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Quadrilatéral and extremal quasiconformal extensions

J. M. Anderson and A. Hinkkanen

Abstract. We show that the smallest maximal dilatation for a quasiconformal extension of a quasisym-
metric function of the unit circle may be larger than indicated by the change in the module of the
quadrilaterals with vertices on the circle.

§1. Introduction

Let D dénote the unit disk in the complex plane C and let/be a sense-preserv-
ing quasisymmetric homeomorphism of the unit circle dB onto itself. Consider

quadrilaterals Q D(zl5 z2, z3, z4) whose domain is D and whose vertices

zuz2,z3, z4 follow each other in the positive (anticlockwise) direction on 50. We
dénote the conformai module of Q by M{Q) (for définitions, see [7, pp. 14-15]).
The function/maps zl9z2, z3, z4 onto/(z1),/(z2),/(z3),/(z4) and the corresponding
quadrilatéral with domain D is denoted by f(Q). If the number K ^ 1 is such that

/has a AT-quasiconformal extension to a self-map of D then [7, p. 16]

We now set

K0(f) sup \~^- - Q ^s domain D J, (1.2)

so that Kq is the smallest number K for which (1.1) holds for ail quadrilaterals Q.
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456 J M ANDERSON AND A HINKKANEN

We also set

Kx(f) inf {AT:/has a i^-quasiconformal extension to a self-map of D}.

Then, as is well-known [6, p. 16]

where X(t) is the function determined by the Teichmûller ring [7, (6.4), p. 81]. The

right hand quantity behaves asymptotically like (1/64) exp(37rA^0(/)/2) as

Ko(f) ~* °° 17, (6.10), p. 82]. However, it has been conjectured [14, Conjecture 3.21]

that K0(f) Kx{f) for ail quasisymmetric/and it is the object of this note to show

that this is not so (unless K0(f) 1, in which case it is easily seen that / is the

restriction of a Môbius transformation and hence K{(f) 1).

THEOREM 1. For each K&gt; 1, there exists a sensé -preserving quasisymmetric
homeomorphism fofdB onto itself such that

K0{f)&lt;Kx(f)=K.

This theorem is in contrast to a theorem of Jenkins [4, Theorem 1, p. 931] where

gênerai polygons are considered instead of quadrilatéral and a condition similar to
(1.1) is given which is necessary and sufficient for/to hâve a A^-quasiconformal
extension to a map of D onto itself. Thus Theorem 1 shows that, in gênerai, it is

not sufficient to consider the moduli of quadrilatéral alone to détermine Kx(f),
though in [14], several examples are given where K0(f) Kx(f). Hence, further-

more, any attempt to construct an extremal quasiconformal extension of / - an
extension of/whose maximal dilatation is equal to Kx (/) - by considering only the

action of/on modules of quadrilatéral must necessarily fail.
Ever since Beurling and Ahlfors gave the necessary and sufficient condition for

a homeomorphism of the unit circle to hâve a quasiconformal extension to the disk

[2], the problem of characterizing such homeomorphisms, called quasisymmetric by
Kelingos [5], and considering various relationships between the boundary map and

its extensions, hâve been studied in the literature. A simple characterization of
quasisymmetric maps of the extended real line onto itself fixing infinity was given
in [2]. It is based on considering M(f{Q))jM{Q) when M(Q) 1 and one vertex of
Q is at infinity. Agard and Kelingos [1, p. 448] considered a définition for
quasfsymmetric maps based on the requirement that l/K &lt; M(f(Q))IM(Q) &lt; K for
ail Q with one vertex at infinity. They [1, p. 449] also mentioned the possibility of
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using the condition l/K &lt; M(f(Q))IM(Q) &lt; K for ail Q9 particularly when/is not
assumed to fix the point at infinity. This lead them to the quantity K0(f) defined
above. The extremal quasiconformal extensions of a given quasisymmetric function
/hâve been studied in great détail, particularly by Reich and by Strebel in their
many papers, some of them joint, for example, [10], [11], [12]. The inequality
KQ{f)&lt;Kx{f) being obvious from the définitions of thèse quantities and the

géométrie définition of quasiconformal mappings [7, p. 16], the question arises as to
the exact nature of the relationship between K0(f) and Kx(f). The paper by
Jenkins [4] provides interesting insight into this problem in terms of the change of
a suitable conformai module for polygons more gênerai than quadrilaterals, and the
connection between K0(f) and Kx{f) is briefly discussed. The question of whether

Ko(f) Ki(f) f°r ^11/, has probably been informally around since the 1960&apos;s, but
we hâve not been able to find it in print except in [14].

