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On orbit closures of spherical subgroups in flag varieties

Michel Brion

Abstract. Let F be the flag variety of a complex semi-simple group G let H be an algebraic
subgroup of G acting on F with nitely many orbits, and let V be an H -orbit closure in F
Expanding the cohomology class of V in the basis of Schubert classes de nes a union V0 of
Schubert varieties in F with positive multiplicities. If G is simply-laced, we show that these
multiplicities are equal to the same power of 2. For arbitrary G we show that V0 is connected
in codimension 1. If moreover all multiplicities are 1, we show that the singularities of V are
rational and we construct a flat degeneration of V to V0 in F Thus, for any e ective line
bundle L on F the restriction map H0(F; L) H0(V; L) is surjective, and Hn(V; L) 0
for all n 1

Mathematics Subject Classi cation 2000). 14M15, 14L30, 14B05, 14D05.
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Introduction

Let G be a connected complex reductive group, B a Borel subgroup and H a
spherical subgroup, that is, H is an algebraic subgroup having only nitely many
orbits in the flag variety G=B The classi cation of these orbits and the geometry
of their closures are of importance in representation theory. Equivalent questions
concern the B -orbits in G=H and their closures in that space. More generally,
one may consider B -orbit closures in an equivariant embedding X of G=H; these
play an essential role in the geometry and topology of X

The set B(G=H) of B -orbit closures in G=H is partially ordered by inclusion.
A weaker order on B(G=H) is de ned by: Y Y0 if there exists a sequence
P1; : : : ; Pn) of parabolic subgroups containing B such that Y0 P1 PnY In

this paper, we investigate this weak order and its associated graph, with applica-tions

to B -orbit closures in \regular" completions of G=H, and in turn to the
geometry of H -orbit closures in G=B

The case where H equals B is well known: then B(G=H) identi es to theWeyl
group W, and the inclusion resp. weak) order is the Bruhat-Chevalley resp. left
weak) order, see e.g. [13] 5.9. The H -orbit closures in G=B are the Schubert vari-
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eties; using an explicit desingularization, reduction to positive characteristics and
Frobenius splitting, one shows that their singularities are rational, in particular,
they are normal and Cohen-Macaulay ([19]).

Another important class of spherical subgroups consists of symmetric sub-groups,

that is, xed points of involutions of G. Orbit closures of symmetric
subgroups in flag varieties admit explicit resolutions of singularities as well, and
their inclusion and weak orders have been studied in detail by Richardson and
Springer ([20], [21], [23]). But their singularities are far from being fully under-stood;

non-normal examples were constructed by Barbasch and Evens ([1]).
Returning to a spherical subgroup H, classical projective geometry yields many

examples of H -orbit closures in flag varieties that are neither normal nor Cohen-
Macaulay, e.g., the variety of all secant lines to a given conic in projective n -
space where n 3 see Example 6 for details). A criterion for having rational
singularities will be formulated below, in terms of the oriented graph G=H)
associated with the weak order.

For this, we endow that graph with additional data, as in [20]: each edge
from Y to Y0 is labeled by a simple root of G corresponding to a minimal
parabolic subgroup P such that PY Y0 The degree of the associated morphism
P BY Y0 being 1 or 2, this de nes simple and double edges. There may be
several edges with the same endpoints, but they are simultaneously simple or
double Proposition 1).

In the symmetric case, a key result is that all minimal elements of G=H) are
closed orbits ([20]); thus, one may study orbit closures by going up along oriented
paths in the graph. This does not extend to the general case see e.g. Example 2
below), but it is easy to see that the unique maximal element is G=H This
enables an inductive study of orbit closures by going down along oriented paths;
most of our results are obtained in this way.

For instance, G=H) determines the cohomology class of any H -orbit closure
V in G=B that is, its intersection numbers with Schubert varieties,

RG=B[V]

[BwB=B] d(V; w) for all w 2 W. Consider indeed the associated B -orbit
closure Y in G=H Join it to G=H by an oriented path ; denote by D( its
number of double edges, and by w( the product in W of the simple reflections
associated with its labels. Then d V; w( 2D( in particular, D( depends
only on V and w( and, moreover, all non-zero intersection numbers d(V; w)
are obtained in this way ([6]). Equivalently, we have in the cohomology ring of
G=B :

[V] Xw=w(

2D( [Bw0wB=B];

where w0 denotes the longest element of W.
The oriented paths in G=H) and their associated Weyl group elements are

studied in Section 1. The main tool is a notion of neighbor paths that reduces
several questions to the case where G has rank two. Using this, we show that the
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union of Schubert varieties

V0 [w=w(

Bw0wB=B

is connected in codimension 1 Corollary 7). If moreover G is simply-laced, then
the number of double edges in any oriented path depends only on its endpoints
Proposition 5). As a consequence, all non-zero coe cients of [V] in the basis of

Schubert cycles are equal. For symmetric spaces, this can also be deduced from
a combinatorial result of Richardson and Springer [24]. It does not extend to
multiply-laced groups, see Example 4 in Section 1.

In Section 2, we analyze the intersections of B -orbit closures with G -orbit
closures in an equivariant completion X of G=H that is regular in the sense of
Bifet, De Concini and Procesi [2]; these intersections are proper, by [6]. The main
ingredient is a \slice" SY; a toric variety associated with a B -orbit closure Y
meeting G=H and with an oriented path from Y to G=H. Given a G -orbit
closure X0 and an irreducible component Y0 of Y \ X0 there exists a \slice"
meeting Y0 and the corresponding intersection multiplicity divides 2D( with
equality if X0 is a closed G -orbit Theorem 1).

This distinguishes the B -orbit closures Y such that all oriented paths in
G=H) with source Y contain only simple edges; we call them multiplicity-free.

In a regular completion of G=H any irreducible component of the intersection
of multiplicity-free Y with a G-orbit closure is multiplicity-free as well, and the
corresponding intersection multiplicity is 1 Corollary 3).

In Section 3, we relate our approach to work of Knop ([17], [18]). He de ned
an action of W on the set B(G=H) such that the W-conjugates of G=H are
the orbit closures of maximal rank in the sense of [18].) Moreover, the isotropy
group W(G=H) is closely related to the \Weyl group of G/H" studied in [17], a
generalization of the little Weyl group of symmetric spaces.

It is easy to see that all orbit closures of maximal rank are multiplicity-free. We
describe their intersections with G -orbit closures in a regular completion, in terms
of W and W(G=H) Proposition 9). As applications, we show that all elements
of W of minimal length in a given W(G=H) -coset have the same length, and that
W(G=H) is generated by reflections or products of two commuting reflections of
W. This in turn yields another proof of the fact that the Weyl group of G=H is
generated by reflections, a result of Knop [17].

Section 4 contains our main result, Theorem 5: the singularities of any multipli-city-

free B -orbit closure Y in a spherical variety X of G=H are rational. If
moreover X is regular, then the scheme-theoretical intersection of Y with any
G -orbit closure is reduced. Since no explicit desingularization of Y is known in
this generality, the proof is indirect; it goes by decreasing induction on dimension
like Seshadri's proof of normality of Schubert varieties [22].

For a H -orbit closure V in G=B the corresponding B -orbit closure Y is
multiplicity-free if and only if [V] [V0] In that case, we construct a flat de-generation

of V to V0 where the latter is viewed as a reduced subscheme of
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G=B Corollary 6). Thus, the equality [V] [V0] holds in the Grothendieck
group of G=B as well. Moreover, for any e ective line bundle L on G=B
the cohomology groups Hn(V; L) vanish for n 1 and the restriction map
H0(G=B; L) H0(V; L) is surjective Corollary 8).

This yields a more concrete realization of the H -module H0(V; L) : choose the
Borel subgroup B such that V is the closure of HB=B andlet be the dominant
weight of B associated with L Then H0(G=B; L) is the dual of the simple
G -module V( with highest weight and H0(V; L) is the dual of the H -
submodule of V( generated by the highest weight line ` As V degenerates to
V0 this H-module degenerates to a B -module of the same dimension, generated
by the extremal weight lines `w0w for all w as above. This construction will be
developed elsewhere.

When applied to symmetric spaces and combined with Theorem B of [1], this
surjectivity result implies a version of the PRV conjecture, see [1] x6. It holds for
another class of smooth) H -orbit closures as well, but not to all of them, see [4].
In fact, surjectivity of the restriction map for all e ective L 's and all H -orbit
closures is equivalent to their multiplicity-freeness Proposition 10.)

A remarkable example of a spherical homogeneous space where all orbit closures
of a Borel subgroup have maximal rank and hence are multiplicity-free) is the
group G viewed as a homogeneous space under G G. If moreover G is adjoint,
then it has a canonical regular completion X It is proved in [8] that the B B -
orbit closures in X are normal and that their intersections are reduced. This
follows from the fact that X is Frobenius split compatibly with all of these closures.
It would be tempting to generalize this to any spherical variety X By [5], X is
Frobenius split compatibly with all G-orbit closures; but this does not extend
to B -orbit closures, since their intersections may be not reduced. This happens,
e.g., for the space of all symmetric n n matrices of determinant 1, that is,
the symmetric space SL(n)=SO(n) : consider the subvarieties a11 0) and
a11a22 - a212 0)

So the present paper generalizes results of [8] to all regular completions of
spherical homogeneous spaces, by other methods. It raises many further questions,
e.g., is it true that the normalization of any B -orbit closure in a spherical variety
has rational singularities? And do our results extend to positive characteristics?

Notation

Let G be a complex connected reductive algebraic group. Let B B- be opposite
Borel subgroups of G with unipotent radicals U, U- and common torus T a
maximal torus of G Let X be the character group of B ; we identify X with
the character group of T and we choose a scalar product on X invariant under
the Weyl group W. Let be the root system of G; T) with the subset + of
positive roots, i.e., of roots of B; T) and its subset of simple roots.
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For 2 let s 2 W be the corresponding simple reflection, and let
P B [ Bs B be the corresponding minimal parabolic subgroup. For any
subset I of let PI be the subgroup of G generated by the P 2 I The
map I PI is a bijection from subsets of to subgroups of G containing B
that is, to standard parabolic subgroups of G

Let LI be the Levi subgroup of PI that contains T ; let I be the root system
of LI; T) with Weyl group WI We denote by ` the length function on W and
by WI the set of all w 2 W such that `(ws `(w) + 1 for all 2 I this
amounts to: w(I) + Then WI is a system of representatives of the set of
right cosets W=WI

1. The weak order and its graph

In what follows, we denote by G=H a spherical homogeneous space and by B(G=H)
the set of B -orbit closures in G=H One associates to a given Y 2 B(G=H) sev-eral

combinatorial invariants, see [18]: The character group X(Y) is the set of all
characters of B that arise as weights of eigenvectors of B in the function eld
C(Y) Then X(Y) is a free abelian group of nite rank r(Y) the rank of Y

Let Y0 be the open B -orbit in Y and let P(Y) be the set of all g 2 G such
that gY0 Y0 ; then P(Y) is a standard parabolic subgroup of G Let L(Y)
be its Levi subgroup that contains T and let Y) be the corresponding subset
of : the set of simple roots of Y

We note some easy properties of these invariants.

