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Equidimensional isometric maps

Bernd Kirchheim, Emanuele Spadaro and Läszlö Szekelyhidi Jr.

Abstract. In Gromov's treatise (Partial differential relations, volume 9 ot Ergebnisse der
Mathematik und ihrer Grenzgebiete (3), 1986), a continuous map between Riemannian
manifolds is called isometric if it preserves the length of rectitiable curves. In this note we

develop a method using the Baire category theorem for constructing such isometries. We show
that a typical 1-Lipschitz map is isometric in canonically formulated extension and restriction
problems.

Mathematics Subject Classification (2010). 35J60, 53C23, 49J10.

Keywords. Isometric maps, fine differential inclusions, Baire category method.

1. Introduction

Since the fundamental works of Nash [16] and Kuiper [13] it is well known that
isometric maps with low regularity can be surprisingly flexible objects. In particular,
any short immersion of an n-dimensional Riemannian manifold with continuous
metric into R"+1 can be uniformly approximated by isometric immersions of
class C1. One of the main ideas introduced by Nash, and revisited by Kuiper, is

an iterative scheme, whereby in each stage the short map is perturbed by a rapidly
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oscillating "corrugation" (or "spiral" in higher codimensions) such that the resulting

maps converge in C1 to an isometric immersion.
On the contrary, in the equidimensional case, that is, for maps from a »-dimensional

manifold into R", isometries of class C1 are rigid. Namely, if f : R" — R"
is a C' map with Df e O(n) for every x e R", then f is globally orientation

preserving or reversing and, by a classical Liouville theorem, is an affine map, i.e. a

rigid motion.
Therefore, in order to see some flexibility, one needs to relax the C1 condition.

A natural choice is to consider Lipschitz maps instead. To fix ideas consider maps

/ : R" —> R". There are several ways in which one can define what it means to
be an isometry: either look at changes in the metric under / (a local condition), or
look at the effect on the length of curves (a global condition). For f £ C1 the two
conditions lead to the same notion - this can be seen as a simple example of the local-

to-global principle in geometry. If / is merely Lipschitz, by Rademacher's theorem
the derivative Df(x) exists for almost every x R", hence a weak preservation of
the metric amounts to the condition

(Df)TDf=ld Cn- a.e. in R". (1.1)

Here we denote by Cn the Lebesgue measure on R". We will call such maps weak

isometries. As pointed out by Gromov on p. 218 of his treatise [9], such maps
might collapse whole submanifolds to a single point and thus are very far from a

truly geometric notion of isometry. For instance, it is possible to solve the Dirichlet
problem DfT Df Id a.e. in £2 [0. 1]" and f \sa =0 — see e.g. [5,6]. By
extending / periodically on the whole R", one can then find a solutions to (1.1) such

that /(R"1' x {0}) {0}.
The more geometric definition of isometry therefore is the following: a Lipschitz

map between Riemannian manifolds / : M —> N is isometric if it preserves the

length of any rectifiable curve (c.f. [9, §2.4.10]):

£m(y) (-n if ° V) for every y : [0. 1] —> M rectifiable. (1.2)

It is not difficult to see that any isometry is a weak isometry, but the converse is in

general false. To compare with (1.1), notice that an isometric map / : R" —> R"
satisfies

(DM f)T DMf Id r-a.e.onM. (1.3)

for every m-dimensional submanifold M C R", m 1 n, where DM
denotes the tangential derivative and fLm is the /»-dimensional Hausdorff measure.

Actually, it is not difficult to see that in condition (1.3) it suffices to check the lowest
dimensional case m 1, i.e.

|Vr f\ \ Tf'-a.e. on y (1.4)

for every rectifiable curve y C R", where Vr f denotes the tangential derivative.
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For constructing isometries one might imagine a "folding up" pattern as the

analogous perturbations to corrugations in an iterative scheme a la Nash and prove
results similar in spirit to the Nash-Kuiper theorem Indeed, in [9] Gromov shows

that every strictly short map between Riemannian manifolds admits an arbitrarily
close uniform approximation by isometries. More generally, Gromov's convex

integration is a powerful generalization of the Nash technique, that applies to a

large class of differential relations A version for differential inclusions of Lipschitz
maps has been developed in [14, 15], where also the system (1 1) is treated as a

particular case

On the other hand it was noticed by several authors [4,6, 10], that the Baire

category method, introduced in [3, 7] for ordinary differential inclusions, can be

applied to problems such as (1 1) (which can be written as the differential inclusion

Du(x) e 0(n) a e x) Indeed Baire category methods have been used for many
existence proofs in analysis and geometry, also for the construction of topological
embeddings (but since the literature is vast and scattered we do not add any specific
reference) In the question considered, this approach leads not only to the density of
weak isometries but also to genencity in the sense of Baire category

Our contribution in this paper is twofold First of all we develop a version of the

Baire category method for isometric maps satisfying (1 2) in the sense considered

by Gromov and prove several residuahty results Our method allows one to reduce

the problem of Baire-residuality to the density of certain approximate isometries,
see §3 below

Secondly, we give a self-contained proof of the density of (approximate) isometries

that follows the general philosophy of Baire category techniques for differential
inclusions To explain this, recall that the density of Lipschitz isometries between
Riemannian manifolds follows from Gromov's result [9, §2 4 11] concerning the fine

approximabihty of isometries Alternatively, in K" one can use the following result
of Brehm [2] concerning the extension of isometries-

Theorem 1.1 (Brehm [2]) Let H cW be a finite set and f H —>• Rm be a short

map, with n < m Then, there exists an extension of f to a piecewise affine isometric
map of the whole R".

Both Gromov's and Brehm's proof rely on the (global) geometric property of
being an isometry, in particular special piecewise affine isometries (called normally
folded maps in [9]) are used as the basic building block and it is not clear how
to generalize this notion to other differential inclusions. In contrast, our approach
is to treat isometries as solutions to a fine differential inclusion as in (1 3), where
the tangential derivative on lower-dimensional objects is prescribed As in the
usual Baire category method, we use an explicit oscillating peiturbation to show
the perturbation property for the (tangential) gradient of the map / The new key
point however is to use a calibration to control the underlying curves We expect
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our method to find applicability in a more general class of such fine differential
inclusions.

To conclude this introduction we mention that there is yet another, stronger
notion of isometry. In [9, §2.4.10] a map / : M -> N between Riemannian
manifolds is called a strong isometry if for any x, y e M

k— 1

distM i y) — hm inf |distyy (f {^Xi), f (X/ +.»}•
1=0

where the infimum is taken over all e-chains between x and y, that is, sequence of
points xo x. x\,...,Xk y with distM(x,,xl + \) < e. The same notion is

called an intrinsic isometry in [17]. It is not difficult to see that a strong isometry is

an isometry. Moreover, strong isometries preserve the length of any curve (not just
rectifiable). Now, using Gromov's theorem (or our Theorem 2.2 below) it is possible
to construct an isometry f : R2 —> R2, which maps the Koch curve (or any purely
unrectifiable curve) to a single point. Such a map will obviously not be a strong
isometry. We note in passing that in [9, §2.4.10] this construction is described with a

curve C with the property that dint/y(C fl C0) < 1 for all rectifiable curves Co. This

property is stronger than being purely unrectifiable, and in fact it turns out that such

a curve C does not exist — see [1]. Our main results and techniques in this paper, in

particular in §5, do not extend to strong isometries.

Acknowledgements. We would like to express our thanks to Giovanni Alberti, to

whom we are indebted for many fruitful and inspiring discussions concerning this
work.

2. Statement of the main results

We first consider the problem of extending a map defined on an arbitrary compact
set K C R". This is a generalization of the Dirichlet problem on a bounded domain

C R", if we take K —

It is clear that an isometric extension need not always exist. For example,
consider the following map: K 3[0. 1] 2 C R2 and f : K — R2 given by

/(x, y) (x, 0). Clearly, / is a short map admitting a unique 1-Lipschitz extension

to [0, l]2 (namely f(x,y) (x,0)), which is not an isometric map because, for
instance, vertical line segments are mapped to single points.

In order to deal with this issue, we need to characterize the set C(f K) where
the map f has a unique 1-Lipschitz extension. It is clear that f extends uniquely as

a 1 -Lipschitz map on the set

C(/, K) := (J conv(H),
Hes

where S := {H C K : /1h is an affine isometry}.



Vol. 90 (2015) Equidimensional isometric maps 765

As seen in the example above, if the unique 1-Lipschitz extension on C(f K) is not

isometric, there is no chance to solve the extension problem. On the other hand,

if C(f K) K, the map / does admit extensions which are locally strictly short

outside K. This is the content of the following proposition. In the sequel we use the

following standard terminology:

• in a topological space a subset is called residual if it contains the intersection

of countably many dense open sets;

• a property is typical (or the typical element satisfies a property) if that property
holds in a residual set.

Proposition 2.1. A function f : K —» R" admits an l-Lipschitz extension
h : R" —» R" such that

• h\K f;
• Lip(/t|^) < I for every A CC R" \ K

ifand only if
C(f K) K. (2.1)

Moreover, the typical l-Lipschitz map f : K —>• R" satisfies (2.1).