§2. Parallelograms

We dénote by V the closed parallelogram with vertices (i=0, Ç2—U
£3 a + 1 + if}, and (4 a + //?, where a &gt; 0 and /? &gt; 0. Thèse vertices will also be

called the geometrical vertices of F, to distinguish them from the vertices of some

quadrilatéral. Let FK(V) be the image of V under the horizontal affine stretch FK
that takes x + iy onto Kx + iy, where K &gt; 1, so that the vertices of FK(V) are
f, 0, f2 K, C3 K(a + 1) + ïJ8, and &lt;f4 Ka + ifl. The function FK is a #-quasi-
conformal mapping of V onto FK(V) with complex dilatation fx(FK,z)^
(K — 1 /(AT -h 1). Moreover, FK is uniquely extremal for its boundary values (see,

e.g., [12]) so that Kl(FK\ôV)=K. Let &lt;*&gt;,, for j 1,2, map V and FK{V%

respectively, one-to-one conformally onto the unit disk O. By conformai invariance
the mapping FK &lt;f&gt;2 ° FK° ^f1 of D onto itself is uniquely extremal for its

boundary values and Kx (FK \ ô D) K, and, of course, FK \ d D is quasisymmetric.
We shall show that Kq(Fk | d D) &lt; K. If z,, z2, z39 z4 are four distinct points on ô V

following each other in the positive direction, then we temporarily set Z, #i(z,),
Wj=Fk(Zj), and WJ ^2(wJ) for 1 &lt;y &lt; 4. However, M(0(Z,, Z2, Z3,Z4))
M(V{zuz2, z3, z4)) and M(D(WU W2, W39 W4)) M(FK(V)(wuw2, w3, w4))9 and

so we consider only moduli of quadrilaterals in V and FK{V).
We dénote the (internai) angle of V (FK(V)9 respectively) with vertex at the

origin by r\n (rjxn9 respectively), so that 0 &lt; t]x &lt; t\ &lt; 1/2 and

tan rjn K tan y\x%. (2.1)

Hence two opposite angles of V are equal to rjn and the two others are equal to
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(1 — rj)n. The corresponding angles of FK(V) are r\xn and (1 — rj^n. If K &gt; 1 and

r\ € (0, 1/2) are given and rjx e (0, rj) is defined by (2.1) then

(2.2)

(2.3)&lt;l&lt;
A 1 —

For if jc rjn and A(x) (J&amp;f j -rj)n=K arctan (À&quot;1 tan x) - x then A(O) 0 and
h&apos;{x) (Â^2 + tan2 x)-l(K2 - 1) tan2 jc&gt; 0 so that h(x) &gt; 0 for 0 &lt; x &lt; tc/2. This
gives (2.2). Further, (2.2) implies (2.3) whenever rj, rjl e (0, 1/2).

The proof of Theorem 1 falls into two cases:

(i) when the supremum in (1.2) is attained for sonie quadrilatéral Q\ and

(ii) when

Ô D) K0(FK \ÔV)= lim M(.^6*)), (2.4)
M(Q)

where the quadrilatéral Qn with domain V and their images degenerate in
some way. We consider the cases separately.

§3. The attained supremum

Suppose that for some non-degenerate quadrilatéral Q with domain V we hâve

We show then that K$(FK) &lt;K KX{FK). Suppose, on the contrary, that
Kq{Fk) =K and let ^ and ^2 maP Q and FAQ) onto their respective canonical

rectangles (for définitions, see [7, p. 15]). Thus ^i(Ô) can be taken to hâve vertices

0, M(0, M(Q) +1, i, and ^ takes the vertices of the quadrilatéral Q onto the

geometrical vertices of ^,(0. Similarly, for il/2(FK(Q)). But M(FK(Q)) KM(Q)
and hence both the functions FK and ^2°Fko^ï1 ar^ A&apos;-quasiconformal mappings
of $t(Q) onto ^2(^jt(0) taking vertices onto vertices. But by [3, Beispiel 1] or [13,
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p. 18], FK is the unique Â&apos;-quasiconformal mapping having this property. We
conclude that FK \j/2° FK°\l/xl or

Fk°*\ *i°Fk. (3.2)

If we décompose \j/x and \j/2 into their real and imaginary parts as \l/x u{ -h ivx and
ij/2 u + iv9 then (3.2) becomes

Kux (x + iy) + ivx (x + *» u(Kx + (y) + iv(Kx + *».