Lemma 1. i) X(Y) is isomorphic to the quotient of the group of invertible
regular functions on Y0 by the subgroup of constant non-zero functions.
ii) The derived subgroup [L(Y);L(Y)] xes a point of Y0
iii) The group W Y) xes pointwise X(Y) Equivalently, any simple root of Y

is orthogonal to X(Y)

Proof. i) Let f be an eigenvector of B in C(Y) with weight f) Then f
restricts to an invertible regular function on Y0 and is uniquely determined by

f) up to a constant. Conversely, let f be an invertible regular function on the
B -orbit Y0 Then f pulls back to an invertible regular function on B that is, to
a scalar multiple of a character of B Thus, f is an eigenvector of B in C(Y)
ii) Choose y 2 Y0 Let By resp. P(Y)y be the isotropy group of y in B
resp. P(Y) Since Y0 By P(Y)y we have P(Y) BP(Y)y Thus, P(Y)y

acts transitively on P(Y)=B the flag variety of P(Y) Using e.g. [9], it follows
that P(Y)y contains a maximal connected semi-simple subgroup of P(Y) that
is, a conjugate of [L(Y); L(Y)]
iii) follows from [18] Lemma 3.2; it can be deduced from ii) as well.
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Let Y; Y0 2 B(G=H) and let 2 We say that or P raises Y to Y0

if Y0 P Y 6= Y Let then

fY; : P BY! P B

be the homogeneous bundle with ber the B -variety Y and basis P B isomor-phic

to projective line.) The map P Y G=H p; y) 7! py factors through
a proper morphism

Y; : P B Y! Y0 P Y

that restricts to a nite morphism P B Y0 P Y0 In particular, dim(Y0)
dim(Y) + 1

By [20] or [18] Lemma 3.2, one of the following three cases occurs.

Type U : P Y0 Y00

[ Y0 and Y; is birational. Then X(Y0) s X(Y) ;
thus, r(Y0) r(Y)
Type T : P Y0 Y00 [ Y0 [ Y0- for some Y- 2 B(G=H) of the same
dimension as Y and Y; is birational. Then r(Y) r(Y-) r(Y0) - 1

Type N : P Y0 Y00 [ Y0 and Y; has degree 2. Then r(Y) r(Y0)- 1

In particular, r(Y) r(P Y) with equality if and only if has type U
Our notation for types di ers from that in [20] and [18]; it can be explained as

follows. Choose y 2 Y0 with isotropy group P y in P Then P y acts on
P B P1 with nitely many orbits, since B acts on P Y0 P P y with
nitely many orbits. By [20] or [18], the image of P y in Aut(P B) PGL(2)

is a torus resp. the normalizer of a torus) in type T resp. N ); in type U this
image contains a non-trivial unipotent subgroup.

De nition. Let G=H) be the oriented graph with vertices the elements of

B(G=H) and edges labeled by where Y is joined to Y0 by an edge of label
if that simple root raises Y to Y0 This edge is simple resp. double) if Y; has
degree 1 resp. 2.) The partial order on B(G=H) with oriented graph G=H)
will be called the weak order.

Note that the dimension and rank functions are compatible with We shall
see that Y; Y0 2 B(G=H) satisfy Y Y0 if and only if Y0 BwY for some

w2W Corollary 1.)
In the case where H is a parabolic subgroup of G the rank function is zero.

Thus, all edges are of type U ; in particular, they are simple. Here is another
example, where double edges occur.

Example 1. Let G GL(3) with simple roots and Let H be the subgroup
of G consisting of matrices of the form

0@

0
0
0 0

1A

or

0

0
0

0 0

1A
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It is easy to see that G=H is spherical of rank one and that G=H) is as follows:

@
@

@
@

@
@

@
@

e

e e

e

e

e

Observe that G=H) is the same as G=B) except for double edges. But the
geometry of B -orbit closures is very di erent in both cases: all of them are smooth
in G=B the flag variety of P2 whereas G=H contains a B -stable divisor that
is singular in codimension 1. This can be checked directly see Example 6 for a
generalization), or read o the graph of G=H as follows.

Let Z be the closed B -orbit in G=H We claim that Y P P Z is singu-lar

along P Z Indeed, the morphism : P B P Z Y is birational, and

-1(P Z) equals P B Z But the restriction P B Z P Z has degree two.
Now our claim follows from Zariski's main theorem.

One checks that r(P Z) 1 whereas r(Y) 0 Thus, the rank function is
not compatible with the inclusion order.

Obviously, all closed B -orbits in G=H are minimal elements for the weak
order. In fact, these closed B -orbits are isomorphic and their codimension is the
maximal length of all oriented paths in G=H) see e.g. [7] 2.2. If moreover G=H
is symmetric, then all minimal elements of G=H) are closed orbits, see [20]
Theorem 4.6; equivalently, all maximal oriented paths in G=H) have the same
length. But this does not extend to all spherical homogeneous spaces, as shown
by

Example 2. Let G GL(2) GL(2) with simple roots and Let H be
the subgroup of G consisting of all matrices of the form A; A) where A is upper
triangular. One checks easily that G=H is spherical with graph
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@
@

@
@

@
@

@
@e

e e

e

e

Returning to the general situation, observe that the simple roots of Y are
determined by G=H) : indeed, 2 is not in Y) if and only if is
the label of an edge with endpoint Y Similarly, if raises Y then its type is
determined by G=H) : it is U resp. N if there is a unique edge of label
and target P Y and this edge is simple resp. double); and it is T if there are
two such edges. It follows that the ranks of B -orbit closures are determined by

G=H) together with r(G=H)
Example 2 shows that there may be two edges in G=H) with the same

endpoints. In fact, there is no restriction on the number of edges with prescribed
endpoints, as shown by the example below suggested by D. Luna. But we shall
see that all such edges have the same type.

Example 3. Let n be a positive integer. Let G SL(2) SL(2) n terms)

and let H be the subgroup of G consisting of those n -tuples t u1
0 t-1 : : :

t un
0 t-1 where t 2 C u1; : : : ; un 2 C and u1 + +un 0 One checks that

G=H is spherical; the open H -orbit in G=B P1 P1 n terms) consists of
those z1; : : : ; zn) such that zi 6= 1 for all i and that z1+ + zn 6= 0 Let Y
be the B -stable hypersurface in G=H corresponding to the H -stable hypersurface
z1 + + zn 0) in G=B One checks that Y is irreducible and raised to G=H

by all simple roots of G there are n of them). Thus, Y is joined to G=H by n
edges of type T

Proposition 1. Let Y; Y0 2 B(G=H) and let ; be distinct simple roots raising
Y to Y0 Then either ; are orthogonal and of type U or they are of type T

Proof. We begin with two lemmas that reduce the \local" study of G=H) to
simpler situations.

Let Y 2 B(G=H) and let P PI be a standard parabolic subgroup of G
with radical R(P) Let B(PY0) be the set of all closures in G=H of B -orbits in
PY0 ; in other words, B(PY0) is the set of all Z2 B(G=H) such that PZ PY
Let PY0) be the oriented graph with set of vertices B(PY0) and with edges
those edges of G=H) that have both endpoints in B(PY0) and labels in I
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Lemma 2. The quotient PY0=R(P) exists and is a spherical homogeneous space

under P=R(P) with graph PY0)

Proof. Since PY0 is a unique P -orbit and R(P) is a normal subgroup of P con-tained

in B the quotient PY0=R(P) exists and is homogeneous under P=R(P) ;
moreover, any B=R(P) -orbit in PY0=R(P) pulls back to a unique B -orbit in
PY0 Let O be a B -orbit in PY0 and let 2 I Then R(P contains R(P)
the square

P B
O PO

# #
P B

O=R(P) P O=R(P)

is cartesian, and the map P B
O=R(P) P R(P) B=R(P)

O=R(P) is an
isomorphism. Thus, the type is preserved under pull back.

Let H0 be a closed subgroup of the normalizer NG(H) such that H0 contains
H and that the quotient H0=H is connected. Let Z(G) be the center of G then
G=H0Z(G) is a spherical homogeneous space under the adjoint group G=Z(G)
The natural G -equivariant map p : G=H G=H0Z(G) is the quotient by the
right action of H0Z(G) on G=H

Lemma 3. The pull-back under p of any B -orbit in G=H0Z(G) is a unique
B -orbit in G=H This de nes an isomorphism of G=H0Z(G)) onto G=H)

Proof. The rst assertion follows from [7] Proposition 2.2 iii). The second assertion
is checked as in the proof of Lemma 2.

Lemma 4. Let Y 2 B(G=H) Y 6=G=H, and let 2 If P Y0 G=H then
is orthogonal to - f g and the derived subgroup of L -f g

xes pointwise
G=H

Proof. We may assume that G is semi-simple adjoint and acts faithfully on G=H ;
then it su ces to check that G PGL(2) Let H be the isotropy group in G
of a point of Y0 Since P Y0 G=H we have P H G Equivalently, the
map H=P \ H G=P is an isomorphism. But since Y 6=G=H we have
Y0 6= P Y0 so that the image of P \ H in P R(P PGL(2) is a proper
subgroup. It follows that P \ H)0 is solvable. Thus, H=P \ H is the flag
variety of H0 Let S be a maximal semi-simple subgroup of H0 Then the rank
of S is the rank of the Picard group of its flag variety H=P \ H G=P so

that r(S) r(G) - 1 Moreover, the connected automorphism group of this flag
variety is S=Z(S) see e.g. [9]). Thus, we have a map G S=Z(S) that \splits"
the inclusion of S into G It follows that S is a direct factor of G whence S is
trivial since G acts faithfully on G=H Thus, G P PGL(2)
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We now prove Proposition 1. Applying Lemma 2 to Y0 and P ; we may
assume that Y0 G=H and that f ; g

If has type U then r(Y) r(G=H) whence has type U as well.
We claim that B(G=H) consists of Y and G=H. Indeed, if Z 2 B(G=H) and
Z 6=G=H, then Z is connected to G=H by an oriented path in G=H) Consider
the top edge of that path; let Z0 be its source and say) its label. Since has
type U, it follows that Z0 Y Hence Z Y for otherwise, Y would be stable
by P or P Thus, P Y0 G=H ; then and are orthogonal by Lemma
4.