The proof of Proposition 2.1 (restated as Proposition 4.4 and 7.1) is contained
in Sections 4 and 7. As a consequence, we prove that the solutions to the Dirichlet
problem which are isometric in R" \C(f, K) are in fact residual:

Theorem 2.2 (Typical extension). Let K C R" be a compact set and f : K —> R" a

short map. Then, the typical l-Lipschitz extension off to the whole R" is isometric

on R" \ C(f K).
We then consider the problem of Dirichlet data / : K —»• R" which extend to a

global isometric map F : R" —»• R" (not just of R" \ C(f, K)). We prove that also

this is a generic property.

Theorem 2.3 (Typical restriction). Let K C R" be a compact set. The typical short

map f : K —> R" is the restriction ofan isometric map of the whole R".

Finally, we address the problem of isometric maps from a Riemannian manifold

Mn into R". We show that such maps are residual in the space of short maps.

Theorem 2.4 (Typical isometries). Let M be a n-dimensional Riemannian manifold
with continuous metric. Then, the isometric maps of M into R" are residual in the

space ofshort maps.

3. Approximate isometric maps

In what follows M is a connected n-dimensional smooth manifold with or without
boundary. We assume that M is endowed with a continuous Riemannian metric g;
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we denote by cIm and | |g the induced Riemannian distance on M and the norm on
each tangent space TXM, respectively. In the case of subsets of R", we use the usual

notation |x| and x y for the norm and the scalar product of vectors, respectively.
Given a path-connected subset 5 c M we introduce the following notation.

(a) The space of short maps from M into R" is denoted by Lip, (M. R"), i. e.

LiPl (M, R") := {/ : M -* R" : Lipg(/) < 1},

where

T. ^ \f(x)-f(y)\
Lip (/) := sup —— —.

x^yeM dM(x,y)

(b) Ts (x, y) is the set of rectihable curves from ,v to y contained in S:

rs(jc, y) := {y : [0. 1] —>• S : y rectihable, y(0) x,y(\) y).

We denote by d$ the induced metric, i.e.

ds(x,y):= inf £g(y).
yers(x,y)

(c) We denote by 1(5) the set of all short maps f e Lipj(M, R") which
are isometric in 5, i. e. l(f o y) £g(y) for every rectihable curve

y : [0, 1] -»• 5, where

l(foy)=[ \(f oy)'(t)\dt and lg(y) f \y'(t)\gMt)) dt.
Jo Jo

Equivalently, j 1(5) if for every y as above

\{f ° y)'(OI ly'(Olg(y(o) for a-e-1 G [0- M-

(d) For every e > 0 and x,y e S, we denote by FE(x, y, S) C LipjIM, R") the

mappings satisfying

Fe(x, y, S) := {/ eLip,(A/,R") : l(foY) + slg(y) > (1 -e)ds(x,y)

Vy G rs(A-.y)[.

Note that in general the maps in Lip, (M, R") are not bounded (except when M itself
is bounded). For this reason, we use the following metric on Lip, (A/, R"):

D(fg) := sup min{l,|/(x)-g(x)|} min j 1. sup |/(a) - g(.r)| j •

xeM xeM
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It is easy to verify that (Lipx (M, R"), D) is a complete metric space and that D
induces the uniform convergence, i.e.

lim D(fi, /) 0 <=> lim ||/, -/||co(M) °-
/^+oo /^+oo v '

Definition 3.1. Let S C M be path-connected. We define the set of e-approximate
isometric maps in S by:

1E(S) :=f)F£(x,y,5). (3.1)

xjtyeS

The name is justified by the following result.

Lemma 3.2. Let S C M be path-connected. Then

Pi 1£(S)=1(S). (3.2)
£>0

Proof. Note first that X(S) C Fs(x. y, S) for every e > 0 and x / y e S. Indeed,

every / e I(S) satisfies

Uf oy) + slg{y) (1 +s)lg{y) > (1 -e)dM(x,y) Vye Ts(x,y).

In order to prove the converse inclusion, assume / e Te(S) for every e > 0 and
let y : [0, 1] — 5 be a rectifiable curve. Then, for every partition 0 ?o < • • <
tm 1, setting := y\[tj ,// + 1], we have

m—1 m — 1

Uf ° Y) Hf ° Yj)>^2 dM(.Y(tj), y(t, +,)).
j=0 j=0

Since this holds for any partition, l(f oy) > tg(y) and, hence, / e I(S).

3.1. Separability. We show next that it suffices to take a countable intersection in
order to obtain a subset of approximate isometric maps.

Lemma 3.3. Let S be path-connected and So C S be a countable dense subset for
the induced metric ds Then,

P| Fe(x.y, S) C X2e(S).

Proof. We may assume without loss of generality that e < 1/2, otherwise the

statement is trivial. Let / e F£(xo, >'o- S) for all x0, yo e So. For.v.y e S,
we choose rj > 0 and x0, yo £ So such that

e
r1 < -ds(x.y),
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and

ds(x,xo) + ds(y.yo) < V-

We can find two curves y\ e rs(x0, x) and y2 e Ts(y,yo) suchthat

£g(Yi) + £g(Yi) < ds(x, x0) + ds(y. Vo) + n-

Observe that

(1 -2s)ds(x.y) < (1 -£)ds(x0,y0)-sds(x,y) + (1 - s)r)

< (1 - s)ds(x0,y0) l + s),

since

(3 + s)r] < eds(x, y).

Then we consider the concatenation y := y2 y • y\ (i.e., the curve obtained by
joining, in the order, the curves y\, y and y2), and note that y e Ts(.yo, >'o)- Using
that

ig(y) < tg(y) + 2j7

and that / 6 Fe{xq. yo- S), we obtain

£(f ° y)>l(f ° y)-2rj
> (1 - £)t/s(.Y0.yo) - e(?g(y) + 2r))-2r]
> (1 -2e)ds(x,y) - slg(y)
> (1 -2s)ds(x,y) - 2slg(y).

This shows that f e F2e(x, y, S). Since this holds for every .y, y S, we conclude

/ e 12E(S).
'

3.2. Closedness. The following lemma shows that the sets of approximate isometric

maps are G$ sets.

Lemma 3.4. Let S C M be compact. Then, for every x, y e S and s > 0,

Fe(x, y, S) is open in Lip((M, M").

Proof. We show that Lip^M.R") \ FE(x,y,S) is closed under the uniform

convergence induced by D. To this aim, assume that /* Lipj(A/. R")\/"e(.y, y, 5)
converges to / uniformly in M. By assumption, there exist y^ Ts(.v. y) with

Ufk ° Yk) +£tg(Yk) < (1 ~£) ds(x.y).

In particular, the lengths lg(yic) are uniformly bounded. Therefore, since we are

considering curves in the compact set S, we may extract a subsequence such that

y/t/ — y e rs(x,y) uniformly. This implies that also o yjCj converges
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uniformly to / o y. Now, since the length is lower semicontinuous under uniform

convergence, we deduce that

Uf ° Y) + stgir) < (1 -e)ds(x,y).

This implies that / e LipfM. M") \ Fe(x. y, S), hence Lipj (M, K") \ Fe(x. y, S)
is closed.

3.3. Locality. The notion of isometric map is local in the following sense.

Lemma 3.5. Let {Ua}abe an open covering of M such that every Ua is path-
connected. Let f Lip](M, R") be such that f\ua e UUa)- Then f I(M).

Proof. We need to prove that, for a given curve y : [0, 1] M,

l(f o y) ig(y).

Since y([0, 1]) is compact, we begin fixing a finite covering of y([0, 1]) by sets Uaj,
j 1 in. Using the uniform continuity of y, we infer the existence of p > 0

such that

V t [0, 1] 3 j e {],... ,m} such that y([t,t + rj\) c UU/.

We then choose any partition 0 t0 < • • • < tm 1 such that 11, — tl + l | < tj. By
the choice of p, for every / 1,... in — 1 there exists j(i) such that y{[t,, 6 + i]) C

Uaj0)- Therefore, from f\ua £ Ua) we deduce that

Uf o Y\[t, ,t1 + 1]) =^(yl[r,,tI + 1]) V/ l m-1.

and therefore

m — 1 m—1

Uf °y) J2 Uf ° y\[t,.»,+,]) eg(yit,,',+ii) D
1=0 1=0

4. Locally strictly short extensions

As mentioned in the introduction, given a short map / : K C R" —> M" on a

compact set K, f will have a unique 1-Lipschitz extension / to a possibly larger set

containing K, namely

C(fK) := (J conv(//),
Hes

where S := {H c K : f\n is an affine isometry}. Here "J'\h affine" is understood
in the sense that f\H(x) — A x + b for some A e 0{n) and b eW. Note that it is

easily verified either by elementary geometry or by a calculation analogous to the one
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in (4.1)—(4.3) that "/|// afhne isometry" is equivalent to being (globally) distance

preserving in H in the sense that [/(jc) — /(y)[ \x — y | for all x. y G H. Then,

by the triangle inequality, j extends uniquely as a 1-Lipschitz map on C(f, K) and

in particular K C C(f K). In the following lemmas we prove two simple properties
of C(f, K), namely its compactness and a hull-type property.