Thus w(Ajc H- iy) is a harmonie function oî x + iy ïor x +iy eV and, of course,
u{x + (y) is a harmonie function of x + iy for x + ij/e FK(V). This implies that

dx2 dy2 Ôx2 dy2&apos;

ail functions evaluated at any x + iy e FK(V). This yields ô2u/dx2 d2u/dy2 0.

We deduce that the non-constant function \j/2 — u-\- iv is a polynomial in w g Fk(V)
of degree 1 or 2. Since /^(F) is a parallelogram which is not a rectangle - hère for
the first time is this essential fact used - in either case {j/2 cannot map FK(V) onto
a rectangle since the angles at the geometrical vertices of FK(V) would hâve to be

preserved, with at most one exceptional vertex when i/r2 is a polynomial of degree
2. This contradiction shows that (3.1) cannot hold.

§4. The degenerate case; two-point degeneracy

Suppose that {Qn} is a séquence of quadrilatéral with domain Fsuch that (2.4)
holds. By passing to subsequences, if necessary, we may assume that the vertices zjn
for 1 &lt;j &lt; 4 of Qn tend to limit points z, e ôV for 1 &lt;j &lt; 4 as n -&gt; oo and that at
least two of the points zy coincide. Otherwise we hâve an attained supremum, in
which case we hâve already shown that Kq(Fk) &lt; K.

There are four possibilities, up to permutations.

Case I. z, z2 while z,, z3, and z4 are distinct;
Case II. zx z2 ¥&quot; z3 z4;

Case III. zx=z2 Zs^z2\
Case IV. zx=z2 z3 z4.
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To deal with possible permutations we may hâve to pass to conjugate quadrilater-
als, obtained by replacing the ordering zl9z29z39 z4 by zl9z39z4, zx. Thèse permutations,

in effect, replace M{Q) by 1/M(0. Thus we must exclude also the possibility
that

M(FK(Qn))IM(Qn) -&gt; l/K as a -&gt; oo.

It will be évident below that our argument achieves this.

CASE I. Let cpn map V conformally onto the upper half plane H taking
zi,«&gt; Z2,«&gt; Z3,«&gt; Z4,n °nt° an, oo, 0, and 1, respectively. Thus 1 &lt; an &lt; oo and an -&gt; oo as

n-+co. Similarly we set wjn FK{zjn) for 1 &lt;j &lt; 4, and let cpn map FK(V) conformally

onto H9 taking whn, w2)W, w3n9 w4n onto bn9 oo, 0, and 1, respectively. As
before, 1 &lt; bn &lt; oo and bn^oo as n -? oo.

If \jm{a) dénotes the module of the quadrilatéral //(&lt;z, oo, 0, 1) when 1 &lt; a &lt; oo,
then M(Qn) llm(an) and M(FK(Qn)) llm(bn). We estimate m(bn)/m(an) by
using the explicit formula for m(a) and then obtaining an asymptotic estimate for
bn in terms of an and if. By [7, pp. 59-60] we hâve, for 1 &lt; a &lt; oo, that

m(a) M(H(oo9 0, 1, a)) M(H(oo9 0,

where K(t) dénotes the complète elliptic intégral

and r2 \ja. Since AT(O) rc/2 and

l rl
(see, e.g., [8, Problem 90, p. 21]) we hâve

m{a)~-\oga asa-&gt;oo. (4.1)
n

Let Gx and G2 be fixed conformai mappings of V and of ^(F) onto the upper
half plane H taking the points z, and wJ9 respectively, for 1 &lt;j &lt; 4, onto some finite
points. Let Ln and Ln be Môbius transformations taking the points Zjn Gx(zjn)
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and Wjn =G2(wjn) for 1 &lt;j &lt;4 onto an, oo, 0, 1 and bn, oo, 0, 1, respectively.
Then çn= Lno Gx and q&gt;n Ln ° G2. We may assume throughout that

- oo &lt; ZUn &lt; Z2ilI &lt; ZXn &lt; Z4iW &lt; oo and - oo &lt; WUn &lt; WXn &lt; WXn &lt; W4n &lt; oo.