If has type N then r(Y) r(G=H)- 1 whence has type N or T We
consider two subcases.

If and have type N we see as above that G=H P Y0 P Y0 Thus,
and are orthogonal by Lemma 4. Using Lemma 3, we may assume that

G PGL(2) PGL(2) and that H contains a copy of PGL(2) Then H is
conjugate to PGL(2) embedded diagonally in G But then both and have
type T a contradiction.

Finally, if has type N and has type T then there exists y 2 Y0 such
that P y is contained in R(P T Since the homogeneous spaces P R(P T
and R(P T=(P y are a ne, the same holds for P P y P Y0 It follows
that G=H - P Y0 is pure of codimension 1 in G=H But P Y0 meets both
B -orbits of codimension 1 in G=H so that P Y0 G=H This case is excluded
as above. Thus, type N does not occur.

We next study oriented paths in G=H) Let be such a path, with source
Y and target Y0 Let a1; a2; : : : ; a`) be the sequence of labels of edges of
where ` `( is the length of the path. Let `U( resp. `T( `N( be the
number of edges of type U resp. T N in Then

`U( + `T( + `N( `( dim(Y0)- dim(Y):

De ne an element w( of W by w( s ` s 2s 1

Lemma 5. i) s ` s 2 s 1 is a reduced decomposition of w( ; equivalently,
`(w( `
ii) `T( +`N( r(Y0)-r(Y) In particular, `T( +`N( and `U( depend

only on the endpoints of
iii) The morphism G B Y G=H : g; y)B gy restricts to a morphism

Bw( B B Y Y0 that is surjective and generically nite of degree 2`N( In
particular, `T( and `N( depend only on the endpoints of and on w(
Moreover, w( is in W Y) and w( -1 is in W Y0)

iv) If H is contained in a Borel subgroup of G then `N( 0 so that `T(
depends only on the endpoints of

Proof. i) Observe that Bs 1Y is dense in P 1Y as 1 raises Y By induction, it
follows that Bs `B s 2Bs 1Y is dense in Y0 Because dim(Y0) dim(Y)+`
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we must have dim(Bs `B s 2 Bs 1 B=B) ` whence `(s ` s 2 s 1 `
ii) follows from the fact that r(Y0) r(Y) resp. r(Y)+1 if Y is the source

of an edge with target Y0 and type U resp. T N
iii) By i), the product maps

P i
B B P 2

B P 1 Bs i s 2 s 1B

are birational for 1 i ` It follows that the morphism Bw( B B Y G=H
has image Y0 ; moreover, its degree is the product of the degrees of the

i : P i
B P i-1 P 1Y) P iP i-1 P 1Y;

that is, 2`N(

Let w w( We show that w-1
2 W Y0) Otherwise, there exists

2 Y0) such that `(s w) `(w)- 1 Thus, BwB Bs Bs wB and
Y0 BwY Bs Bs wY Let Y00 Bs wY then raises Y00 to Y0. This
contradicts the assumption that 2 Y0) A similar argument shows that
w 2 W Y)

iv) If `N( > 0 then there exists a point x 2 G=H a simple root and
a surjective group homomorphism P x N where N is the normalizer of
a torus in PGL(2) Since N consists of semi-simple elements, it is a quotient
of P x=Ru(P x By assumption, the latter is isomorphic to a subgroup of
B=U T Thus, N is abelian, a contradiction.

Corollary 1. Let Y; Y0 2 B(G=H), then Y Y0 if and only if there exists
w 2 W such that Y0 BwY

Proof. Recall that BwB closure in G is a product of minimal parabolic sub-groups.

Thus, Y BwBY BwY The converse has just been proved.

For later use, we study the behavior of G=H) under parabolic induction in
the following sense see [6] 1.2.) Let P PI be a standard parabolic subgroup
with Levi subgroup L LI and let H0 be a spherical subgroup of L then the
induced homogeneous space is G=Ru(P)H0 In other words, G=H is the total
space of the homogeneous bundle over G=P with ber L=H0 By [loc. cit.], each
Y 2 B(G=H) can be written uniquely as BwY0 for w 2 WI and Y0 2 B(L=H0) ;
then r(Y) r(Y0) We thus identify B(G=H) to WI B(L=H0) The next result
describes the edges of G=H) in terms of those of L=H0)

Lemma 6. Let 2 w 2 WI and Y0 2 B(L=H0) ; let w-1( Then the
edges of G=H) with source w; Y0) and label are as follows:
i) If 2

+ - I join w; Y0) to s w; Y0) by an edge of type U
ii) If 2 I and raises Y0 join w; Y0) to w; P \L)Y0) by an edge of the

same type as the edge from Y0 to P \ L)Y0

Proof. Since w 2 WI we have s w 2WI if and only if 2 I In that case,
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raises Y if and only if `(s w) `(w)+1 that is, 2
+ Then P Y Bs wY0

and the map Y; is the pull-back of BwP=P; under the map BwY0 BwP=P
This yields case i).

But if 2 I then s w ws has length `(w) + 1 so that

P Y Bs BwY0 Bs wY0 Bws Y0 BwBs Y0 Bw(P \ L)Y0:

Thus, raises Y if and only if raises Y0 Then, as s w ws we can join
Y0 to P Y by two paths: one beginning with `(w) edges of type U followed by
an edge from Y to P Y and another one beginning with an edge from Y0 to
P \ L)Y0 followed by `(w) edges of type U Using Lemma 5, this yields case

ii).

For instance, Example 1 is obtained from SL(2)=N by parabolic induction.
Returning to the general case, we shall see in Proposition 5 that the numbers

`T( and `N( depend only on the endpoints of the oriented path if G is
simply-laced that is, if all roots have the same length for an appropriate choice of
the W-invariant scalar product on X ; equivalently, is a product of irreducible
root systems of type A D or E This assumption cannot be omitted, as shown
by

Example 4. Let G SP(4) be the subgroup of GL(4) preserving a non-degenerate

symplectic form, and let H GL(2) be the subgroup of G preserving
two complementary lagrangian planes. The normalizer NG(H) contains H as a
subgroup of index 2. The graph G=H) is as follows:
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And here is G=NG(H)) :
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Using parabolic induction, one constructs similar examples for of type B C
or F

To proceed, we need the following de nition taken from [6]:

De nition. For Y 2 B(G=H) let W(Y) be the set of all w 2 W such that
the morphism Y;w : BwB B Y GY is surjective and generically nite. For
w 2 W(Y) let d(Y; w) be the degree of Y;w

By Lemma 5, W(Y) consists of all w( where is an oriented path from Y
to GY ; moreover, d(Y; w( 2`N( and w-1

2W
G=H) for all w 2 W(Y)

We now introduce a notion of neighbors in W(Y) and we show that any two
elements of that set are connected by a chain of neighbors. Let be distinct
simple roots and let m be a positive integer. Let

s s m) s s s s m terms.)

Then we have the braid relation s s m( ; s s m( ; where m( ;
denotes the order of s s in W.

De nition. Two elements u and v of W are neighbors if there exist x;y in W
together with distinct ; in and a positive integer m< m( ; such that

u x(s s m)y; v x(s s m)y; and `(u) `(x) + m+`(y) `(v):

For example, any two simple reflections are neighbors, since s s s 1)

Proposition 2. Let Y 2 B(G=H) and let u; v be distinct elements of W(Y)
Then there exists a sequence u u0; u1; : : : ; un v) in W(Y) such that each

ui+1 is a neighbor of ui
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Proof. By induction on `(u) `(v) ` the case where ` 1 being evident.
If there exists 2 such that `(us `(vs `-1 then raises Y and

us vs are in W(P Y) Now the induction assumption for P Y concludes
the proof in this case.

Otherwise, we can nd distinct ; 2 such that `(us `(vs `- 1
Then P and P raise Y to subvarieties of P ; Y Let m be the common
codimension of P Y and P Y in P ; Y then we have

P ; Y P P P Y B s s s Y mterms)

Choose x 2 W(P ; Y) then W(Y) contains x(s s m) and, similarly,
x(s s m) as neighbors. Moreover, W(P Y) contains us and x(s s m-1)

whereas W(P Y) contains x(s s m-1) and vs Now we conclude by the
induction assumption for P Y and P Y

Neighbors in W are also close to each other for the Bruhat-Chevalley order :

Proposition 3. For any neighbors u; v 2 W such that u-1; v-1
2 W G=H)

there exists w 2 W such that u w v w w-1
2 W G=H) and `(w)

`(u) + 1 `(v) + 1

Proof. Write u x(s s m)y and v x(s s m)y Let

w= x(s s m)s y:

We claim that `(w) equals `(x)+m+1+`(y) `(u)+ 1 `(v)+ 1 Otherwise,
`(w) ` x) + `(y) + m- 1 < l(u) and w uy-1s y usy-1( By the strong
exchange condition ([13] Theorem 5.8 applied to u one of the following cases

occurs:
i) w x0(s s m)y where `(x0) `(x)- 1 Comparing both expressions

for w, we obtain x0(s s m) x(s s m)s Thus, there exists 2
+

;
such that x0 xs But `(xs `(xs `(x) + 1 for `(x(s s m)y)
`(x(s s m)y) `(x) + m+ `(y) It follows that x( and x( are in +
Thus, x 2 W ; Since s 2W ; we have `(x0) `(x) + `(s ` x) a
contradiction.
ii) w xzy where z is obtained from s s m) by deleting a simple reflection.

Then the equality z s s m)s leads to a braid relation of length at most

m< m( ; a contradiction.
iii) w x(s s m)y0 where `(y0) `(y)- 1 Then y0 s y. But `(s y)

`(y) + 1 for `(v) `(x) + m+`(y) ; a contradiction.
By the claim and [13] Theorem 5.10, we have u w and v w. Write w=

w00w0 where w00 2 W G=H) and w0)-1
2 W G=H) ; then `(w) `(w0)+`(w00)

Since u-1 w-1 and u-1
2 W G=H) it follows that u-1 w0)-1 by [10]

Lemma 3.5. Thus, u w0 and v w0. Since u 6= v and `(u) `(v)
`(w)- 1 ` w0)- 1 we must have w w0 so that w-1

2W
G=H)
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Recall that r(Y) r(G=H) for any Y 2 B(G=H) If equality holds, then
neighbors in W(Y) have a very simple form:

Proposition 4. Let Y 2 B(G=H) such that r(Y) r(G=H) ; let u; v 2 W(Y)
be neighbors. Then u xs y and v xs y where x; y 2 W and ; are
orthogonal simple roots such that `(u) `(v) `(x) + `(y) + 1. Moreover,
X(G=H) contains x( +

Proof. Write u x(s s m)y and v x(s s m)y as in the de nition of neigh-bors.