Lemma 4.1. For every K C R" compact and f : K —> R" short, C( f. K) C K" is

compact.

Proof. We notice first that C(f. K) is a bounded set. Therefore, we need only to
show that it is closed. Assume that zl G conv(Hf) —> z. Using Caratheodory's
Theorem, we may assume without loss of generality that Hi {y^ yln} and

n n

zl J2xl,y1,- with l- A' -°-
1=0 1=0

By compactness (up to extracting subsequences which are not relabelled) we may
infer that there exist y, e K" and A, e [0. 1] for i 0 n such that

lim y[ y, and lim X[ X,.
l—> + 00 I—> +OQ

Then, z G conv(f/) for H {y0 y„}. Moreover, H G S because

IgO^-gOr)! lim \g{y[) -g(ylj)\ hm \y\-ylj\ \yi-yj\ v/,y.
/ —^ -Too /->+oo

This shows that z G C(/, K), i.e. C(f, K) is closed.

Lemma 4.2. Let f : K —>• R" be a short map, with K C R" compact and let

f : C(/, K) —> R" be the unique l-Lipschitz extension off to C(f. K). Then,

C(f,C(f, K)) C(f, K).

Proof. It is enough to show that, for every x, y G C(f, K) such that |/(x)— /(y)|
| x — y |, it holds

[x.y] := {A x + (1 — A) y : A e [0. 1]} C C{f. K).

Without loss of generality, we may assume that

y f(y) 0. (4.1)

Set H := {xo,...,x/} C K, I < n, such that / \h is an affine isometry and

x 521 cq x, for positive a, with 52, ai 1
• N°te that in general / may be

different from /;, because we assumed that a, > 0 for every i. Since f \h is affine
and (4.1) holds, we have

^ a, x, ^ a, f (x,)
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Squaring we get

I2 + Y^aiaJ XrXJ I/(X')|2+ J2a< aJ /(*')•/(*/)• (4-2)
1 '¥i ' >¥J

From (4.1) and Lip(/) < 1, it follows that |/(z)| < |z| for every z £ K. Recalling
that | fix,) — f(Xj)| |x, — Xj | for x,, x} £ H, this implies

/(*«) fixj) \{\f(xi)\2 + \f(Xj)\2 - |f(x,) - f{x,)|2)

<l-(\Xlf + \Xjf-\Xl-Xj\^
X,-Xj. (4.3)

Using (4.2) and (4.3) together (recall that |/(r)| < \z\ for every z e K), we deduce

that | f{x,) | \xt | for every x, e H. In particular, {0} U H e S and by definition

[0,x] C conv({0} U H) C C(f, K).

We now turn to the proof of Proposition 2.1. We start with a definition.

Definition 4.3 (LSSE). Let K c K" be a compact set and /' : K -* M" a short map.
We say that / is locally strict short extendable, or briefly f is LSSE, if there exists
h Lip!(R",M") such that !i\k / and Lip(/?[^4) < 1 for every A CC IR" \ K.

Clearly, if /' : K —> R" is LSSE, then CifK) K, because, for every
1-Lipschitz extension h of f it holds h\c(f,K) f\c(f,K)< where f is the unique
1-Lipschitz extension of f to CifK), and Lip(^f\c(f,K)nBe(x)) ^ 1 f°r every
x Cif K) and every e > 0, while h is locally strictly short outside of K. We

show that this is also a sufficient condition for f to be LSSE.

Proposition 4.4. For a short function f : K —> R" the following are equivalent

(a) / is LSSE;

(b) for every x <£ K there exists px £ R" such that

\px- fiy)\<\x-y\ V y £ K; (4.4)

(c) for every x £ K, there exist at least two different 1-Lipschitz extensions f\,
f2 of f to K\J {x}.

(d)

x.y £ K : J fix) - fiy) | |x - y\ => [x.y] C K. (4.5)

In particular, f is LSSE ifand only ifCif, K) K.
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Proof. To prove the equivalence between (a) and (b), assume that h is a locally
strictly short extension of /. Then, it follows from Definition 4.3 that px := h(x)
fulfills (4.4). Conversely, if (4.4) holds, for every x K there exists 8X > 0 such

that

\Px ~ f(y)\ < \z ~ j] VyeK and V z e B$x (x) c R" \ K. (4.6)

For every x f K, we define the functions fx by

f x j/(">) if W e K,
fx(w) := j

[Px if W BSx(x),

and consider Fx an arbitrary 1-Lipschitz extensions to the whole R" given by
Kirszbraun's Theorem [8, §2.10.43]. Since R" \ K is locally compact, there exist

countably many x, such that

1 1

Setting h := 2_i Fx,, it is immediate to verify from (4.6) that h is a locally
strictly short extension of g.

To show the equivalence between (b) and (c), note that, if the maps .v i-> q and

x i-> q' are two different extensions to K U {x}, then px := satisfies (4.4).
Vice versa, if (4.4) holds, then the continuous function

»(v, := \x-y\
satisfies max/f 4> 1 — q for some rj > 0. Then, for every z e B$(px) with
S < | dist(x, K), the extension of / given by r h- i is a 1-Lipschitz extension

off-

I^-/WI£iwwi±«s1_i| + _«_<i Vy(=K\x-y\ k-Tl \x~y\
Note that, we have actually proven that (b) fails in a point x if and only if (c) fails in
the same point x.

So far we have proved the equivalence of (a), (b) and (c). Next, it is clear that (b)

implies (d).
To show the converse, we argue by contradiction and assume that (d) holds but (c)

not, i.e. there exists x ^ K suchthat/ admits a unique extension / : ATU{x} -> R".
Let /(x) px and set

H := {y e K : | f(y) - px\ \y -x|}.
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Note that H is compact and, by the failure of (b) in x, // / 0. Two cases can occur:

(i) px £ conv(/(//));
(ii) px e conv(/(//)).

In case (i), since con\(f(H)) is compact, there exists e, x > 0, and v e §"_1 such

that

px • v > 2 s + /(_y) • v V y e Hx fl K,

where Hx denotes an open r-neighborhood of H. Moreover, by compactness of
K \ Hz, there exists a 8 > 0 such that

\f(y)~ Px\+S <\x-y\ WyeK\Hx.
An elementary computation shows that x h» qx := px — t)v is a new 1-Lipschitz
extension of / to K U {x} if p is chosen accordingly. Indeed, we have

I/(>') ~ Px + r)v|2 |/(y) - px|2 + p2 + 2p(f(y) - px) v

< \f(y)~ Px\2 + V2

<\y-x\2 + p2-4ps VyeHTCiK,

and

\f(y)-Px + pv\<\x-y\-S + p V y £ Hx.

Hence, it suffices to choose

p < max {5,4e).

This contradicts the assumption that / is the only 1-Lipschitz extension to K U {x}
and gives the desired conclusion in case (i).

In case (ii), let / eN be the minimum integer with the following property: there
exist / points {ji yi} =: H' C H such that px c conv(/(//')). We claim that

l/(j«) - f(yj)\ < It. -y,\ Vy,,yjH'. (4.7)

Indeed, assume this is not the case, e.g. |/(ji) — f(y2)\ |ji ~ y2] Then, since

px ~ a, f(y,) for positive a, with a, 1 and f\[yx,y2\ is affine, we can set

«1 vi + a2 y2
z := —1

Ol \ + 02

By (4.5), [yi,y2] C K, thus implying in particular that z e K. Moreover, by

comparing the congruent triangles {yi,y2.*} and {f(y\), /O2). Px} we deduce
that z //.Since it is moreover easy to see that px conv(/({z, y2 y/})), we
obtain a contradiction with the assumption that / was the least number satisfying the
above property.

To conclude we note that (4.7) implies that there exists a strictly short extension
°f f\w to H' U {x}, denoted by F : H' U {x} —> M". Clearly, F(x) 7^ px by the
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definition of H. This leads to a contradiction and concludes the proof. Indeed, set

F(x) =: qx and v := Since px e conv(/(//')), there exists y e H' such

that

Px-v > f(y) v.

which in turns implies

\f(y)-qx\ > 1/00 - Px I \y-x\,
against Lip(F) <1.

5. Density

In this section we set, referring to the notation of Section 3,

M R",

and define, for every x, y e K and s > 0, Ee(x, y, K) to be the restriction of maps
from Fe(x, y, K) to K, i.e.

Ee(x, y, K) {h e Lip, (K. R") : 3 / e Fe(x, y, K) s.t. f\K h).

Our aim is to prove the following density result.

Proposition 5.1. Let K C ffi" be a compact set. Then, for every .v, y K and
e > 0, the set Ee(x, y, K) is dense in Lip, (AT, R").