We hâve

ZZJ&quot;2?&apos;2?&gt; (4.2)

so that

flH &lt;?„(;,¦„) ^(Z,,w) ^ &quot; ^^ &quot;

^-&quot;. (4.3)

There are distinct real numbers Z,, Z3, and Z4 so that

lim Z7&gt;/l Zj for 7 1, 3, 4,

while Z2&gt;n -»Z|. Thus, as n -* oo,

«n~C,/(ZM-Zi(1),

where

jzx-z&amp;za-zù
ZZ

is a non-zero real number. Now \î zx is not a geometrical vertex of V we hâve

G~x\Z)=zx + C2{Z-ZX) + O((Z -Z,)2)

as Z-^ZX in H where C2 (Gf1)&apos;^,) is a non-zero complex number. But

and hence

a» «„

as « -&gt; 00, where C3 &gt; 0. Similarly

b =\b I- —
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as n -* oo, where C4 &gt; 0. Now C3 and C4 are independent of n, depending, in fact,
only on the auxiliary transformations Gx and G2 and the distinct points z,, z3, and

z4. Moreover, since wjn FK(zJtn)9 we hâve

1
H&gt;1,« -1 &lt;K

for ail «. We conclude that

0&lt;C5&lt;^ oo,

for suitable constants C5 and Q independent of n. By (4.1),

M(FK(Qn)) logan t

M(Qn) logbn
as n -?oo.

Since K &gt; 1 we hâve K^{FK) &lt; K as required.
Suppose now that Z! is a geometrical vertex of V and that F has the angle rjn

at Zj, so that FK(V) has the angle r\x% at w,. Suppose that Wjn G2(wy&gt;n) -? W} for
l&lt;y&lt;4 as n-+oo. To make notation easier we suppose that Zl Wï

zl=wï= 0. Now Gx~l{Z) - QZ&apos;&apos; as Z -&gt;Z, 0 in H, where C7 # 0. By passing to
a subsequence, if necessary, we may assume that Zln\Zln -? X and ^ w/W2,n -» A as

n -* oo, where — oo &lt; A &lt; oo and — oo &lt; A &lt; oo. Since w,,, FK(zjn) we hâve 4 0

if and only if A 0, and \X\ oo if and only if \k\ oo.

If \X\ |A| oo then, as n -? oo,

Passing, if necessary, to a further subsequence, we may assume that

w \,n k where -~&lt;k&lt;K

as n -* oo. Thus as n -&gt; oo

1 1

- log art ~ log z, „ |,
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- log bn ~ --— log |w,,n | ~ -— log |z,,n | ~ 1
M(FK(Qn))

Since 1 &lt; r\\r\x &lt; K by (2.2), we again see that K0(FK) &lt; K, as required. The case

when k and k are finite, possibly zéro, are similar and so are omitted.
If, instead, V has the angle 1 - r\)n at z,, so that FK{ V) has the angle 1 - r\x )n

at wx, the analysis is similar to the above and now

1 \-r\ 1

M(FK(Qn)) l-
Thus

K) - max

from (23). Hence, in ail subcases arising in Case I, we hâve K0(FK) &lt; K KX(FK).

CASE II. This is similar to Case I. We perforai the same preliminary transformations

to find that

— Z3n)

as n -&gt; oo, where Cx — (Z, — Z3)2 # 0. Thus, as before,

n/M(Qn) - log an - -log \Zhn - ZXn \ - log |Z4,W - ZXn |,

while in a similar fashion,

nlM(FK{Qn)) ~ log bn log | WUn - WXn \ - log | WA,n - WXn |.

As in Case I we find, again by passing to a subsequence if necessary, that each of
the quotients

~loglZM-Z2&gt;wl -log\Z4fn-ZXn\
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tends to a limit k as n -? oo, with k 1, or k r//^, or k; (1 — rç)/(l — rj^. If
fc, =max {1, rjlrju (1 — *?i)/(l — rç)} so that 1 &lt; kx &lt; K then

-log \Zhn - Z2,M| &lt; (*, + o(l))( -log | WIfll - ^2,M |)

and

-log \ZXn -Z4tn\ &lt;(k{ +o(l))(-log \WXn - W^\)

and hence

nlM(Qn)&lt;(Kx+o{\))TilM(FK{Qn)).

Similarly,

n/M(Qn) &gt;(KTl -o(l))nlM(FK(Qn))

and so K0(FK) &lt;kx&lt;K K^(Fk) also in Case IL

§5. Quadruple degeneracy

CASE IV. Suppose that zx lies in the interior of an edge of V. For simplicity,
we assume first that this edge is the lower horizontal edge of V. We shall frequently
assert that various séquences tend to limits and this can always be achieved by
passing to a subsequence if necessary. For ail large n, the points zjn are ordered
from left to right along the edge. Anyj could correspond to the leftmost point, and

we may assume that it is the same j for ail n. Let thèse points also be denoted by
0Ln &lt; /?„ &lt; yn &lt; ôn. To be able to use definite notation, suppose that ocn z3n for ail
n. Then /?w=z4w, yn—zln, and àn=zln. Arguments similar to those presented
below work in ail the other three cases also. Let Ln be the Môbius transformation
of the upper half plane H onto itself taking an, /?„, yw, and èn onto 0, 1, an, and oo,

respectively. Hère an e(l, oo) is determined by the cross ratio of the points zjn.
Write an FK((xn) and so on, and let Ln be the Môbius transformation of H onto
itself taking aw, /?„, yn, and ôn onto 0, 1, bn, and oo, respectively. We hâve