Then x(s s m) and x(s s m) are neighbors in W(ByY) Moreover,
r(ByY) r(Y) whence r(ByY) r(G=H) Thus, we may assume that y 1.

Let Y0 B(s s m)Y and Y00 B(s s m)Y then we obtain similarly:
r(Y0) r(Y00) r(G=H) and x 2 W(Y0) \W(Y00) If x 6= 1, write x s x0

where 2 and `(x) `(x0)+ 1 Then Bx0Y0 and Bx0Y00 have rank r(G=H)
and are raised to G=H by Thus, has type U so that Bx0Y0 Bx0Y00

By induction on `(x) we obtain Y0 Y00 This subvariety is stable under
P ; Applying Lemmas 2 and 3, we may assume that Y0 G=H i.e., x 1),

f ; g the center of G is trivial, and H has nite index in its normalizer.
Moreover, we have P(G=H) B for P and P do not stabilize G=H)0

We claim that any Z 2 B(G=H) can be written as

B(s s n)Y P P Y or B(s s n)Y P P Y nterms);

where n dim(Z)-dim(Y) satis es 0 n m. For this, we argue by induction
on the codimension of Z in G=H We may assume that raises Z By the
induction assumption, we have

P Z P P Y or P Z P P Y n+ 1 terms):

In the latter case, let Z0 P Y n terms). Since P Z P Z0 and r(Z)
r(Z0) r(P Z) r(Y) it follows that Z Z0 In the former case, P Z is stable
under G and hence equal to G=H ; in particular, Z has codimension 1 in G=H
Now G=H P P Y m terms), so that we are in the previous case.

By the claim, all B -orbit closures in G=H have the same rank, and Y0 is
the unique closed B -orbit. Let y 2 Y0 ; we may assume that H Gy Since
the H-orbit in G=B corresponding to the B -orbit Y0 in G=H is closed, the
connected isotropy group B0y is a Borel subgroup of H0 It follows that r(Y)
r(B) - r(By) 2- r(H) On the other hand, r(Y) r(G=H) by assumption.
Thus, r(G=H) 2 - r(H)

If r(G=H) 0 then H is a parabolic subgroup of G in fact, a Borel subgroup
as P(G=H) B Moreover, Y is the B - xed point in G=H But then W(Y)
consists of a unique element of maximal length in W), a contradiction.

If r(G=H) 1 then r(H) 1 as well. Using the classi cation of homogeneous
spaces of rank 1 under semi-simple groups of rank 2 see e.g. Table 1 of [26]), this
forces G PGL(2) PGL(2) and H PGL(2) embedded diagonally in G
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As a consequence, the simple roots and are orthogonal, and X(G=H) is
generated by +

If r(G=H) 2 then r(H) 0 that is, H0 is unipotent. Since G=H is spher-ical,

H0 is a maximal unipotent subgroup of G This contradicts the assumption
that H has nite index in its normalizer.

Proposition 5. If G is simply-laced, then
i) for any oriented path in G=H) both `T( and `N( depend only on

the endpoints of
ii) for any Y 2 B(G=H) there exists an oriented path joining Y to G=H

through a sequence of simple edges followed by a sequence of double edges.

Proof. i) Let Y resp. Y0 be the source resp. target) of and let be another
oriented path from Y to Y0 By Lemma 5, it su ces to show that `N( `N(
Joining Y0 to G=H by an oriented path, we reduce to the case where Y0 G=H ;
then w( and w( are in W(Y) By Proposition 2, we may assume moreover
that w( and w( are neighbors. Using Lemmas 2 and 3, we reduce to the case
where the center of G is trivial, f ; g H has nite index in its normalizer,
w( s s m) and w( s s m) for some m< m( ;

Since G is simply-laced, we have either G PGL(2) PGL(2) and m( ;
2 or G PGL(3) and m( ; 3 In particular, m 2 If m 1 then
`N( `N( 0 by Proposition 1. If m 2 then G PGL(3). Using
Lemma 5 iv), we may assume moreover that H is not contained in any Borel
subgroup. Then we see by inspection that H is conjugate to PO(3) or to GL(2)

In the latter case, here is G=H) :
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In the former case, we have `N( `N( 1 since G=H) is as follows:
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ii) Let be an oriented path joining Y to G=H We may assume that
contains double edges. Consider the lowest maximal subpath of that consists
only of double edges; we may assume that the endpoint of is not G=H Let Y0

be the source of the top edge of and let resp. be the label of that edge
resp. of the next edge of a simple edge by assumption.) We claim that there

exists an oriented path 0 joining Y0 to G=H and beginning with a simple edge;
then assertion ii) will follow by induction on `( + codimG=H(Y0)

To check the claim, it su ces to join Y0 to P Y0 by an oriented path 0

beginning with a simple edge. As above, we reduce to the case where G equals
PGL(2) PGL(2) or PGL(3) and H is not contained in a Borel subgroup of
G ; moreover, H has nite index in its normalizer. Using the fact that G=H)
contains a double edge followed by a simple edge, one checks that H is a product
of subgroups of PGL(2) if G PGL(2) PGL(2) ; and if G PGL(3) then
H is conjugate to the subgroup of Example 1, or to its transpose. The path 0

exists in all of these cases.

From Proposition 5, we will deduce a criterion for the graph of G=H to contain
only simple edges. To formulate it, we need more notation and a preliminary result.

Let D(G=H) be the subset of B(G=H) consisting of all irreducible B -stable
divisors. The elements of D(G=H) are called colors; they play an important role
in the classi cation of embeddings of G=H see [15]. Let D 2 D(G=H) with
preimage ~D in G. Replacing G by a nite cover, we may assume that ~D is the
divisor of a regular function fD on G Then fD is an eigenvector of B acting
by left multiplication; let D be its weight. Since fD is uniquely de ned up to
multiplication by a regular invertible function on G then D is unique up to
addition of a character of G In particular, for any 2 the number h!D; iis a non-negative integer depending only on D and

Lemma 7. The degree d(D; of the morphism D; : P B D! G=H equals

h!D; i if D; is generically nite; otherwise, h!D; i 0.

Proof. Note that D is P -stable if and only if fD is an eigenvector of P that
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is, D extends to a character of that group. This amounts to: h!D; i 0.
Let V be the H -stable divisor in G=B corresponding to the B -stable divisor

D in G=H. Then V is the zero scheme of a section of the homogeneous line bundle
on G=B associated with the character D of B Let p : G=B! G=P be the
natural map, then d(D; equals the degree of the restriction pV : V G=P
The latter degree is the intersection number of V with a ber of p, that is,

h!D; i.
A direct consequence of Lemma 7 and Proposition 5 is

Corollary 2. For simply-laced G the following conditions are equivalent:
i) Each edge of G=H) is simple.
ii) For any D 2 D(G=H) and 2 we have h!D; i 1

It follows e.g. that the graphs of the symmetric spaces GL(p + q)=GL(p)
GL(q) SL(2n)=SP(2n) SO(2n)=GL(n) and E6=F4 contain only simple edges.
For this, one uses the explicit description of colors of symmetric spaces given in
[25].

Note that Corollary 2 does not extend to multiply-laced groups G Consider,
for example, G SO(2n + 1) and its subgroup H O(2n) the stabilizer of a
non-degenerate line in C2n+1. Then G=H is symmetric of rank 1 and its graph
consists of a unique oriented path: a double edge followed by n- 1 simple edges.

2. Orbit closures in regular completions

Recall from [2] that a variety X with an action of G is called regular if it satis es

the following three conditions:
i) X is smooth and contains a dense G -orbit whose complement is a union of

irreducible smooth divisors the boundary divisors) with normal crossings.
ii) Any G-orbit closure in X is the transversal intersection of those boundary

divisors that contain it.
iii) For any x 2 X the normal space to the orbit Gx contains a dense orbit of

the isotropy group of x
If moreover X is complete and its dense G -orbit is isomorphic to G=H we

call X a regular completion of that homogeneous space. Recall from [3] that G=H
admits a regular completion if and only if it is spherical; then any equivariant
completion of G=H is the image of a regular one by an equivariant morphism.

We x a regular completion X and we denote by B(X) resp. B(G=H; X) the
set of all B -orbit closures in X resp. of those that meet G=H.) By [6] 1.4, any
Y 2 B(G=H; X) meets all G -orbit closures properly. Moreover, for any closed G-orbit

Z the irreducible components of Y \ Z are the Schubert varieties Bw-1z
where w 2 W(Y) and z is the unique T - xed point of Z such that Bz Z.
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This point z will be called the base point of Z ; its isotropy group is opposed to
P(G=H) see e.g. [3] 2.2. The intersection multiplicity of Y and Z along Bw-1z
equals d(Y; w)

We shall generalize this to intersections of Y with arbitrary G -orbit closures.
For this, we recall the local structure of X see e.g. [3] 2.3). Set P P(G=H)
and L L(G=H) Let X0 be the set of all x 2 X such that Bx is open in Gx
Then X0 is an open P -stable subset of X Moreover, there exists an L -stable
subvariety S of X0 xed pointwise by [L; L] such that the map

Ru(P) S X0

g;x) 7! gx

is an isomorphism. As a consequence, S is a smooth toric variety for a quotient
of T of dimension r(G=H) the rank of G=H; moreover, S meets each G -orbit
along a unique T -orbit. Let ' : X0 Ru(P) S S be the second projection,
then ' is L -equivariant; it can be seen as the quotient map by the action of
Ru(P)

Choose w 2 W(Y) then wY meets X0 because BwY X), and the
intersection X0 \ wY is stable by the group P \ wBw-1 The latter contains
Ru(P) \wUw-1 as a normal subgroup. We shall see that Ru(P) \ wUw-1 acts
freely on wY \ X0 with section

SY;w wY \ U \wU-w-1)S:

Note that U\wU-w-1 is contained in Ru(P) because w-1
2 WP Thus, SY;w

is a closed T -stable subvariety of wY \ X0 Let

'Y;w : SY;w S

be the restriction of ' : X0 S then 'Y;w is T -equivariant.