5.1. Single lamination. In this section we show the basic lamination construction
which will be used to increase distances in one direction. We consider functions of
the following form:

w(x) A x + £ h(x £),

where A e R"xn, £, £ e R" and h : R -> R is the 1-periodic extension of the

following piecewise linear function with slopes A, < 0 < A2,

J-21A11 for 0 < t <

ßi(t-l) for <'- L
h(t)=\, 7, -a2"a7 (5.1)

Note that w is Lipschitz and piecewise affine in parallel strips, with

(4 + A1 £ ® £ for k < x £ < k +
Vw(x) =| j

A2_A| for all k e Z.
IA + A2 t 0 £ for k + x.2-kx < x • % < k + \,

(5.2)
In what follows, a simplex is defined to be the closed convex hull of n + 1 affinely

independent points in R", T := co{xo xn}, and its barycenter is the point x :=
n+T 52j=0Xf
Proposition 5.2. Let T be a simplex and u be a strictly short affine map on T, with
Vu s A and AT A < (1 — 9q) I for some 0 < 9q < 1. Then, for every 0 < 6 < 0q
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and r) > 0, there exists v e Lip(7, R") such that:

(i) v — u on dT;

(ii) \\u - u||co(r) < rp

(iii) Lip(u) < 1 - |;
(iv) (1—20) Jq \y{t)-e\\dt < £(v oy) far every rectifiahle y : [0, 1] —> Tn, where

Tv is the (1 — rf)-rescaled simplex with the same barycenter as T.

For the proof of the proposition we need the following elementary linear algebra
lemma.

Lemma 5.3. Let A e R"x" and 9 > 0 be such that AT A < (1 — 0) /. Then, there

exists £ e R" such that

(1-0) |^,|2 <(^ + £® 5 (l-0)ltl2 V £ el". (5.3)

Proof. Let B — (1 — 9)1 — AT A, so that, by assumption, B > 0. First consider the

case B\i > 0 and set £ := ^— Bei. We claim thatVi i

(B-$®%)e i=0, (5.4)

(B -%®£)ww > 0 V u; e R". (5.5)

Indeed, (5.4) follows directly from the definition of £. To see (5.5), notice that B > 0

implies, for any t e R and any w e R",

ß(iü + te\) (in + fei) t2{Be\ • ei) + 21 (Be\ w) + (Bin in) > 0. (5.6)

The fact that the above quadratic expression in t is nonnegative is equivalent to

(Bin w)(Bei ei) — (Be\ in)2 > 0.

On the other hand, by direct calculation

(B — £ <8) %)w • w B\\ {(Bw w)(Be\ e\) — (Bei • in)2),

thus leading to (5.5). Similarly, if Bu 0, we set £ 0. Then, (5.4) and (5.5)
still hold: indeed, the latter is trivially true by the assumption on A and the former
follows from (5.6) being w and t arbitrary.

To conclude the proof of the lemma, note that (5.4) and (5.5) are equivalent to

(ATA + £ <g> £) e\ (1 - 0) e\.

(AtA + £ (g) f) in • in < (1 — 0) |w|2 V in e R".

Therefore, for a general £ t e\ + in with u; _L ex, (5.3) follows:

(1 -6)t2 < (AtA+%®%)i;-t; (\-6)t2+ (ATA+$®$)w-w < (1-0) (t2 + \w\2).
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Proofof Proposition 5.2. We show that a suitable truncation of a single lamination
satisfies the conclusion of the proposition. Fix 0 < 6 < 6q and rj > 0, and note
that AT A < (1 — 0) /. We split into two cases, depending on whether det A 0 or
det A 0.

The case det A ^ 0. Let £ be the vector given by Lemma 5.3 and consider £ e R"
and Ai < 0 < A2 such that

£ =/rr£ and 2 A, + A? |£|2 1, if detA/O.

Choose a cut-off function if : T —>• [0, 1], \j/ e Cf°(T), such that \f 1 on Tn

and fix a periodic piecewise affine functions h with slopes Aj and A2 as in (5.1). We

claim that, for p. large enough, the map

£
v(x) u(x) H h(p X £) (x)

F

satisfies the conclusions of the lemma.

Clearly, (i) follows from \fr e Moreover, since ||w — w||co 5

choosing p > aiso (jj) follows. Next, notice that, by the choice of £, for
almost every x e T,

Vv(x)T Vv(x) Ar A + (h'(px £) f{x)) /lr£ ® £ + (h'{p x £) f{x)) £ ® Ar £

dr/l + (ihfpx-£) f(x) + (h'(px £) i/r(x) |£|)2) £ ® £

+ f/iW'

where Eß(x) is an error satisfying || Eß ||co 5 for some Co depending on h. tfr, £.

Hence, since h' A, and 0 < xf < 1,

2 ^'(A x • £) ^f(x) + (//(A x • £) i/r(x) |£|)2 < 1 for a.e. x e T.

Then, for ^ < 6/2, (iii) follows from the convexity of T, since
/*•

Lip(f)2 ess sup sup | Vu(x) ^|2 ess sup sup (Vv(x)TVv(x) r] • rj)
x&T IT71=1 x^T 1771 1

c 0
< sup ((ATA + £ (g) £)r/ • t]) + sup |£M(x)| < 1 — 0 d - < 1 - -

M=t xeT M 2
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To prove (iv), let y : [0, 1] Tg be a rectifiable curve and let

0 t0 < t\ < < tw 1

be any partition of the interval [0. 1], By adding more points if necessary, since v is

a single lamination in Tv, we may assume that the restriction of v onto each interval

+ i)] is affine. Moreover, by the explicit formula (5.2),

Wy(0+i)) - v(y(tj)) (A + A, £ <g>f)(y(r, + 1) - y(tj)),

where A, is chosen depending on which strip the segment lies in and, in case the

segment lies on the boundary of a strip, i.e. f • (y(f; + i) — y(tj)) 0, any value can
be taken. Therefore, in both cases, using (5.3) and

(A + A, f <g> l)T(A + A, £<8>£) ATA + A, A7!; ® f + A, £ <g> AT£

+ ^ICI2W
AT A + £ ® £,

we have

|w(y(0 + i))-u(y(0))| > Vi - # |(y(C + i) - y(f, ))-ex |

> (1 -26) |(y(/7 + i) - y(tj))-ex \.

Summing and refining the partition ad infinitum, since the integral in (iv) is the total
variation of the curve y • ei, we conclude the proof in the case det A ^ 0.

The case det A 0. In this case we consider

£ Ker(AT) and —i -2 |"| — 1-

Then, for h, ij/ and v as above, we have for almost every x e T,

Vu(x)r Vv(x) Ar A + (h\ß x £) f{x)) A7 ^ ® £ + (/i'(/x x • £) t/r(x)) | ® A71,

+ {h'ijix-£) is(x))2 |£|2 £ ® £ +

+ V(V)2 £ ® f + E^C*).

where Eß(x) is again an error satisfying ||£)t||c0 5 > f°r some Co depending on
Since 0 < f < 1 and xfr 1 in 7^, the estimates (1)—(iv) follows in the same

way as before.
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5.2. Triangulation and approximation of short maps. In this subsection we

construct a calibration in order to obtain sufficient control on curves in 1"^(x, v).
We start by proving an elementary result on piecewise affine approximations on

triangulations.
Let T co{xo, x„} be a simplex and x its barycenter. Given u : T —» R",

the affine interpolation of u in T is the function

ü(x) u(xo) + A (x — xo),

where A e R" is such that w(x,) w(x,) for every i {A always exists and is

unique because the points x, are affinely independent). Note that not every affine

interpolation of a short map is short. Consider, for example, the map u : R2 — R2,

w(x) (|x|, 0), and the simplex T of vertices xo 0, xi and X2

It turns out that the affine interpolation of u in T is given by

»M o o)1'

so that Lip(ii) 2, although u is short.

The following lemma provides a bound for the Lipschitz constant of u — w.

Lemma 5.4. Let T be a simplex and r\, r2 > 0 be such that Bri (x) C T C Br2(x).
For every u e C2(T,W), the affine interpolation ü in T satisfies

4 r2
Lip(w — u) < —- || V22r||cofr), (5.7)

r i

where

| V m ||co(T) max
^2u/

t \^ \dx,dxj
1,7,/ 1

Proof. Let A Vü. For every B e l"x", denote by Lb the linear map given by

Lb(x) B x and denote by |ß| max^|=i |B t]\ the operator norm. We claim
that

\B - A\<-Up(u- Lb). (5.8)
r\

Indeed, let t] §"-1 be such that \B — A\ (B — A) t] and consider the line

lv — {x + 11] : t e R}. Clearly, by the convexity of T, lv intersects 37" in two
points,

p X, x, and q /x, x,,
I I
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with A,, >0 and A, J], Mi — 1- Then, since \p — q\ > 2 ri, it follows that

id .I \(B - A)(p-q)\ ~ Bi)(B - A)(xt - xQ)\
\B - A\ <

\p-q\ 2ri
I £,(A, - Mi) {(B xi ~ u(xi)) -(Bx0- w(*o)}|

2/-,

Lip(n — Lb) + Mi)l*i — xo| 2Lip(w — Lb) diam(T)
2 rl 2 /•,

2 /*2
< Lip(w - L5).