Ln(V) a H and Ln(FK(V)) a H. Clearly, for ail large n, the set ôLn(V) contains
— oo, An] v[Bn, oo] where —oo&lt;Af&lt;An&lt;Bn&lt;Bf&lt;0 and A&apos; and Bf are inde-

pendent of w, and furthermore Bn— An-*0 as «-?oo. We may assume that

An-+A e — oo, 0) so that Bn-&gt;A also. In fact, for any e &gt; 0 there is an integer n0

such for ail n&gt;n0, the set H\Ln(V) is contained in an €-neighbourhood of A.
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Similarly, we may assume that there is a point A e - oo, 0) such that H\Ln(FK(V))
tends to A in the above sensé.

We may assume that an --&gt; a e [ 1, oo] and bn -&gt; b e [ 1, oo]. Now
M(Qn) M(Ln(V)(0, 1, an9 oo)), and M(^(ÔJ) M(L,(F^(F))(0, 1, fc,, oo)). We
shall show that

and, for a similar reason, M(ZW(F*(F))(O, 1, bn&gt; oo))/M(//(0, 1, éw, oo)) -? 1 as

n -? oo. Now M(H(0, 1, aw, oo)) \/m(an). We show below that m{an)jm{bn) -&gt; 1 as

A* -? oo, which then implies that

as desired. (In the particular case considered now, it turns out that an=bn.
However, in other similar cases we need not hâve equality but something weaker.)

We first study the relationship between an and bn. We hâve

W4n -Z ~ Zl,n *4,n ~ ^,n W - W2jK W4n

and

7 |

^ ~ Kn

where

J? _ Z4,m ~ Z2,n
J\n —

Z4,n — Z3,n

Since, in this particular case, wjn =Kzjn, we obtain that

as asserted above. Hence m(an)lm(bn) 1.

Consider then the relationship between M(Ln(V)(0,1, an9 oo)) and

M(//(0,1, aw, oo)). If 0M -&gt;a € (1, oo) then it follows from the convergence proper-
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ties of the conformai module [7, p. 27] that M(Ln(V)(0, \,an, oo)) -&gt;

M(i/(0, l,a9 oo)) €(0, oo). Since, in any case, \/K&lt; M(FK(Qn))/M(Qn) &lt;K we
further see that a 1 if and only if b 1, and a oo if and only if b oo. So if
1 &lt; a &lt; oo then 1 &lt; b &lt; oo, and similarly to the above, M(Ln(FK(V))(0, 1, £„, oo))

-+M(H(0, 1, è, oo)) e (0, oo). Since an=bn, we hâve « 6, and so

M(FK(Qn))
_

M(Ln(FK(V))(0, 1, &amp;„, ex))) M(//(0, 1,6,00))
M(ÔJ M(LW(F)(0,1, *„, 00)) ~*M(H(09 1, a, 00))

&apos;

as desired. We next consider the case a b 1. The case a =b 00 can either be

dealt with in the same way, or reduced to the case a b 1 by passing to conjugate
quadrilatéral, which does not affect the assumption of Case IV that ail the z7

coincide.
Let {//„ be the conformai mapping of Ln(V) onto H fixing each of 0, 1, and 00.

If \lfn(an) cn then M(Ln(V)(0,1, an, 00)) M(//(0, 1, cn9 00)). By the discussion in
§4 before (4.1), we hâve

21og
&apos;a-1

Thus to show that

M(Ln(V)(0,l,an,œ)) ^

we need to demonstrate that

as n -* 00.

Let co(y, 2, /)) dénote the harmonie measure of the set y czôD at the point z e D
with respect to the domain D. We hâve for 1 &lt; a &lt; 00,

1 1 a -1 a — 1

g&gt;(( 1, a), U H)=- (arctan a — arctan 1) - arctan ~ ——
% n a 4-1 2k
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as a -? 1 +. If Z X + iY, |Z - î| &lt; 1/4 and 1 &lt; a &lt; 2 then

a), Z,H)=-[ arctan —— arctan ——
n \ Y Y

1

so that for ail those Z and a,

1 o((l,fl),Z,ff)
C~ a-1

for some absolute constant C &gt; 1. For every e &gt; 0, there is an integer n0 such that
if n &gt; n0 then

H\{Z :\Z-A\&lt;€}czLn(V)czH.