Proposition 6. Keep notation as above.

i) The map

Ru(P)\wUw-1 SY;w wY \ X0

g;x) 7! gx

is an isomorphism.
ii) The variety SY;w is irreducible and meets each G-orbit along a unique T -

orbit. In particular, SY;w\G=H is a unique T -orbit, dense in SY;w and contained
in wY0 ; and SY;w \ Z fzg for any closed G -orbit Z with base point z
iii) The morphism 'Y;w is nite surjective of degree d(Y; w) As a consequence,

the dimension of SY;w is the rank of X

Proof. i) The product map Ru(P) \wUw-1 Ru(P)\wU-w-1 Ru(P)
is an isomorphism; moreover, Ru(P) \wU-w-1 U\ wU-w-1 Therefore, the
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product map

Ru(P) \wUw-1 U\wU-w-1 S X0

is an isomorphism. The assertion follows by intersecting with wY
ii) and iii) The union of all G -orbits in X that contain Z in their closure is a

G -stable open subset of X Thus, we may assume that Z is the unique closed G-orbit

in X Let D1; : : : ; Dr be the boundary divisors, then r r(X) Moreover,
S is isomorphic to a ne space Ar with coordinate functions x1; : : : ; xr equations
of D1\S; : : : ; Dr\S The compositions f1 x1 '; : : : ; fr xr ' are equations
of D1 \X0; : : : ; Dr\X0 ; they generate the ideal of Z\X0 Bz in X0 Themap

' : X0 S identi es to f1; : : : ; fr) : X0 Ar The intersections of G -orbit
closures with X0 are the pull-backs of coordinate subspaces of Ar

By i), SY;w is irreducible. We check that SY;w \ Z fzg. For this, note
that the product map

Ru(P) \wUw-1 SY;w \ Z) wY \ X0 \ Z wY \Bz

is an isomorphism. Moreover, since Y meets Z properly, with Bw-1z as an
irreducible component, it follows that wY \Bz is equidimensional, with

wBw-1z \ Bz B\ wBw-1)z

as an irreducible component. The latter is isomorphic to Ru(P)\wUw-1 Thus,
the T -stable set SY;w \Z is nite, so that it consists of T - xed points. Since z
is the unique T - xed point in Bz our assertion follows.

The map 'Y;w : SY;w S identi es with f1; : : : ; fr) : SY;w Ar. We just
saw that the set-theoretical ber of 0 is fzg Since 0 is the unique closed T -orbit
in Ar all bers of 'Y;w are nite. Thus, SY;w contains a dense T -orbit. Since
SY;w is a ne and contains a T - xed point z it follows that 'Y;w is nite and
that the pull-back of any T -orbit in S is a unique T -orbit. This implies ii).

Finally, we check that the degree of 'Y;w equals d(Y; w) that is, the degree
of the natural map BwB B Y X For this, note that the map

U \wU-w-1 BwB=B; g! gwB=B

is an open immersion. Thus, d(Y; w) is the degree of the product map U \wU-w-1) wY X or, equivalently, of its restriction

p : U\ wU-w-1) wY\ X0)! X0:

The latter map ts into a commutative diagram

U \wU-w-1) wY \X0) X0

# #
SY;w S;

where the bottom horizontal map is 'Y;w ; indeed,

U \wU-w-1) wY \ X0) Ru(P)\wU-w-1) Ru(P) \wUw-1) SY;w
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by i). Moreover, the bers of the right resp. left) vertical map are isomorphic to
Ru(P) resp. to Ru(P) \ wU-w-1) Ru(P) \ wUw-1) Ru(P) Thus, the
diagram is cartesian, and the degree of p equals the degree of 'Y;w

Thus, we can view SY;w as a \slice" in wY to wBw-1z Ru(P)\wUw-1)z
at z. But SY;w may be non transversal to Z at z : indeed, the intersection
multiplicity of SY;w and Z at z equals the intersection multiplicity of Y and Z
along Bw-1z and the latter equals d(Y; w) by [6] 1.4 alternatively, this can be
deduced from Proposition 6 iii).) On the other hand, it is not clear whether SY;w
is smooth, that is, Y \w-1X0 consists of smooth points of Y ; see Corollary 3
below for a partial answer to this question.

We now relate the \slices" associated with both endpoints of an edge in G=H).
Let Y 2 B(G=H; X) and let 2 raising Y Choose v 2 W(P Y) then
w vs is in W(Y) and `(w) `(v) + 1. Thus, v( 2

+ \ w( - Let
Uv( be the corresponding unipotent subgroup of dimension 1, then Uv( is
contained in Ru(P) \ vUv-1

Proposition 7. With notation as above, SY;w is contained in Uv( SP Y;v and
the latter is isomorphic to Uv( SP Y; Denoting by

'Y; : SY;w SP Y;v

the corresponding projection, then 'Y;w 'P Y;v 'Y; Moreover, 'Y; is
nite surjective of degree d(Y;

Proof. We have

SY;w wY \ U \wU-w-1)S wY \ Uv( U \ vU-v-1)S

vP Y \Uv( U \ vU-v-1)S Uv( vP Y \ U\ vU-v-1)S)

Uv( SP Y;v:

Moreover, since Uv( Ru(P) \ vUv-1 the product map Uv( SP Y;v
Uv( SP Y;v is an isomorphism. Now the equality 'Y;w 'P Y;v 'Y; follows
from the de nitions. Together with Proposition 6 iii), it implies that 'Y; is
nite surjective of degree d(Y; w)d(P Y; v)-1 d(Y;

Next we describe the intersection of a B -orbit closure with an arbitrary G-orbit

closure, generalizing [6] Theorem 1.4.

Theorem 1. Let X be a regular completion of G=H let Y 2 B(G=H; X) and let
X0 be a G -orbit closure in X. Then W(Y) is the disjoint union of the W(Y0)
where Y0 runs over all irreducible components of Y\X0 Moreover, for any such
Y0 and w 2 W(Y0) we have

d(Y; w) d(Y0; w)i(Y0; Y X0; X)
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where i(Y0; Y X0; X) denotes the intersection multiplicity of Y and X0 along Y0

in X As a consequence, this multiplicity is a power of 2.

Proof. By [6] Lemma 1.3, W(Y) is the union of the W(Y0) Choose Y0 and
w 2 W(Y0) then Y0 \w-1X0 is an irreducible component of Y \ w-1X0 \ X0

The latter is isomorphic to U\w-1Ru(P)) w-1(SY;w\X0) and SY;w\X0 is a
unique T -orbit, by Proposition 6. It follows that Y\w-1X0 \ X0 Y0 \w-1X0
is irreducible, so that Y0 is uniquely determined by w Equivalently, the W(Y0)
are pairwise disjoint.

Let Z be a closed G -orbit in X0 then

d(Y;w) i(Bw-1z; Y Z; X) i(Bw-1z \w-1X0; Y \w-1X0) Z \w-1X0); w-1X0);

where the former equality follows from [6] 1.4, and the latter from [12] 8.2. More-over,

we have by Proposition 6: Bw-1z \ w-1X0 Bw-1z and Z \w-1X0

w-1Bz Thus,

d(Y;w) i(Bw-1z; Y \w-1X0) w-1Bz; w-1X0):

Using the fact that Y \ w-1X0 \ X0 Y0 \w-1X0 is irreducible, together with
associativity of intersection multiplicities see [12] 7.1.8), we obtain

d(Y; w) i(Bw-1z; Y0 \w-1X0) w-1Bz; w-1X0 \ X0)i(Y0; Y X0; X)
i(Bw-1z; Y0 Z; X0)i(Y0; Y X0; X) d(Y0; w)i(Y0; Y X0; X):

These results motivate the following

De nition. A B -orbit closure Y in G=H is multiplicity-free if d(Y; w) 1 for
all w 2 W(Y) Equivalently, all oriented paths in G=H) with source Y contain
only simple edges.

For example, Y is multiplicity-free if r(Y) r(G=H) or if H is contained in
a Borel subgroup of G this follows from Lemma 5.)

Other examples of multiplicity-free orbit closures arise from parabolic induc-tion:

with notation as in Lemma 6, Y is multiplicity-free if and only if Y0 is.
If G is simply-laced, then Y is multiplicity-free if and only if it can be joined

to X by an oriented path with only simple edges Proposition 5).

Corollary 3. With notation as in Theorem 1, if Y is multiplicity-free then all
irreducible components of Y\X0 are multiplicity-free as well, and the correspond-ing

intersection multiplicities equal 1. Moreover, for any w 2 W(Y) the map

'Y;w : SY;w S is an isomorphism. As a consequence, Y \w-1X0 consists of
smooth points of Y

Proof. The rst assertion follows from Theorem 1. By Proposition 6, 'Y;w is
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nite surjective of degree 1, hence an isomorphism because S is smooth.

We next characterize those B -orbit closures Y 2 B(G=H; X) that are multipli-city-

free, in terms of the intersection numbers
RX

[Y] [Y0] where Y0 2 B(X) Here

RX
[Y] [Y0] denotes the degree of the product of the classes of Y Y0 in the integral

cohomology ring of X ; the latter is generated as an abelian group by classes of
B -stable subvarieties.

Corollary 4. With notation as in Theorem 1, the numbers
RX

[Y] [Y0] are 0 or
powers of 2, for all Y0 2 B(X) Moreover, Y is multiplicity-free if and only if
RX

[Y] [Y0] equals 0 or 1, for any Y0 2 B(X)

Proof. Let Y0 2 B(X) By [6] 1.4 Corollary,
RX

[Y] [Y0] 6=0 if and only if:
dim(Y)+dim(Y0) dim(X) and Y meets w0Y0 where w0 denotes the longest
element of W.) Under these hypotheses, Y \ w0Y0 consists of a unique point
y xed by T Moreover, the proof of [loc. cit.] shows that w0y 2 Y00. Thus,
By and B-y w0Bw0y w0Y0 meet transversally at y in Gy GY0. As a
consequence, we have

dim(By)=dim(GY0) - dim(w0Y0)=dim(GY0) + dim(Y)- dim(X)=dim(Y \ GY0):

Since Y \ GY0 is equidimensional and B -stable, it follows that its unique irre-ducible

component through y is By
Using the projection formula, we obtain

Z
X

[Y] [Y0] Z
X

[Y] [w0Y0] Z
GY0

([Y] [GY0]) [w0Y0]

i(By; Y GY0; X)Z
GY0

By [w0Y0] i(By; Y GY0; X):

Thus, by Theorem 1,
RX

[Y] [Y0] is a power of 2; if moreover Y is multiplicity-free,
then

RX
[Y] [Y0] 1.

Conversely, assume that
RX

[Y] [Y0] equals 0 or 1 for all Y0 2 B(X) Let then
w 2 W(Y) ; choose a closed G -orbit Z with base point z and consider Y0

Bw0w-1z. Then w0Y0 is transversal to Bw-1z at z in Z so that dim(Y0)
codimZ(Bw-1z) But Bw-1z is an irreducible component of Y \ Z and this
intersection is proper. Thus, dim(Y0) codimX(Y) Since Y meets w0Y0 at
w-1z and GY0 Z, we have

Z
X

[Y] [Y0] i(Bw-1z; Y Z; X);

and the latter equals d(Y; w) by [6] 1.4. It follows that Y is multiplicity-free.