By convexity, for every f e C 1

T, R"),

Lip( f) max |V f{x)\. (5.9)
xeT

Set B Vu(y) such that

Lip(u — u) max |V(w — w)| |fi — v41.

xeT

From (5.9) and (5.8), we deduce (5.7):

(5 8) 2 r2 (5 9) 2 r2
Lip(w — w) |ß — A| < Lip(u - Lb) < max |Vu(x) - Vw(y)|

/"i ri jrsr
2 r2 9 4(j< ||V w||cO(d max |x: — y| < [|V w||c°(7^)* ^

Remark 5.5. Actually, increasing the angle in xq in the example given above shows

that estimate (5.8) is optimal up to a multiplicative constant.

In what follows, a triangulation T {7~ieN of R" is defined as a family of
simplices such that U, Tt R" and, for every i ^ j, Tt fl Tj is a common face when

not empty. We call a triangulation periodic if there exist finitely many simplices
7),..., Tn such that T + v : v 1"}.

Given a simplex T ~co{x0,..., xn), we consider the (n — l)-dimensional
supporting linear subspaces of its faces defined as follows: for a (a\ an)
with 0 < ai < •• < an < n, the corresponding supporting hyperplane is given by

Vj Span{.v«2 - xan - xa,}.

We denote by AfT the set of all unit normals to the supporting hyperplanes of
simplices T in T,

Afj- (u e S"_1 : v _L Vj for some a and T eT\.
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Proposition 5.6. For every 6 > 0, there exist 0 < 8 < 1, a periodic triangulation f
and a function tp C°°(R") such that:

<p(l,x) l V x 6 IT-1, V / Z; (5.10)

0 < 7p^-(x) < 9 VjteR", j/ 1: (5.11)
dJCj

0 < Viel" and x) 0 V x e fS- (5.12)
1 — 0 ox i

where J- is the union of the faces of the simplices off and denotes

its open 8-neighborhood.

Proof. Step 1: The existence of a transversal triangulation. We start showing the

existence of a periodic triangulation S such that every orthogonal vector v e Ms
satisfies v e\ f 0, i.e. such that e\ is transversal to any supporting hyperplane.

To this aim, consider {T\ 7m}, a triangulation of [0. 1/2]" which can be

extended to the whole R" by periodicity (that such triangulation does exist is a simple
exercise), and set

M

n= IM +v/2:vln} {Rl}im.
j i

For w e R" with w e\ =0, let fw : M" —* R" be the piecewise affine map given
by, for every i (xi,i)elx R"-1,

fw{x) x + h(x\) w.

where h : R —> R is the 1 -periodic extension of

t if 0 < t < j.
-1 if 7 < t < 1.

Note that, fw\is linear for every simplex R, of 7Z, so that S, — fw(Ri) are also

simplices. Moreover, since w-ei 0, fw : R" —> R" is a periodic homeomorphism:
for every integer vector v Z", fw(x + c) fw(x) + v. Hence, fw{Ri + v)
fw(R,) + v implies that<S is a periodic triangulation of R" as well.

We claim that there exists w _L e\ such that S is transversal to e\. Indeed, for

every simplex /?,, V(/u,|/;() L±w, where L±wv v=t(v • ei) w and the sign is

chosen depending on the sign of h'(x\) for x e Rt. By simple linear algebra, using
L~l — L-w as w ± e\, we infer that

Ms — {L±wv' ' v' e Nn}
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Hence, v 6 Ms is orthogonal to e\ if and only if there exists v' e M-r such that

0 (L±u;v'-ei) {v',L±wei) (v',ei)±(i>',w). (5.13)

Now notice that, for a fixed v' either the solutions w _L e\ satisfying (5.13) are

affine (/? — 2)-dimensional subspaces or, in the case v' e\, there are no solution.
Hence, relying on the fact that M-r. is finite, 1Z being periodic, one infers that for
7f"_1-a.e. w 1 e\ no v G Ms is orthogonal to e\.

Step 2: Construction of a calibration. From now on we fix a periodic transversal

triangulation S {5,},epj. For every y > 0, we denote by Tv the open y-
neighborhood of union of all faces of S. Consider the C°° function g : R" -» [0,1],

g py/2 * /(K"\JP3y/2),

where p is such that p > 0, J p 1 and, as usual pr r~"p(f). Note
that, since T is periodic, also g is periodic and

g 0 on Ty and g 1 on R" \J:2Y.

Set, for * (jci.x) eRx R"_I,

X[

f(x i,x)\= [ g(t,x)dt.
Jo

Clearly / is smooth and, by the periodicity of g, for t e [0. 1) and / e Z, (below the

computation for I e N, the other case being analogous), we have

rt+l ^ pl-bl pt+l
fU+l,x) J g(s,x)ds ^2j g(s,x) ds + g(s,x)ds

1 f(\,x) + fit,x). (5.14)

For every x e R"-1, setting {(t,x) : 0 < t < 1}, it holds

f(l,x)> i-nl(l*n^2y). (5.15)

Since no v Ms is orthogonal to e\, each intersects transversally a bounded
number of faces, so that there exists a constant C > 0 such that Tf1 (/^ n T2y) < Cy
for every y > 0. By (5.15), for y small enough, the function

' /(l.x)
is well defined and smooth. From (5.14) it follows that

f{l + t,x) 1 + f(t,x).
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In particular, \{r(l,x) I and Vijr is ^"-periodic with |^-(x) /(1.*) 1 ,?(*)•
Therefore, from the choice of g, we have

19iIf
0 < — <

9ijf
_ Viel" and -—(x) 0 for x G Tv. (5.16)

oxi 1 — C Y oxi

Now, for every k G N, consider the horizontal rescaling zk : K"
Tk(x\, x) (^1-, x). We claim that, for sufficiently large k,

I" given by

cp(x) := k i/r(kx\,x) and T {7)}, with T, := rk{St),

satisfy the conclusions of the proposition for a suitable 8. Indeed, T is clearly
periodic and<p(/,x) k~l\j/(k l,x) — /,thus proving (5.12). Setting T' U,97),
from (5.16) we deduce that (x) ^ (k X\, x) satisfy

dip
0 < — <_ VxeR" and ^~(x) 0 for x e I' jk rk(Tv).

9xi 1 — C y 9xi yi

(5.17)
Moreover, using the periodicity of Vifr,

dip

9Xj
< k 1II Vl/r||co, Vj^l.

Given now 0 > 0, we can choose y, k and 8 in the following way:

y <

(5.18)

^ Wile« j „ y
c. *>—£— and «<-.

so that, from (5.17) and (5.18), the lemma follows.

Remark 5.7. We note here that, given T and ip as in Proposition 5.6, for every
k N, the following functions and triangulations,

<Pk(x) := k~l(p{kx) and Tk {T,fc},eN,

where T'k k~lT,, satisfy the same conclusions as in Proposition 5.6 with 8k

8/k:

ipk{l,x) 1 V x G R"-1, V / G Z;

d<pk

9x,
<

dipk 1

0 <Ax) < —
OX\ 1 — I

V X G r, j / 1:

dipk

(5.19)

(5.20)

V x G M" and (x) 0 V x e (5.21)
0X1
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5.3. Proof of Proposition 5.1. In light of the Kirszbraun extension theorem, it
suffices to show that, given a short map / : R" M" and r\ > 0, there exists
h Fe(x, y, K) such that ||/ — A llc:0(Jf) — 1-

There is no loss of generality in assuming that x 0, y et and K C Br for
some R > 0. We construct h as the result of successive approximations.

Step 1: Mollification. We consider first the map f\ (1—2 6) p$ * f, where
0 > 0 is a real number to be fixed later. Clearly,

fx e C°°(M"), Lip(/,) < 1-20.

and

11/ — f\llc0(ß2«) —
II f ~ Pd * /llc°(K") + 20 ||pe * /Ilc°(ß2«)

<0 (l+2||/||co(B2/f+e)). (5.22)

Step 2: Piecewise affine approximation. Next, we approximate f\ uniformly by
a piecewise affine map /2. To this aim, consider the periodic triangulation T given
by Proposition 5.6. Note that, by periodicity, there exist a. r > 0 such that, for every
Tt e T,

Br(x,) C T, C Bar(x,), with x, barycenterof 7).