Let D€ be the domain whose closure is H\{Z : |Z — A\ &lt;e}. It follows that for

©((1, flj, i, A) &lt; œ(d, cj, ^(0, *0

co((l, fl|l), /, Ln(V)) &lt; co((l, aj, i, H)

as « ^ oo. Since i/^w(0 -&gt;i as « -? oo, we hâve

1 0^(1,^^(1), g)
C- cn-\

for ail large «. We only need to show that

for some fixed Cx &gt; 0, for ail large n, to deduce, in view of ail of the above, that
log (M(aH - 1)) - log (\l(cn - 1)) as n -* oo.

The map
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takes D€ conformally onto H, taking i, 1, and an onto

respectively. Choose a small but fixed 6 &gt; 0 so that A ± e ^ — 1. If ln is the open
interval with endpoints c3 and c4n then we obtain

co(( 1, an\ U A) &lt;In, ci + ic2, #)
Ci — C4n Ci — C3

arctan -J M _ arctan -i

arctan
c2 + (cx - c4j(c} - c3)c2 l &gt;Cl\c3-c4J

an~(A-e)
^A€ÇX\\ -an\\an-A + A2-e2-anA\

__

(\-(A-e))2(an-(A-e))2
l]a&quot; &apos;

for some positive constants Cx and C2 that dépend only on A9e, and the distance

of A — e from — 1. This complètes the proof that log \l{an — 1)) ~ log l/(cn — 1))

as « -? oo, as desired.

We indicate briefly the changes to be made when z, lies in the interior of a

non-horizontal side of V. We map V and FK(V) by rotations and translations so

that this non-horizontal edge becomes a segment of the real axis and the images of
V and FK(V) lie in H. It only matters how the transformation of the map FK looks
like in a neighbourhood of the image of zx. A calculation shows that in the case of
the right non-horizontal side, the map corresponding to FK is given by

x + iy t-»

which for j 0 gives x \-* K&apos;x where

Recall that a + /jS is one of the vertices of V. Since the change of the module M(Qn)
only dépends on the boundary mapping, we are reduced to considering an affine
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stretch by a factor not exceeding K. Hence ail the previous arguments in the case

of a horizontal side can now be followed. We leave any further détails to the reader.

Suppose then that z, is a geometrkal vertex of V. To fix ideas, we first consider
the case when z, 0. The map P\(z) =zlh takes Vconformally onto a subset of H
so that the points P\(zJjn) lie on the real axis R close to the origin. Let thèse points
be an &lt; fin &lt; yn &lt; ôn. One of thèse points may be equal to 0, and some may be

positive and some négative. Without loss of generality, we suppose that
an &lt; fin &lt;0&lt;yn &lt;ôn and that aw Px(z3n) for ail n. AH other cases are similar. Let
Ln be the Môbius transformation of the upper half plane H onto itself taking aw, /îw,

yn9 and ôn onto 0, 1, an, and oo, respectively. Hère 1 &lt; Ln(0) dn&lt;an&lt;oo. Then

Ln(P{(V)) czH. We perform the corresponding auxiliary maps on FK{V). In
particular, we take P2(w) wlh] and choose the Môbius transformation Ln of H in

a suitable way. Then we consider %n Ln ° P2 ° FK° Pf1 ° L~\ which is a (Krj/rjy)-
quasiconformal mapping of Ln(Px(V)) onto Ln(P2(FK(V)) fixing 0, 1, and oo. We

may assume that the maps xn tend to a (Krjlrjx)-quasiconformal map x of H onto
itself, first locally uniformly in the spherical metric. We assume further that
dn -+d e [1, oo] and that dn xn(dn) -&gt;d e [1, oo]. Again there is A e — oo, 0) such

that for any given e &gt; 0, with D€ defined as before, xn is defined in D€ and tends to
X uniformly in the closure of De. It is shown as above that in the limit it does not
matter, for the purpose of determining K0(FK)9 that xn ls defined in a subset of H
rather than in ail of H. Thus the value of lim^^^ M(FK(Qn))IM(Qn) dépends only
on an and bn, as before.