We now show that the intersections of B -orbit closures with G -orbit closures
in regular completions satisfy Hartshorne's connectedness theorem, see [11] 18.2.
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That theorem is proved there for schemes of depth at least 2; but B -orbit closures
may have depth 1 at some points, see Example 6 in Section 4.

Theorem 2. Consider a regular completion X of G=H, a B-orbit closure Y
and a G-orbit closure X0 in X. Then Y\ X0 is connected in codimension 1
that is, the complement in Y \ X0 of any closed subset of codimension at least 2

is connected.)

Proof. We may assume that Y 2 B(G=H; X) If X0 Z is a closed G -orbit, then
the irreducible components of Y\Z are the Bu-1z where u 2 W(Y) Consider
neighbors u; v 2 W(Y) and let w 2 W be as in Proposition 3. Then Bw-1z
is a divisor in both Bu-1z and Bv-1z Since any two elements of W(Y) are
connected by a chain of neighbors by Proposition 2, the assertion follows.

For arbitrary X0 let Z be a closed G -orbit in X0 Let Y01 Y02 be unions
of irreducible components of Y \ X0 such that Y \ X0 Y01[ Y02 Then Y01\ Z
and Y02 \ Z are unions of irreducible components of Y0 \ Z for any irreducible
component of Y \ X0 meets Z properly in X0 ); Moreover, their intersection has
codimension 1 in Y01 \ Z and Y02\ Z by the rst step of the proof. It follows
that Y01 \ Y02 has codimension 1 in both Y01 and Y02

3. Orbit closures of maximal rank

Let B(G=H)max be the set of all Y 2 B(G=H) such that r(Y) r(G=H) that is,
the set of all B -orbit closures of maximal rank. Recall that all such orbit closures
are multiplicity-free. Here is another characterization of them that generalizes a
well known property of Schubert varieties.

Proposition 8. i) For any Y 2 B(G=H)max and w 2 W(Y) we have: BwY0
G=H)0 and w-1

2 W G=H) Moreover, W(Y) is disjoint from all W(Y0)
where Y0 2 B(G=H) and Y0 6=Y.
ii) Conversely, if Y 2 B(G=H) and there exists w 2 W such that BwY0
G=H)0 then Y has maximal rank. If moreover w-1

2 W G=H) then w 2
W(Y) and Y) consists of those 2 such that w( 2 G=H)

Proof. i) We prove that BwY0 G=H)0 by induction over `(w) the case where
`(w) 0 being evident. If `(w) 1 we can write w w0s for some simple
root and some w0 2 W such that `(w0) `(w)- 1 ; then BwB Bw0Bs B
Then G=H BwY Bw0P Y Since `(w) codimG=H(Y) it follows that
raises Y and that w0 2 W(P Y) Because Y has maximal rank, P Y0 consists
of two B -orbits, both of maximal rank. But P Y0 Y0 [Bs Y0 so that Bs Y0
is a unique B -orbit of maximal rank and of codimension `(w0) in G=H By the
induction assumption, we have Bw0Bs Y0 G=H)0 that is, BwY0 G=H)0
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If moreover w 2 W(Y0) for some Y0 2 B(G=H) then a similar induction shows
that Y0 Y.

If w-1
2 W G=H) then there exists 2 G=H) such that `(s w) `(w)-

1 Thus, BwB Bs Bs wB so that s Bs wY0 is contained in G=H)0. But
s G=H)0 G=H)0 ; therefore, Bs wY0 G=H)0 and Bs wY G=H It
follows that codimG=H(Y) ` s w) `(w)- 1 a contradiction.
ii) Let _w be a representative of w in the normalizer of T By assumption, the

map

U Y0 G=H)0

u; y) 7! u _wy

is surjective. Thus, it induces an injective homomorphism from the ring C[(G=H)0]
of regular functions on G=H)0 to C[U Y0] The group of invertible regular
functions C[(G=H)0] is mapped into C[U Y0] C[Y0] Quotienting by
C and taking ranks, we obtain r(G=H) r(Y) by Lemma 1, whence r(Y)
r(G=H)

If moreover w-1
2 W G=H) we show that w 2 W(Y) by induction over

`(w) ; we may assume that w 6= 1 Then we can write w w0s where w0 2 W,
2 and `(w) `(w0) + 1 It follows that w( 2 -
We begin by checking that s Y0 6=Y0 Otherwise, by Lemma 1, there exists

y 2 Y0 xed by [L ; L ] Thus, _wy 2 G=H)0 is xed by w[L ; L ]w-1 Since
the unipotent radical of P(G=H) acts freely on G=H)0 by [17], it follows that
w( 2 G=H) Then 2 \w-1( - G=H)) which contradicts the assumption

that w-1
2 W G=H)

As above, it follows that Bs Y0 is a B -orbit of maximal rank and of di-mension

dim(Y) + 1 ; moreover, Bw0Bs Y0 G=H)0 We can write w0

uv where u 2 W G=H) v-1
2 W G=H) and `(w0) `(u) + `(v) Thus,

BwB BuBvBs B and BvBs Y0 G=H)0 as u-1(G=H)0 G=H)0. By
the induction assumption, v 2 W(Bs Y) Moreover, `(vs `(v) + 1, for
w uvs and `(w) `(u)+`(v)+1 It follows that vs 2 W(Y) ; in particular,
s v-1

2 W G=H) But w-1 s v-1u-1 is in W G=H) as well. Thus, u 1
and w-1

2 W(Y)
Let be a simple root of Y Then we see as above that w( 2 G=H)

We have ws sw( w with sw( 2 W G=H) and w-1
2 W G=H). Thus,

`(ws `(sw( + `(w) which forces w( 2
+ as `(s w) `(w) + 1 and

w( 2 as `(sw( 1 We conclude that w( is a simple root of G=H
Conversely, let 2 such that w( is a simple root of G=H Then

`(ws `(w) + 1 whence

BwBs Y0 Bws Y0 Bsw( wY0 Bsw( BwY0 Bsw( G=H)0 G=H)0:

Let O be a B -orbit in Bs Y0 Then BwO G=H)0 By i), we have O Y0
whence s Y0 Y0 and 2 Y)
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This preliminary result, combined with those of Section 2, implies a structure
theorem for orbit closures of maximal rank in a regular completion X We denote
by B(X)max the set of these orbit closures, a subset of B(G=H; X)

Theorem 3. Let Y 2 B(X)max and w 2 W(Y) Choose a \slice" SY;w as in
Proposition 6, so that the product map

U \w-1Ru(P)w) w-1SY;w Y \w-1X0

is an isomorphism. Then w-1SY;w is xed pointwise by [L(Y); L(Y)]. More-over,

Y \ w-1X0 is P(Y) -stable and meets each G-orbit along a unique B -
orbit, of maximal rank in this G -orbit. In particular, there exists y 2 Y0 xed
by [L(Y);L(Y)] such that the product map U \ w-1Ru(P)w) Ty Y0 is an
isomorphism.

As a consequence, for each G -orbit closure X0 in X all irreducible compo-nents

of Y \ X0 have maximal rank in X0 Moreover, a given Y0 2 B(X0) is an
irreducible component of Y \ X0 if and only if W(Y0) is contained in W(Y)

Proof. With notation as in Section 2, recall that

w-1SY;w Y\(U- \w-1Uw)w-1S

and that [L(X); L(X)] acts trivially on S Together with Proposition 8, it fol-lows

that [L(Y); L(Y)] xes pointwise S and normalizes U- \w-1Uw. Thus,
[L(Y); L(Y)] stabilizes w-1SY;w Moreover, intersecting that space with those
boundary divisors that contain a given closed G -orbit, we obtain [L(Y);L(Y)] -
stable hypersurfaces meeting transversally at a xed point. Therefore, [L(Y); L(Y)]

xes pointwise w-1SY;w
By Proposition 6, w-1SY;w meets each G -orbit along a unique T -orbit. As

a consequence, the intersection of Y \ w-1X0 with each G-orbit is contained
in a unique B -orbit. We apply this to GY0 the open G-orbit in X Since
Y \ w-1X0 \ GY0 Y \ w-1X0 equals Y0 by Proposition 8, we see that the
product map

U \w-1Ru(P)w) w-1SY;w \ Y0) Y0

is an isomorphism. Moreover, w-1SY;w \ Y0 is a unique T -orbit of dimension
equal to the rank of X.

It follows that each U -orbit in Y0 is a unique orbit of U \ w-1Ru(P)w
Indeed, any U -orbit is isomorphic to some a ne space, and its projection to
w-1SY;w \ Y0 is a morphism to a torus, hence is constant.

Choose y0 2 Y0 and let y 2 Y \w-1X0 Since By0 Y0 is dense in Y \w-1X0 we have dim(Uy) dim(Uy0) The latter equals dim(U \w-1Ru(P)w)
by the previous step. Because U \ w-1Ru(P)w acts freely on Y \w-1X0 it
follows that U \ w-1Ru(P)w)y is open in Uy But both are a ne spaces, so

that they are equal. Thus, Y \ w-1X0 is B -stable. It is even P(Y) -stable,
because P(Y) w-1Pw by Proposition 8.
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Since w-1SY;w meets each G -orbit along a unique T -orbit, Y\w-1X0 meets
each G -orbit along a unique B -orbit. Let y 2 Y\w-1X0 then wBy X0 and,
therefore, wBy Gy)0 By Proposition 8 again, we have r(By) r(Gy)

The remaining assertions follow from Theorem 1 together with Proposition 8.

As a consequence, we determine all B -orbit closures Y0 such that
RX

[Y] [Y0] 6=

0 ; by Corollary 4, this amounts to
RX

[Y] [Y0] 1.

Corollary 5. Let Y be a B -orbit closure of maximal rank in a regular completion
X and let Y0 2 B(X) Then the intersection number

RX
[Y] [Y0] equals 1 if and

only if Y0 Bw0w-1z for some w 2 W(Y) and some closed G-orbit Z with
base point z

Proof. If
RX

[Y] [Y0] 1 then Y \ w0Y0 consists of a unique T - xed point
y 2 w0Y00 and By is an irreducible component of Y \ GY0 by the proof of
Corollary 4. Therefore, By has maximal rank in GY0 Gy0. But r(By) 0
because y is xed by T Thus Gy being a G -orbit of rank 0, is closed in
X Let z be its base point, then y w-1z for some w 2 W(Y) so that
Y0 Bw0y Bw0w-1z The converse is clear.

We now describe the intersections of B -orbit closures of maximal rank with
G -orbit closures, in terms of Knop's action of theWeyl group W on the set B(X)
This action can be de ned as follows.