Choose k G N such that

4ru2 ||V2/i||co(ß 4 r aL { 2K) < 6 and < 0, (5.23)
k k

and consider f2 the piecewise affine approximation of f\ subordinated to the
rescaled triangulation Tk in Remark 5.7. From Lemma 5.4, it follows that f2\Tk
is short for every Tk C B2r because

4 r a2 || V2 f\||c°(ß->b)
Lip(y2|rA) 5 Lip( /,) + Lip((/2 - /,)|rO < 1 - 20 + ;

C (B2R)
1 1 K

(5 23)

<1-0.
Moreover, always for Tk C B2r,

4 r a (5 23)
II/2 - /i|lco(r*) - (LiP(/2) + Lip(/,)) diam(Tlk) <

—j—
< 0. (5.24)
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Step 3: Laminations. Finally, in every Tk C B2r we replace f2 by the single
lamination construction in Proposition 5.2. Since the boundary data for each simplex
is the same of f2, gluing all the constructions together, we obtain a short map /3

defined on the union of the Tk c B2r. Moreover, we take 0 small enough in order

to assure that the boundary of the rescaled simplices Tk& by a factor (1 —9) and

with the same barycenter of Tk belongs to the 8^-neighborhood of the faces of Tk,
i.e. (notation as in Remark 5.7)

>Th c -Ts,

With this assumption, by Proposition 5.2, the function /3 satisfies:

ll/3-/2||C0(BÄ) < 0. Lip(/3)<1-^ and (1-0) f \yx (t)\dt < I (/3 oy),
1 Jo

(5.25)
for every rectifiable y (yi y„) : [0. 1] —»• R" \ JF&k

We set h := /2\k- Clearly, from (5.22), (5.24) and (5.25), it follows that

\\h — f\\c°(K) — + 2 ||/|lc0(ß2«+6i)-'- (5.26)

So, up to choosing 0 suitably small, we need only to show that h e Fe(x. y. K). Let

y e (x, y). We start noticing that there exist finitely many pairwise disjoint open
intervals //, Jm C [0, 1] such that

y(//) CM"\ Jjj and y(Jm)cJsr
and

££(y|//) + I>yU,,)>£(y)-0. (5.27)

Therefore, we can estimate the length of h o y as follows: letting (p^ be the function
in Remark 5.7,

i(hoy)>YJHkoy\„)°i\i-e)Ylji Ir'FTo-ofZl Ifffo-))-;

Bi"(l - 9) 2 f I d<Pk

VA |3m (y) y't

ii

+ ('-f)2E/ K;|

„ //„, I 9*i I

(5 21)+(5 27)
> (i -oy fJo

I d<Pk

3xi
(y)y[

> (1-0) 7'
Jo

0(1-0)

l(<Cfc °y)'| - Y ir-My'j
7=2

3Xj
0(1-0)

(5 20)
> (1 - 0)2(%(y( 1)) - %(y(0))) - (n - 1) £(y) 0 (1 - 0)2 - 0 (1 - 0)

(1 -0)2-0(l-0)[(n- l)f(y)(l -0) + 1]. (5.28)
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Therefore, from (5.28) we deduce that there exists 0 9(e) > 0 such that i(hoy) >
(1 — e) if £(y) < e_1. Since the condition defining Fe(x, y, K) is always satisfied if
£(y) > e~l, this implies that h e Fe(x, y, K) and finishes the proof.

6. Typical extensions

In this section we prove Theorem 2.2 which we restate for convenience.

Theorem 6.1. Let f : K -> R" be a short map, with K C IB" compact. Set

Xf := {F eUPl(Mn,Rn) : F\C{f,K) /},
where f denotes the unique short extension of f to C(f, K). Then

Xf fl I(M" \ C(f K)) is residual in X/.

Proof. Let {Bl }i6pj be a countable family of closed balls ß, C 1" \ C(/, K) whose

interiors cover R" \ C(f, K). By Lemmas 3.2, 3.3 and 3.5, we have that

l(Rn \C(f, K)) n Xf D nn n F\/k(x, y, Bt) n Xf.
keNieNx.yzB, HQ"

Therefore, in view of Lemma 3.4, it is enough to prove that Xf n F]//i(x, y, ß,) is

dense in Xf. For simplicity of notation we drop the subscript i, B, B and show

that, for every F X/, q > 0 and e > 0, there exists a map G e 1/ fl Fs(x, y, B)
such that

II~ ^llc°(K") — h- (6-1)

We divide the proof in several steps.

Step 1: local strictly short approximation. By Lemma 4.2 and Proposition 4.4 we
can fix a locally strictly short extension h : R" —>• M" of /. Let R > 0 be such that

C(f,K)UB C Br and qi > 0 to be fixed later.

If F | r2R 0, set Fi := F. Otherwise, assuming that F\b2R ^ 0, fix t > 0

arbitrary such that

/< ^
ll^ll C°(B2r) + \\F IIC°(B2R)

and define the function F\ : B2R K" given by Fi (1 — t)F + t h: clearly in
either case

Fi\c(f,K) f, (6.2)

\\F ~ Fi\\C°(B2R) (6.3)

Lip(Fi|ß) < (1 — t) Lip(F) + t Lip(/z|s) < 1 - a, (6.4)

for some 0 < a < 1, because h is strictly short in B.
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Step 2: global extension. Next we extend Fi to the entire M" keeping close to F.
To this aim, consider the function F' :W \ B2r -> K" given by

F'{x) := Fix I I

i + kl,
for some r > 0 to be fixed momentarily. It is simple to verify that

F' "\B2r) < r. (6.5)

Moreover, F' is locally strictly short: indeed,

\F'(x)~ F'(y)\ i |jc (l (' 1+lkl
(l + |x|)

+
(i + 1*1) (l + \y\)) (i + |.v|)(i + |.y|)

r(l + |x|) \ T |.x|

(l + |x|)(l + |y^
X

+ \x-y\
(i + 1*1)0 + LH)

(l + |x|)(l + |y|)

Next, consider the map given by

< \x - y\.

F" :=
[F, in B2R_ 2tR

TTTK

'F' in R"\B2r.

We claim that F" is locally strictly short outside C(/, K). Since F\ and F' are

locally strictly short, it is enough to consider z e 9B2R_2t^_ and w e dB2R and

estimate |F"(z) — F"(w)\. To this aim, we set tl> := ]^j(2 R — ?+2r an(i note that
there exists ß(x, R) > 0 such that

——<\-ß VzedB7R 2tr V w e dB2R.
z-w - 2R-tttr (6.6)

Indeed, for every fixed w e 9B2r, one can consider the function O(z) := \l-Z\ ar,d

notice that is continuous on dB2R 2r r and O(z) < 1 for every z. Therefore,

by compactness of the sphere, <f> has a maximum which is strictly less then 1 and

is independent of w because of rotational invariance. We can, hence, estimate as

follows:

|F"(z) - F"(w)| < |Fj(z) - Ft(w)\ + \F,(w) - F'(w)\

|Fi(z) - FiOZ;)! + |Fi(ui) - F(w)\
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(63),< \Z -W\ + tji
(6 6) / ß \

a d
provided rji < l+2/? In particular, this implies that there exists 0 > 0 such that

LiP F \(B2R\B2R)UB
2R- 2tR I —

TT27T
< — i

Using the Kirszbraun extension theorem, we can hence extend F" to a strictly short

map F'" on B3r, and finally set

p
(f'" in B3R,

2'
(F' in Rn\B3R.

Observe that, by construction,

Lip (F2\r2R) <1 — 0. (6.7)

Moreover, for every z 6 B2r \ B2r 2xr__, setting z := -^(2 R — we have

|F2(Z)-F,(Z)| < |F2(z)-F2(Z)| + |F1(Z)-F,(Z)| <2|Z-Z| <
1 H- Z K

It follows, then, that

\\f2 — F||c°(r") max {2r + \\Fy — IIc°(ß2«)' — IIC°(ir."\ß2J^)}

<2r + rj\. (6.8)

6.1. Step 3: almost isometric approximation. Using Proposition 5.1, we find
F,v e Lipj (B2r, R") n Fe(x, y, B) such that

\\FlV ~ F2\\C»(B2R) <9T)2, (6.9)

foi some rj2 > 0 to be fixed soon. For now we merely assume that r]2 satisfies the

following: setting B Br(x), we require B' Br + r,2(x) C B2r \ C(f, K).
Next, we verify that the map

fV
(f'» in B,

IF2 in B2r \ B',
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is Lipschitz continuous with LiptF1') < 1. Indeed, arguing as before, it is enough to
consider the case ofz e ß and w e B2r \ B' and estimate as follows:

|Fv(z) - Fv{w)\ < |F2(z) - F2(w)I + |F2(z) - F'v(z)\
(6 7)+(6 9)

5(1— 9) \ w — z\ + 9 rj2

<(1 - 9) \w - z\ + 6 \w - z\ 5 \w -z\.

Using Kirszbraun's Theorem, we extend Fv to a short map F3 on the whole R". As
before, for every z e B' \ B, taking w e dB' with |u; — r| 5 r]2, we get

|F3(z) - F2(z)I 5 IF3(z) - F3(w)I + IF2(w) - F2(z)I <2lw-=l<2 r/2.

It follows, then, from (6.9) that

IIF2 - F3||co(k,0 max {\\Flv - F2||co(B), 2 rj2} <2 t]2. (6.10)

We can now conclude that the function G := F3 is an approximation for our
initial function F. Indeed, G e Xf since by (6.2) G\c(/,k) F\\c(f,K) /
and Lip(G) 5 1. Moreover, G e Fe(x,y,B) because G\b F3\b and F3 e

Fip(B2R, M") D Fe(x, y, B). Finally, putting together (6.8) and (6.10), we conclude

(6.1) by choosing suitably r, rji and rj2 in this order.

For later use we state the following immediate corollary of Theorem 2.2.

Corollary 6.2. Let £2 C R" be an open and bounded set, and let h : £2 —» R" be a

given Lipschitz map with Lip(/i) 5 L for some L > 0. Then, for every t) > 0 and
M > L, there exists a map g : £2 —> R" such that g|gQ h, ||g — /r ||c"°(^2) — 7 anc^

every rectifiable curve y : [0, 1] —»• £2 satisfies £(g o y) M I(y).