We set

Z 4,«

and

We may assume that Rn -+R e [1, oo] and Rn -+R e [1, oo] as n -&gt; oo. A calculation
shows that

Xn(Z)=Rn
1

— w2,n W3,n

For Z g — oo, A —e)u(dn, oo], the application of FK above amounts to multiplication

by K. We assume that R and R are finite. One can check that R oo if and
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only if R oo, and this case can be reduced to the case when R is finite by passing
to conjugate quadrilatéral. Now we obtain

where

/tj nm - 77— j, /-2==

We may assume that thèse limits, possibly infinité, exist. We may further assume
that zXnjz2n -&gt; A4 e C\{1}, say (since z3njz2n has constant argument différent from
0 modulo tt). Now it is easily seen that A3 is a finite non-zero complex number.
Next, clearly Aj and À2 are both zéro, or both infinité, or both finite and non-zero.
In the second case, x will not be a homeomorphism, which is impossible. In the two
other cases, the restriction of x to — oo, A — €)u(dn, oo] can be written as

P3oPoP4 where P3 and P4 are Môbius transformations while P{Q Kxh^nh\
used hère for &gt; 0.

Note that wl2hnl - w^1 &gt; 0 and that Â3/À2 1 - kljn e R. An analysis similar to
the one above shows that for A + € &lt; Z &lt; dn9 we hâve

X(Z) R(l + [A, + C7|A2 + JU3/(Z - JQI^]-1),

where C7 (JçW(eII|*))1/l&apos;1 -[^cos (rjn)lcos (r\xn)]xlnK This function / has the same

décomposition as above with the same P3 and P4 but with P replaced by

0(0 -[ATcosC^/cos^TcM^lfl^&apos;,

used hère for f &lt; 0. Since € is arbitrary, we hâve found the boundary behaviour of
X-

The function x changes the module of any quadrilatéral with domain H by at
most the same factor as the function h given by h(x) P(x) for x &gt; 0 and

h(x) Q{x) for x &lt; 0. We compose h with conformai mappings of H onto the strip
S {x + iy :0&lt;y &lt;n} and note that the function g(z) logh(ez) taking dS onto
itself is given by g{x)=px-\-q, where p^rjjrjx and ^f ^f1logA^, and by
g(x -^ in) px + q + y\î1 log(cos (r/7t)/cos Oh^)) + /7l&gt; f°r aU rea^ x- A calculation
shows that g coincides with g\° FK°g2l on ôS, where gi(z) enz and g2(z) ^&apos;^
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are conformai maps of S onto the angles Sx {z : 0&lt;argz &lt; yn} and

{z : 0 &lt; arg z &lt; rjx n}, respectively. Reich [9, §111.3, p. 123] has shown that the affine
stretch FK is not extremal for its boundary values in Sx, and so there is K2&lt;K such

that FK | dSx has a A^-quasiconformal extension to Sx. This can be lifted to a

^-quasiconformal self-map of S with boundary values g. Therefore, the function h

has a ^-quasiconformal extension to H. It follows that h can change the module
of any quadrilatéral by the factor K2 at most.

We now return to the numbers an and bn. As before, we hâve a 1 if and only
if b 1, and a oo if and only if b — oo. So if 1 &lt; a &lt; oo then 1 &lt; b &lt; oo, then the
above implies that Kq(Fk) &lt; K2&lt; K KX(FK). The cases a \ and a oo are

similar, so we only consider the case a 1. Then also d d b 1. We note that
if 6, &gt; 0 then there is an integer n0 such that for ail n&gt;n0, the function xn restricted

to the extended real axis apart from a small interval around the point A, and
defined in a suitable way in this small interval, can be extended to a (K2-\-€{)&apos;

quasiconformal mapping of H onto itself. Hence M{FK{Qn))/M(Qn) &lt; K2 -f e,, and

so, again, #0(^) &lt;K2&lt;K KX(FK).
When Zj is a geometrical vertex of V other than the origin, similar considérations

can be foliowed, the only possible différence being that t\ and r\x are replaced

by 1 — rj and 1 — rjl. The only important thing about rj and r\x was that (2.2) holds,
and now we use its counterpart (2.3) to get the desired conclusion. This complètes

our treatment of Case IV.