Let 2 and Y2 B(X) then s xes Y except in the following cases:

Type U : P Y0 Y0 [ Z0 for Z 2 B(X) with r(Z) r(Y) Then s
exchanges Y and Z
Type T : P Y0 Y0[Y0-[Z0 for Z 2 B(X) with r(Y) r(Y-) r(Z)-1
Then s exchanges Y and Y-

By [18, x4], this de nes indeed a W-action that is, the braid relations hold);
moreover, X(w(Y)) w(X(Y)) for all w 2 W. In particular, this action pre-serves

the rank and, obviously, the subset B(G=H; X) If moreover G is simply-laced,

then this action preserves multiplicity-freeness by Proposition 5; but this
does not extend to multiply-laced G as shown by Example 4.

For Y 2 B(X)max and w 2 W(Y) we have w(Y) X Thus, B(X)max is
the W-orbit of X in B(X) The isotropy group of X depends only on G=H ;
denote it by W(G=H) This group acts on X(G=H) and contains W G=H) The
latter acts trivially on X(G=H) by Lemma 1. In fact, W(G=H) stabilizes G=H)
indeed, G=H) consists of all roots that are orthogonal to X(G=H) if G=H

is non-degenerate in the sense of [17]; and the general case reduces to that one, by
[17] x5.)

The normalizer of G=H) in W is the semi-direct product of W G=H)
with the normalizer of G=H) Therefore, W(G=H) is the semi-direct product
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of W G=H) with

WG=H fw 2 W j w(G=H) G=H and w( G=H)) G=H)g:
The latter identi es to the image of W(G=H) in AutX(G=H) that is, to the

\Weyl group of G=H ", see [18] Theorem 6.2.
In fact, WG=H is the set of all w 2 W(G=H) such that w( - 2 X(G=H)

where denotes the half sum of positive roots see [16] 6.5); we shall not need
this result.

Let

W(G=H) w 2 W j `(wu) ` w) 8u 2 W(G=H) ;

the set of all elements of minimal length in their right W(G=H) -coset.

Proposition 9. With notation as above, we have

W(G=H)
nw 2 W G=H)

j `(wu) ` w) 8u 2 W(G=H)o;
and, for any w 2 W,

W(w(G=H)) nv 2 W j v-1
2 W(G=H) \ wW(G=H)o:

As a consequence, all elements of minimal length in a given left W(G=H) -
coset have the same length and are contained in a left WG=H -coset. Moreover,
the subsets W(Y) Y 2 B(G=H)max are exactly the subsets of all elements of
minimal length in a given left W(G=H) -coset.

For any G -orbit closure X0 in a regular completion X we have

w(X) \ X0 [w02W(G=H)\wW(G=H)

w0(X0):

Proof. Clearly, W(G=H) is contained in W G=H) And since WG=H stabilizes
G=H) the set W G=H) is stable under right multiplication by WG=H. This

implies the rst assertion.
Let Y w(G=H) and observe that codimG=H(Y) ` w) with equality if and

only if w-1
2 W(Y) indeed, a reduced decomposition of w de nes a non-oriented

path in G=H) with endpoints Y and G=H
Let v 2 W(Y) Since v(Y) G=H we have v-1

2 wW(G=H) Moreover,
`(v-1) `(v) codimX(Y) ` w) Since we can change w in its right W(X) -
coset, it follows that v-1

2 W(G=H)

Conversely, let u 2 W such that u-1
2 W(G=H) \ wW(G=H). Then u(Y)

G=H whence `(u) ` v) and u 2W(G=H)v. Since u-1
2W(

G=H) this forces
`(u) `(v) and then u 2 W(Y) This proves the rst assertion. Together with
Theorem 3, this implies the second assertion.

Example 5. Let G be a connected reductive group. Consider the group G
G G acting on G by x;y) z xzy-1 Then G is a spherical homogeneous
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space: consider the Borel subgroup B B B- of G where B and B- are
opposed Borel subgroups of G. With evident notation, the B -orbits in G are
the BwB- w 2 W. This identi es B(G) to W. Morever, all B -orbits have
maximal rank, and theWeyl group W W W acts on W by u; v)w uwv-1

Thus, G) is empty, W(G) is the diagonal in W W, and W f1g is a system
of representatives of W=W(G) One checks that

W(G) f(u; v) 2W Wj `(u) + `(v) `(uv-1)g:
In particular, w; 1) 2 W(G) for all w 2W. Moreover,

W(G) \ w; 1)W(G) f(u;v) 2W W j uv-1 w and `(u) + `(v) `(w)g:

This identi es W(G) \ w; 1)W(G) to the set of all u 2W such that u w for
the right weak order on W. Now the last statement of Proposition 9 gives back
[6] Theorem 2.1.

Returning to arbitrary G=H, we shall deduce from Proposition 4 the following

Theorem 4. The group W(G=H) is generated by reflections s where is a root
such that 2 G=H) or that 2 2 X(G=H) and by products s s where ;
are orthogonal roots such that + 2 X(G=H)

Proof. Let w 2 W(G=H) We choose a reduced decomposition w s ` s 2 s 1
and we argue by induction on the length `

If 1 2 G=H) then s 1 is a reflection in W(G=H) so that s ` s 2 2
W(G=H) Now we conclude by the induction assumption.

If 1 2 G=H) then s 1 G=H) has codimension 1 in G=H Let i be the
largest integer such that codimG=H s i s 1 G=H) i. Let Y s i s 1
G=H) i then Y 2 B(G=H)max and s 1 s 1 2 W(Y)

If P i+1Y Y then s i+1 Y) Y by de nition of the W-action and max-imality

of i. Let s 1 s i i+1) Then s is a reflection of W(G=H)
and w s ` s i+2s i s 1 s If i+1 2 Y) then 2 G=H) by
Proposition 8. Otherwise, P i+1

Y0=R(P i+1 is isomorphic to PGL(2)=T or to
PGL(2)=N; it follows that 2 i+1 2 X(Y) and that 2 2 X(G=H) Now we
conclude by the induction assumption.

If P i+1Y 6= Y then i+1 raises Y to say) Y0. Choose u 2 W(Y0) then
`(u) i- 1 and us i+1 2 W(Y) Moreover, us i+1s i s 1 2 W(G=H). We
have w vus i+1s i s 1 for some v 2 W(G=H) such that `(vu) `- i- 1
Thus, `(v) ` vu) + `(u) `- 2 Therefore, we may assume that there exist
Y 2 B(G=H)max and w1; w2 2 W(Y) such that w w2w-1

1 By Proposition 2,
we may assume moreover that w1 and w2 are neighbors. Then we conclude by
Proposition 4.

As a direct consequence, we recover the following result of Knop, see [17] and
[18].
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Corollary 6. The image of WG=H in AutX(G=H) is generated by reflections.

4. Singularities of orbit closures

We begin by recalling the notion of rational singularities, see e.g. [14] p. 50.
Let Y be a variety. Choose a resolution of singularities ' : Z Y that

is, Z is smooth and ' is proper and birational. Then the sheaves Rn' OZ
n 0 are independent of the choice of Z The singularities of Y are rational

if Rn' OZ 0 for all n 1 and ' OZ OY ; the latter condition is equivalent
to normality of Y Varieties with rational singularities are Cohen-Macaulay.

Let now X be a spherical variety and Y a B -stable subvariety. If Y is G-stable,

then its singularities are rational, see e.g. [5]. But this does not extend to
arbitrary Y : generalizing Example 1 in Section 1, we shall construct examples of
B -orbit closures in a spherical homogeneous space, of arbitrary dimension but of
depth 1 at some points. In particular, such orbit closures are neither normal nor
Cohen-Macaulay.

Example 6. Let r n be integers such that 0 r n-1 Let X be the space
of smooth quadrics of dimension r in projective space Pn : points of X are pairs
Q; L) where L is a linear subspace of Pn of dimension r+1 and Q is a smooth

hypersurface of degree 2 in L The group G GL(n+1) acts transitively on X ;

an isotropy group H consists of all matrices of the form A B
0 C

where A is a

scalar multiple of an orthogonal r+1) r+1) matrix, B is a r+1) n matrix,
and C is an invertible n- r) n - r) matrix. Thus, X is obtained from the
symmetric space GL(r + 1)=O(r + 1)C by parabolic induction. It follows that
X is spherical of rank r + 1.

Let m be an integer such that 1 m n - r - 1 and let Pm be a linear
subspace of Pn of dimension m. Consider the set

Ym f(Q; L) 2 X j Q meets Pmg;

a subvariety of X of codimension n-m - r The stabilizer Pm of Pm in G
a maximal parabolic subgroup, stabilizes Ym as well; in fact, Ym contains an
open Pm -orbit, the subset of all Q; L) such that Q meets Pm in a unique
point. In particular, Ym is an orbit closure of a Borel subgroup of G ; one checks
that r(Ym) r The corresponding H-orbit closure Vm in the flag variety of
G is the set of all complete flags whose m-dimensional subspace meets the H -

xed quadric. Thus, Vm is irreducible for r 1 whereas it has two irreducible
components for r 0 then the quadric consists of two points).

We claim that the non-normal locus of Ym equals the complement Y0
m

of its
open Pm -orbit. For this, note that the set of all Q; L) in X such that Q meets
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Pm in two distinct points is a unique Pm -orbit, dense in Y0
m

Let

~Ym f(x;Q; L) 2 Pn X j x 2 Q\ Pmg
Then ~Ym is a Pm-variety, and the map : ~Ym Ym x; Q; L) 7! Q; L) is
an isomorphism over the open Pm -orbit in Ym but has degree 2 over Y0

m
This

implies our claim. One checks that Y0
m

has codimension n-m- r in Ym and
that r(Y0

m
r + 1.

If m n - r - 1 then Ym is a divisor in X and hence is Cohen-Macaulay
for n 2, r 0 and m 1 we recover Example 1 in Section 1.) But if

m n- r- 2 then Ym has depth 1 along Y0
m

by Serre's criterion, see [11] 18.3.
In particular, Ym is not Cohen-Macaulay.

Let 1; : : :; n be the simple roots of G Then P mYm Ym+1 and m is
the unique simple root raising Ym The corresponding edge in X) is simple,
except for m n - r - 1 Thus, Ym is the source of a unique oriented path
with target X and the top edge of this path is double. In particular, Ym is not
multiplicity-free.

Such examples of bad singularities do not occur for multiplicity-free orbit clo-sures:

Theorem 5. Let X be a spherical variety and let Y be a multiplicity-free B -
orbit closure. Then the singularities of Y are rational. If in addition X is regular,
then for any G-orbit closure X0 in X the scheme-theoretical intersection Y\ X0

is reduced. Moreover, the local equations of the boundary divisors containing X0

at any point of Y\ X0 are a regular sequence in the local ring of Y at that point.

