YM(Da) > k.

Proof. Recall that we have proved a stronger Bochner formula (3.6) than stated in
Lemma 3.2. For our purpose here, dt \F\2 vanishes and the Ric A g + 2R is just the

4 times of the identify map on 2—forms. Hence,

-ve, {(S.j + btJ)Vej \F\2) <C|F|3-3|F|2,

when a — 1 is small. Multiplying both sides by \F\2 and integrating over S4, we
have

f V|F|2
2

+ |F|4 < C [ |F|5.
Js4 Js4

By the Sobolev inequality and the Holder inequality, we obtain

1/2 ~ \ 1/2 / /• \ 1/2

(LIF1*) 'c{(fFf) (t1FI
This implies that F is identically zero if the energy is small.

Now, we may pass to the limit a —> 1. Note that at < YM(Da) < Sir in. The rest
of the proof goes just like Theorem 1 in [27]. If the convergence of Da is strong, we
obtain a nonminimal Yang-Mills connection on the trivial SU(2) bundle over S4. If
not, the energy bound 8jr m implies that either the weak limit or one of the bubbles is

a nontrivial Yang-Mills connection on the trivial SU(2) bundle (hence nonminimal),
because the energy is not enough for two nontrivial bundles.
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