§6. Triple degeneracy

CASE III. We give only a sketch of the proof in this case, leaving the détails to
the reader. Consider first the case when z, lies in the interior of some edge of F, and

suppose that it is the lower horizontal edge. We map F by a linear real polynomial
onto a subset of H taking the leftmost and rightmost of the points z, „, z2w, and z3 n

onto 0 and 1. For large n, z4rt will go to a point, possibly non-real but in H, close

to infinity in the spherical metric. We then map the image of V conformally onto
H, fixing 0 and 1 and taking the image of z4w to oo. The séquence of thèse maps
tends to the identity map. We pick a segment, S say, such as [ — 1,2], which
contains [0, 1] and is mapped by each such function onto a segment of IR containing
a fixed segment [c, d] with c &lt; 0 and d &gt; 1. In 5, each such map can be approxi-
mated by a linear mapping with non-zero derivative. We perform analogous
transformations to FK(V). Then we proceed as in Case IV, the only différence being
the use of the auxilliary conformai maps of a subset of H onto H. It can be verified

by a straightforward, though tedious estimation that this does not make any
essential différence.
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When zx lies in the interior of some other edge of V or is a geometrical vertex
of F, we again proceed as in Case IV, using power maps and linear maps, the only
différence being that we again also use auxiliary conformai maps taking a suitable
subset of H onto H, thèse conformai maps being close to the identity map and

being almost linear in a neighbourhood of [ — 1, 2], say. This concludes our sketch

of the treatment of Case III.

§7. The affine stretch of other domains

It is clear that the above reasoning is valid for the affine stretch of a wide class

of domains A, say. In the case of non-degenerating quadrilaterals when

K0(FK | dA) M(FK(Q))/M(Q) for some quadrilatéral Q we require two things:

(a) that the affine stretch of A is uniquely extremal for its boundary values. This
is certainly the case when A has finite area [12];

(b) the mapping ^2 of FK(Q) (which, as a set, is the same as FK{A)) onto its
canonical rectangle is not a polynomial of degree one or two. This is true
for almost ail domains A.

For degenerating quadrilaterals it is sufficient that the boundary of A consists of
a finite number of straight Une segments meeting in angles différent from n/2.
When, for example, the four vertices of Qn degenerate to a single point z, then

(c) if Zj is an interior point of a side of A then locally A looks like the upper
half plane H where the affine stretch is not extremal for its boundary values;

(d) if Zj is a geometrical vertex of A then locally A looks like an angle

{z : 0 &lt;argz &lt;a}. Once again the affine stretch is not extremal for its

boundary values (see, for example, [9, p. 124]).

In items (c) and (d) it is the lack of extremality that is needed, rather than the

lack of unique extremality.
It seems reasonable to suppose that the above considérations apply also to

bounded domains A with sufficiently smooth boundary (possessing a tangent at

every point) or to domains whose boundary consists of a finite number of smooth

arcs intersecting in non-zero interior and exterior angles. The technical difficultés
involved would make our proofs of thèse suggestions rather complicated. But we

point out that if dA has a sharp enough cusp, at z 0, say, then our method would

certainly fail. An example of Reich [10, p. 82] is as follows. Let Ax be the région
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{x + iy:y&gt;max {C, |jc|&apos;}, x e R}, (7.1)

where C &gt; 0 and /? &gt; 1 are constants. Then the affine stretch of Ax is

(e) not extremal for its boundary values if /? 1;

(0 extremal but not uniquely extremal for its boundary values if 1 &lt; j8 &lt; 3;

(g) uniquely extremal if jS &gt; 3.

Thus if the cusp of dA at z 0 is sufficiently sharp then the mapping w — \\z
might map A locally near z 0 onto a région given by (7.1) with fi &gt; 3, say. Our
method then fails, though it is now possible that KX(FK \ dA) K0(FK | dA). Pre-

sumably in this case the supremum in K0(FK \ôA) is nevertheless attained only in
the limit as the vertices of the quadrilatéral degenerate to the cusp.

What really matters in the degenerate case is that when one looks at the limiting
fonctions obtained, after suitable renormalization, and the limiting domains ob-
tained then thèse functions are, to within pre- and post-composition with Môbius
transformations, équivalent to the affine stretch in domains where the affine stretch
is not extremal for its boundary values. Call such functions &lt;PK. Thus in such

domains Ax there is a number K2&lt;K such that KX($K \ ÔAX) &lt; K2 &lt; K while in A

itself we hâve KX(FK \dA) K. An example of this is the angle {z : 0 &lt; arg z &lt; a}
mentioned above where K2 1 + k2)/( 1 — k2) &lt; K. Hère k2 &amp;|sin a|/a and

It also seems likely that the modules of the polygons introduced by Jenkins in

[4] will not suffice to détermine the minimal maximal dilatation Kx(f) of a

quasiconformal extension of a homeomorphism/of &lt;9D onto itself if the number of
vertices of the permitted polygons remains bounded. Jenkins [4, Theorem 1, p. 931]

has shown, however, that if arbitrarily many vertices are permitted then such

modules will suffice (more precisely, instead of modules in the sensé that we hâve

discussed them, one considers solutions of suitable extremal problems for path
families).
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