Proof. The main point is rationality of singularities, proved by induction on the
codimension of Y Here is an outline of the argument: choose a resolution of
singularities ' : Z! Y which is equivariant for the normalizer NG(Y) a standard
parabolic subgroup of G This yields NG(Y) -linearized coherent sheaves on Y :

C0 (' OZ)=OY and Cn Rn' OZ for n 1

For every standard parabolic subgroup P we can induce these sheaves to P -
linearized coherent sheaves P B

Cn on P BY Choose for P a minimal parabolic
subgroup raising Y and consider the natural map : P B Y! PY then is
birational, and the singularities of PY are rational by the induction assumption.
Using this, we show that P B

Cn) 0 for all n and we deduce that the
sheaves Cn are trivial.

We begin the detailed argument by xing notation. Let P be a minimal
parabolic subgroup that raises Y Let

f : P B Y! P=B P1

be the locally trivial ber bundle with ber the B -variety Y and let

: P B Y! PY
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be the natural morphism, then is birational and P -equivariant. The B -
equivariant resolution ' : Z! Y induces a P -equivariant resolution

: P B Z! P B Y:

Composing with we obtain a P -equivariant resolution

~ : P B Z! PY:

We have an exact sequence

0! OY !' OZ C0 0

of NG(Y) -linearized coherent sheaves on Y Moreover, every B -linearized co-herent)

sheaf F on Y corresponds to a P -linearized sheaf P B
F on P B Y

uniquely de ned by imposing that the restriction of P B
F to B B Y Y is

F; and P B
OY OP BY whereas P B ' OZ OP BZ Thus, we have an

exact sequence of P -linearized sheaves on P B Y :

0! OP BY OP BZ P B
C0 0:

Applying we obtain an exact sequence of P -linearized sheaves on PY :

0 OP BY ~ OP BZ P B
C0) R1 OP BY:

Moreover, OP BY ~ OP BZ OPY since PY is normal. Thus, P B
C0)

injects into R1 OP BY
We claim that R1 OP BY 0 For this, we factor as the closed immersion

i f; : P B Y! P=B PY

followed by the projection

p : P=B PY P=B

with bers P1. Then R1 OP BY R1p i OP BY) Moreover, we have an
exact sequence

0 I OP=B PY i OP BY 0

where I is the ideal sheaf of P B Y This yields an exact sequence

R1p OP=B PY R1p i OP BY) R2p I:
But R2p I 0, as p is proper with bers of dimension 1; and R1p OP=B PY
0 as H1(P1; OP1) 0 This proves our claim; it results that P B

C0) 0
Next we claim that P B

Cn) 0 for every n 1 where Cn Rn' OZ
For this, we use the Leray spectral sequence associated with ~ Since ~

is a resolution of PY the induction assumption yields that Rq ~ OP BZ 0 for
all q 1 On the other hand, Rp F 0 for any p 2 and for any coherent
sheaf F on P BY as is proper with bers of dimension 1 It follows that
the spectral sequence

Rp Rq OP BZ) Rp+q ~ OP BZ
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degenerates at E2: then Rn OP BZ) is a quotient of Rn~ OP BZ and
hence is trivial. Moreover, Rn OP BZ) P B Rn' OZ) P B

Cn since
: P B Z! P B Y is induced from ' : Z! Y This proves the claim.

We now need the following

Lemma 8. Let F be a coherent NG(Y) -linearized sheaf on Y such that P B

F) is trivial for any minimal parabolic subgroup P that raises Y Then the
support of F is G -stable.

Proof. Let Y0 be an irreducible component of the support of F with ideal sheaf

IY0 De ne a subsheaf F0 of F by

F0(V) fs 2 F(V) j IY0(V)s 0g

for every open subset V of Y Observe that F0 is a coherent sheaf of OY0 -
modules, with support precisely Y0 indeed, if V is a ne, then the ideal IY0(V)
is a minimal prime of the support of F(V) ; thus, this ideal is an associated
prime of F(V) Note that NG(Y) stabilizes Y0 and acts on F0 Moreover,

P B
F0) is trivial, since P B

F) is.
Assume that Y0 is not G -stable and let P be a minimal parabolic subgroup

raising Y0 ; then P raises Y for Y0 is stable under NG(Y) Let 0 : P BY0
PY0 be the restriction of to P B Y0. Then 0 is generically nite as P
raises Y0 and the support of P B

F0 is P B Y0 as the support of F0 is
Y0 Thus, the support of

0
P B

F0) is PY0 But this contradicts the fact that

0
P B

F0) P B
F0) is trivial.

Thus, the support of each Cn is G-stable. On the other hand, we may assume
that Y contains no G-orbit to see this, replace G resp. X) by ~G G PGL(2)
resp. ~X X P1 with the natural ~G

-action). Then ~X
is a spherical ~G

-variety,
and ~Y Y f1g ' Y is multiplicity-free and contains no ~G

-orbit). It then
follows that each Cn is trivial. We have proved that the singularities of Y are
rational.

For the remaining assertions, let D1; : : : ; Dr be the boundary divisors con-taining

X0 then the local equations of D1; : : : ; Dr at any point x 2 X0 are a
regular sequence in OX;x Moreover, the scheme-theoretical intersection Y \ X0

is equidimensional of codimension r and generically reduced. Since Y is Cohen-
Macaulay, then Y \ X0 is reduced and the local equations of D1; : : : ; Dr at any
point y 2 Y \ X0 are a regular sequence in OY;y

We now apply these results to H -orbit closures in the flag variety of G For
this, we recall a construction from [6] 1.5. Let V be a H -orbit closure in G=B
and let V̂

be the corresponding B -orbit closure in G=H Let Y be the closure
of

V̂ in a regular completion X then Y 2 B(G=H; X) Consider the natural
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morphism

: G B Y! X

and the projection

f : G B Y! G=B:

The bers of identify to closed subschemes of G=B via f Let x be the image
in X of the base point of G=H then -1(x) identi es to V On the other hand,
let Z be a closed G -orbit in X with B - xed point z then the set f( -1(z))
equals

V0 [w2W(Y)
Bw0wB=B

where w0 denotes the longest element of W. Moreover, we have in the integral
cohomology ring of G=B :

[V] X
w2W(Y)

d(Y; w)[Bw0wB=B]:

Now Theorem 2 and Proposition 5 imply the following

Corollary 7. With notation as above, V0 is connected in codimension 1. If
moreover G is simply-laced, then [V] 2`N( [V0] where is any oriented path
in X) joining Y to X

We shall call V multiplicity-free if Y is. Equivalently, the cohomology class
of V decomposes as a sum of Schubert classes with coe cients 0 or 1.

Note that any multiplicity-free H -orbit closure V is irreducible, even if H is
not connected. Indeed, H acts transitively on the set of all irreducible components
of V so that any two such components have the same cohomology class; but the
class of V is indivisible in the integral cohomology of G=B

Theorem 6. With notation as above, if V is multiplicity-free then its singu-larities

are rational, the morphism is flat, and its bers are reduced. As a
consequence, the bers of realize a degeneration of V to the reduced subscheme
V0 of G=B

Proof. Note that the singularities of Y are rational by Theorem 5; thus, the same
holds for V̂ Y\ G=H Let ' : Z! V̂ be a resolution of singularities; consider
the quotient map qH : G! G=H the preimage V0 q-1

H V̂ in G and the ber
product Z0 Z

V̂
V0 Then Z0 is smooth, since Z and qH are; the projection

'0 : Z0 V0 is proper and birational, since ' is; and Rn'0
OZ0 0 for n 1

since cohomology commutes with flat base extension. Therefore the singularities
of V0 are rational. Now V0 q-1

B V) and qB is a locally trivial bration, so

that the singularities of V are rational as well.
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For the second assertion, we identify Y to its image B BY in G BY Since
is G -equivariant, it is enough to check the statement at y 2 Y Let D1; : : : ; Dr

be the boundary divisors containing y with local equations f1; : : : ; fr in OX;y It
follows from Theorem 5 that the pull-backs f1; : : : ; fr are a regular sequence
in OG BY;y and generate the ideal of -1(Gy) Moreover, the restriction of
to -1(Gy) is flat with reduced bers, as is G -equivariant. Now we conclude
by a local flatness criterion, see [11] Corollary 6.9.

A direct consequence is the following

Corollary 8. Consider a a multiplicity-free H -orbit closure V in G=B and
an e ective line bundle L on G=B Then the restriction map H0(G=B; L)
H0(V; L) is surjective, and Hn(V; L) 0 for all n 1

Indeed, this holds with V replaced by V0 a union of Schubert varieties see

[19].) The result follows by semicontinuity of cohomology in a flat family.
We now obtain a partial converse to Corollary 8:

Proposition 10. Let V be a H -orbit closure in G=B with corresponding B -
orbit closure Y in G=H. If Y is the source of a double edge of G=H)
then there exists an e ective line bundle L on G=B such that the restriction
H0(G=B; L) H0(V; L) is not surjective.

Proof. Let be the label of a double edge with source Y Denote by p : G=B!G=P the natural map and by pV : V! V) its restriction to V then p is a
projective line bundle and pV is generically nite of degree 2. Choose an ample
line bundle L on G=P then p L is an e ective line bundle on G=B Now it
su ces to check the following claim: the restriction map

rn : H0(p-1p(V); p L

LUX=296.280LUY=323.163ROX=302.531ROY=335.294

n)) H0(V; p L

LUX=380.400LUY=323.163ROX=386.651ROY=335.294

n))

is not surjective for large n
For this, note that

H0(p-1p(V); p L

LUX=262.440LUY=269.883ROX=268.691ROY=282.014

n)) H0(p(V); L

LUX=357.720LUY=269.883ROX=363.971ROY=282.014

n);
H0(V; p L

LUX=262.440LUY=254.883ROX=268.691ROY=267.014

n)) H0(p(V); L

LUX=357.720LUY=254.883ROX=363.971ROY=267.014

n

LUX=371.640LUY=247.860ROX=379.420ROY=265.210

pV OV)

by the projection formula. Thus, rn identi es with the map

H0(p(V); L

LUX=255.720LUY=213.483ROX=261.971ROY=225.614

n) H0(p(V);L

LUX=335.160LUY=213.483ROX=341.411ROY=225.614

n

LUX=349.080LUY=206.460ROX=356.860ROY=223.810

pV OV)

de ned by the inclusion of Op(V) into pV OV. Since pV has degree 2, the
quotient F pV OV=Op(V) has rank 1 as a sheaf of Op(V) -modules. Moreover,
since L is ample, the cokernel of rn is isomorphic to H0(p(V); F

LUX=406.560LUY=161.820ROX=414.340ROY=179.170

L

LUX=421.560LUY=168.483ROX=427.811ROY=180.614

n) for large
n This implies the claim.
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