Proof. The proof follows easily applying Theorem 2.2 to K := 9£2 and / g/M
(note that from the condition Lip(/?) 5 L < M it follows that C(f, K) K).

7. Generic restrictions

In this section we prove Theorem 2.3. We start with the following proposition on the

genericity of LSSE maps.

Proposition 7.1. Let K C R" be a compact set. Then, the typical short map in

Lip j (K, R") admits an extension to the whole R", which is locally strictly short on
R" \ K.

Proof. We construct a residual set of LSSE maps in Lipj (K, R"). For every e > 0,

let K£ denote the open e-neighborhood of K. Let moreover Qe C Lip j (A'. R") be
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the set of short maps / : K —» R" with this property: there exists L < 1 and there

exists h : R" \ Ke —> R" such that Lip(//) < L and

\h(z)~ f(y)\ <L\z-y\ VzeK"\4 V y e K. (7.1)

Note that Qe is open in Lipj(AA R"): indeed, if \\f — / IIcM(Jf) — (1~^S > then, for
z i K£ and y £ K, we have

|h(z) - f'(y)\ < \h(z) - f(y)\ + | f(y) - f'(y)\
l~L 1 +L,< L\z-y \ + —^—e < —|z-y|,

thus implying that /' e because -LLL < 1. On the other hand, is also dense.

Indeed, as a consequence of Kirszbraun's theorem all strictly short maps from K
to R" belong to Qe, and the set of strictly short maps on a compact set is dense in the

set of short maps (indeed, given / Lip^AA R"), A / with A < 1 is strictly short
and converges uniformly to / as A tends to 1).

We show that the residual set

q-= n a
Qse> 0

is made of LSSE maps, thus proving the proposition. Indeed, let g £ Q. By
definition, for every ek 2~k there exists a function hk ' R" \ KSk —> R"
satisfying (7.1). Let H^ be the Kirszbraun extension (i.e. with optimal Lipschitz
constant) of the map

/ „ \ [hk(x) if x £ (R" \ Ke,),
K U (R" \ Kg.) 3 x {

ky v N eU
V U jg(jc) if x £ K.

Note that by (7.1) the maps H£ are short. Set

k

The function /' is a locally strictly short extension of g. Indeed, by construction

Lip(f) 5 I and f\x — g. Moreover, for every open set B with B n K 0,

Lip( /|ß) < 1 because Lip(/i^) < 1 for every k such that B c (R" \ KEk).

Proofof Theorem 2.3. Recall from Section 5 that for every x, f x; £ Q"
and f. R > 0 the set £A(x,, x,, Br) is defined as

Ee(x,,x,. Br) := {h £ Lip t( AAR") : 3f e Fe(x,. x,. Br) s.t. f\K h}.

By Lemma 3.4 and the openness of the restriction map (see [12, Theorem 2.2]
or [11]), Eg{x,.xt. Br) are open subsets of Lip^A,R"). Moreover, by Proposition

5.1, these sets are also dense.
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Let C be the set of LSSE maps g : K M" and recall that C is residual in

Lipj (K, M") by Proposition 7.1. We claim that every map in the residual set

F:=cn p| P P ££(x, ,.v;, Br)
x, +Xj eQ" Q3S>0 R6N\{0}

satisfies the conclusion of the theorem, i.e. is the restriction of an isometric map of
the entire space.

To show this, let f £ J~. In view of Theorem 2.2 and Proposition 4.4, there

exists an extension F : R" -» R" of / such that £ X(M" \ K). We want to

prove that actually F £ I(Rn).
Fix any curve y : [0, 1] —> R". We can assume without loss of generality that y

is parametrized by arc-length. Set

U := y_1(R" \ K) and V := y'HK).

Since F\rh\k e I(M" \ K), it follows that |(F o y)'| 1 for a.e. t e U. We need

only to show that \(F o y)'\ — 1 for a.e. t £ V.
We argue by contradiction. Assuming the above claim is false: there exists a

compact set W C V and 0 < rj < 1 such that

Cl (W) > 2 ry and |(F o y)'| |( f o y)'| <1—2 rj for a.e. t £ W.

It then follows that

f \(F o y)'(t)\dt < \-2r) + ([-2r))2r] \ - 4rj2. (7.2)
Jo

Consider next a partition t0 0 < t\ < • • • < tm 1 such that

y(ti) yUi-1) v / £ {l m\ (7.3)
m

^\Y(ti)-y(ti-\)\> \-rf. (7.4)
1 1

Then, by elementary algebra, from (7.2), (7.3) and (7.4) it follows that

min
-.<,]>

s < 1^3,2
ie{i,.. ,m} \y{ti) — y{tt — \)\ YOLi\yM - yUi-i)\ !-72

Let j £ {1 in } be such that

<|-3 2 (75)
IYUj)- yih-Ol
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Fix next s > 0 satisfying the following conditions:

£ < r]2\y(tj) - y(tj-i)\ (7.6)

Uy) + e \ ^ 2
£ 1 + —^ r < T] (7.7)

V IXJ XJ~ ll/
Consider two points Xj and Xj-\ e Q" such that

\r(tj)~xj\ + \Y(tj-i)-*/-il <e (7-8)

and, since / e T, a function F e Fe{x}, Xj-\. Br) such that F\k f Then,
since F\k F\r and \(F o y) 'It/I < 1 \(Foy)'\ u |, we deduce from (7.5) that

(7.9,
IY(tj) ~ Y(tj-Ol

Let y be the curve obtained concatenating the straight segment from x}-\ to y(tj~\),
y|[f,_i,/;] and the straight segment from y(tj) to Xj, i.e.

Y [Y(tj-i),Xj-i\ Y\[tj-i,t,] [X],Yitj)\.

Then we calculate:

t{Foy) (78) i(F o y\[tj_ut/] + e)

I*/ -*7-11 \Y(tj) ~ y(0-l)|-£

^
U(F o Y\[tl_utj])

|

£ \( \y{tj)-y(tj-i)\
Jy(0)-n0-i)l ly(f/)-y(f7-t)l) \|y(o)-y(0-i)l-£

(7 5)+(7 6) 1

< (l -3n +n j < 1 -7\ — r\L

I[q_i,Q]) + £\
«7-*7-iI /

(7<7),_efl +
£(yl^-"f^) + £N

V \xj
(7 8) el(y)< 1 — s — (7.10)

1*7 ~XJ-ll

On the other hand (7.10) implies that F £ Fe(Xj, x,-\. Br), which is the desired
contradiction.

8. Isometric embedding of Riemannian manifolds

Now we proceed with the proof of Theorem 2.4. In this section M is a smooth

manifold of dimension n (with or without boundary) and g e 7^(M) is a continuous
Riemannian metric (i.e. a symmetric and positive definite 2-tensor field).
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8.1. Locally strictly short maps. The following general density result is used in
the proof of Theorem 2.4. Denote by Lip<Uoc(M, R") the space of locally strictly
short maps:

Lip<1;,0C(M,R") {/LiPl(M,R") :Lip(/U)<l VTCCM}.

Lemma 8.1. The set of locally strictly short maps Lip<t loc(A/, R") is dense in

Lipj (M, R").

Proof. For every short map / e Lipj (M. R") and every e > 0, we show that there

exists h Lip<1 loc(M, M") such that D(fh) < s. Fix a point po e M. Without
loss of generality, we may assume that f [po) 0. We claim that the map

Hp) f(p){ 1 - 1 + dM(p. Po)

fulfills the requirements. Observe first that

^ £ \f(p)\ £\f(.P)~ f(Po)\ „ sdM(p.po) ^D(h. j sup — sup < 5 s.
PeM

1 + dM(p. Po) pzM" l+dM(p.Po) \+dM(P-Po)

Therefore, we need only to show that h e Lip<1 loc(M, R"). To this end, setting for
brevity of notation d{p) d^iip. Po), we notice that for any p.q e M,

Hp) ~ Hq) (f(p) ~ f (q)) (1 - ^ - f(q)
1 + d(p)J \l+d(p) 1 + d{q)

+ d(p)) ' (1 + dip)) (1 + d(q))

Hence, it follows that

\h(p) - h(q)\ < dM(p.q) (\- 8
+

8

1 + d(p) (1 + d{p)) (1 + d{q))

dM(P,q) (l - (l+d(p))(]+d(q))) (8-D

Given any compact set A CC M, there exists C > 0 such that suppe/4 d^ip, Po) 5
C. It follows from (8.1) applied to p.q e A that

Lip^O) < 1 < 1m \a) - (1 + c)2

thus implying h e Lip<1 loc(M, R").
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8.2. Local bi-Lipschitz approximations. For the proof of Theorem 2.4 we need

also the following simple technical lemma.

Lemma 8.2. Let (B. h) be a Riemannian manifold with continuous metric tensor h,

where B C K" denotes either the ball B^ centered at the origin or the half ball
Bi fl {x„ > 0}. For every ß > 0 there exists r e (0, 1) with this property: for every

p G B\ fl B there exists a diffeomorphism <t> : Br(p) —> U for some convex open set
U C W such that <t>*go h(p) with go the standard flat Euclidean metric of M"
and is bi-Lipschitz with

Lip(<t>) < 1 + ß and Lip($_1) < 1 + ß. (8.2)

Proof. Let G : B be the matrix-field corresponding to the metric tensor h,
where 1+ denotes the set of positive definite symmetric nxn matrices. Namely,
G is such that

h(v, ui) (G v) w

where we recall - is the standard scalar product in M". By the continuity of G and

the compactness of B\ n B, there exists r G (0, 1) such that

S G(x) < (\ + ß)2 G(y) Vx,yeBlnB,dh(x.y)<4r (8.3)
(1 + p)

where the above inequalities are meant in the sense of quadratic forms.
Fix now any p G B\ fl B. By the spectral theorem we can find R G O(n) and

D G R"x" a positive definite diagonal matrix such that G(p) RTD2R. We can
then define O to be the linear map O(x) := L(x — p) where L RTD~l. Clearly
U := (J>(Br(p)) is convex and it is very simple to verify that h(p)'- indeed

for every v.w M"

h(p)(D<$>{p)v, D<$>(p)w) G(p)RTD~lv RTD~iw v w.

In order to estimate the Lipschitz constant of <t>, consider two points ,v,y G Br(p),
0 < r) < r arbitrary and y G T(x, y, B) such that £h(v) 5 df,(x, y) + t]. Then for
every t G [0,1] we have

dh(P' y(t)) < dh(p,y(0j) + dh(y(0),y(t)) < dh(p, x) + lh(y)
< dh(p.x) + dh(x.y) + t] <4r.

Hence (8.3) is applicable and implies that h(p) < (1 + ß)2h(y(t)) as quadratic
forms, or equivalently go 5 (1 + /ö)2(d>_1)*/7(y(?))- One can therefore estimate

|0(x) - <t>(y)| < tg0(<b o y) f |(<J> o y)'(t)| dt
Jo

— (1 + ß) f W(f)\h(y(t)) dt {1 + ß)lh(Y)
Jo

< (1 + ß)(dh(x,y) + rf). (8.4)



794 B. Kirchheim, E. Spadaro and L. Szekelyhidi Jr. CMH

Since q > 0 arbitrary, we conclude that Lip(<t>) < 1 + ß. Vice versa we can consider

two points z, u; e U and the straight line ct : [0, 1] —>• t/ connecting z to in (note

ct([0, 1]) C U). Arguing as before, from (8.3) we have that h(y(t)) < (l+ß)(4>)*go
from which

dh(z,w) < ih(^1 oa) [ |(<f>-1 °o)'(t)\h(<s,-\oa(t)) dt
Jo

<(1 +ß)f \a'{t)\dt (1 +ß)\z-w\ (8.5)
Jo

i.e. Lip(d)-1) < 1 + ß.

8.3. Proof of Theorem 2.4. We fix a smooth atlas {(At, <p, )}lgN of M with the

following properties:

(a) A, CC M;

(bi) <pl(Al) ß2Cl" if A, n dM 0;

(b2) (p.iA,) B2 n {xn >0}CP if A, n 3M ^ 0;

(c) U,eN^_1(^i) M-

Set C, <p~] (Bi) and note that C, is compact in M. By Lemmas 3.2, 3.3, 3.4 and

3.5 we have that

tm nn n
ieN >teN x^yeD,

where D, <p~l (Q" fl Bi). It is then enough to show that Fe(x, y, C,) is dense in

LipjfM, R") for every e > 0 and every ,v,y e C,. To simplify the notation, since

from now on the subindex / is fixed, we drop it and, moreover, we write B for either
B2 or B2 n {xn > 0}, according to the case occurring in (bi) or (b2).

We have then fixed the following notation:

A c M, <p : A -> B and (p~x(B\ fl B) C.

We have to show that, given / e Lip^A/.R") and q > 0, there exists F 6
Fe(x, y, C) such that D(F, f) < q. We divide the proof in different steps.

Step 1: locally strictly short approximation. Recalling that by Lemma 8.1 the

inclusion

Lip<i,l0c(^.K") C Lip,(A/,R")
is dense, we then find fa e Lip«-, ,0C(M,R") such that D(fa,f) < By the

definition of Lip««, k)C(A/, R"), there exists a > 0 such that Lip(/0|c) < 1 — a.
Clearly, there is no loss of generality in assuming that a < e.
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Step 2: local bi-Lipschitz approximations. Let ß > 0 be a parameter to be fixed
later and /; := (<p~l)*g the pull-back metric. One can then apply Lemma 8.2 to

(B.h) and find r > 0 which satisfies the conclusion therein. By a simple volume

argument (recall that B is either Bj or the half ball Bj D {.v„ > Oj) there exists a

constant N N(n) depending only on the dimension «, in particular not on r, such

that we can cover B by N families of pairwise disjoint open balls of radius r. More

precisely, for I 1 N there exists T\ {Br(pp,)}'='' for some /«(/) e N and

pij B\ fl B, such that

N m(!)

Br(Pl,,) n Br(pij) 0 V/'^y and

/=i i i

For every pair (/,/) above we let <t>p, : Br(pi,i) — Up, C R" be the bi-Lipschitz
diffeontorphism given in Lemma 8.2, and we set Ap, := <p~x (Br(pp,)).

Step 3: iterative procedure. We construct the map F : M —» R" as the result of
an iterative procedure which leads to a sequence of maps /0. /1 //v : M R"
(where N is the number of the families of the covering in the previous step) such

that F fN e FE(.x, y, C).
We set 9 a°d fo given in Step 1, and construct the functions f\ fy

recursively satisfing the following:

Upg(Jk) < (1 +ß)3k(\ -a) (8.6)

D(fkJo)<k9 (8.7)

l(fkoy)>(\+ß)(\-a)tg(y) (8.8)

for every k > 1 and every rectifiable curve y : [0. 1] — U/<^ U, Ap, C C.
Note that (8.6) and (8.7) are clearly satisfied by f0. Given fk-\ satisfying (8.6),

(8.7) and (8.8) (only if k > 1), we construct fk in the following way. We consider
the balls Br(pka) of Step 2 and set ijfk,i ' Uk,, —> R" given by

VhLi fk-1 °

Glüsing the bound on the Lipschitz constant of <t>~' in (8.2) and (8.6), one can verify
that

Lip(tk,,) < (1 +ß?k-2(\-a).

Hence we can use Corollary 6.2 and construct a map Xk,i ' Uk,, — R" such that

Up(Xk,,) < (1 +ß)Up(xßk,) (\+ßfk-l(] -a), (8.9)

Xk,i\dukJ fk,i\wkJ- IIXk,i - fk.i llc"(t/A.,) - 9, (8.10)
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and for every rectifiable curve y : [0, 1] —> Uk4

t(Xk,,°?) (1 +£)3*_10-a)i(y). (8.11)

Then, we set fk : M —> M",

i fk-i(x) if xeM\U^k)Ak,,
jk(x) <

(Xk,i 0 ^1,1 (-v) if x Akj for some i 1,..., m{k).

By (8.10) and the fact that the {Ak^}, are disjoint open sets, fk is well-defined
and satisfies (8.7) by triangular inequality. Moreover (8.6) follows from (8.2) and

(8.9) straightforwardly. For what concerns (8.8) we argue as follows. Consider

y : [0, 1] —> Ui<k U, A[t, rectifiable. Set / y_1 (U, Aka )• Since the sets A^,
are open and disjoint, / is relatively open in [0, 1] and we can write / U, J,
with J, disjoint relatively open sets such that y(Jt) C Akl for every /. Setting

y, A>kl o y I./,, it follows from the definition of fk that

f(4 ° Y\j,) UXi ° Yi) (' + yß)3i_1(l -a)£(y,)
<82> n, i> (\+ß)3k~2(\ — a) £g(y,

On the other hand, let H C [0, 1] \ / denote the set of points t such that / has

Lebesgue density 0 at t and there exist (fk o y)'(t), (fk-i ° y)'(t) with

l(4-i oy)'(t)I > (1 +yß)(l — a)\y'(t)\g.

Note that H has full measure in [0, 1] \ / thanks to the assumption of (8.8) for fk-\
Since fk°y\H — fk-\ ° y\h, it follows easily that, for every t e H,

l(fk °y)'(OI \ifk-1 °y)'(r)\ > (l + ß)(\ -a)\y'(t)\g.
Therefore, (8.8) for fk follows from

Ufk0 y) y\t(fk ° y\j,) + f \(fk°y)'{t)\dt

> (1 + ßfk~2(l -a)^fg(y,) + (l +ß)(l-a) f \y'(t)\gdt
i

Jh

> a+ß)(\-a) |j]My>) + fH\y'w*dt^ (1 + ^)(1

Clearly F fy concludes the proof for

O<0<
V 1 — a

Indeed, Step 1,(8.7) and (8.6) imply D(F,f) < t] and Lip(F) < 1. Moreover Step
2, a < e and (8.8) lead easily to F e Fe(x, y.C).
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