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Convexité en topologie de contact

EMMANUEL GIROUX

Introduction

Cet article aborde I’étude de la convexité en géométrie de contact, telle qu’elle
a été définie dans [EG]: une structure, symplectique ou de contact, est dite convexe
si elle est conformément invariante par le gradient d’'une fonction de Morse propre.
Pour les variétés symplectiques, cette propriété joue le role qu’occupe la pseudo-
convexité stricte dans les variétés analytiques complexes. Elle ne peut, par exemple,
étre vérifiée que sur des variétés ouvertes ayant le type homotopique de polyédres
de dimension moitié et, dans [EG], Ya. Eliashberg et M. Gromov montrent
comment elle tempére la géométrie et interdit certains phénoménes exotiques (voir
aussi [Gr] et [El1]). En géométrie de contact, la situation se présente différemment.
D’abord, les structures usuelles, sur les espaces de jets d’ordre 1, les sphéres et les
variétés d’éléments de contact, sont toutes convexes (voir 1.4.C). Ensuite, les
résultats qu’on obtient ici font apparaitre qu’en dimension 3, il existe de nom-
breuses variétés de contact convexes. En particulier, certaines structures exotiques
découvertes par T. Erlandsson et D. Bennequin (voir [Be]) sont convexes; de fait,
on ne connait aucun exemple de structures non convexes.

La démarche adoptée est la suivante: étant donné une fonction de Morse propre
f sur une variété V' de dimension 3, on essaie de construire sur V une structure de
contact £ qui soit invariante par le flot d’un gradient X de f. L’étude des champs de
contact (i.e. des champs préservant une structure de contact) montre que, si cette
structure ¢ existe, la surface C des points de ¥ ou X est tangent a ¢ doit satisfaire,
vis-a-vis de f, aux conditions suivantes (Proposition 1.4.5):

(i) fic est une fonction de Morse propre;
(ii) les points critiques de f sont tous sur C et sont exactement les points
critiques de f,c;
(iii) f et fic ont les mémes extrema locaux.

Une fonction de Morse n’admet pas toujours de surfaces vérifiant ces propriétés
(voir IV.1.B). Néamoins, on peut la modifier, en ne lui ajoutant souvent que des
points critiques d’indices 1 et 2 en position d’élimination, pour qu’une telle surface
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C existe (Théoréme IV.2.7). Par ailleurs, la donnée de C permet effectivement de
construire la structure de contact £ voulue (Théoréme II1.1.2). Pour obtenir celle-ci,
on met sur chaque anse une structure induite par plongement dans un modéle bien
choisi sur R*. La difficulté est d’ajuster ces plongements pour pouvoir recoller les
morceaux: ce probléme est localis¢ le long de certaines faces des anses. Or, au
voisinage d’une surface, une structure de contact est entiérement décrite par le
feuilletage (singulier) de dimension 1 qu’elle trace sur la surface. De plus, chaque
surface considérée ici, correspondant & un niveau régulier de f, se trouve, par
construction, étre transverse dans R® 4 un champ de vecteurs qui préserve la
structure modele et tient le role du gradient de f. Le point crucial est alors de
comprendre comment, lorsqu’on bouge la surface par isotopie tout en la
maintenant transversale a ce champ, on modifie son feuilletage (Proposition I1.3.6).
A ce point, une structure de contact convexe apparait comme géométriquement
descriptible par un nombre fini de ces feuilletages, portés par les différents niveaux
réguliers de la fonction et déterminés seulement aux modifications précédentes prés.

Parmi ces modifications possibles du feuilletage, figure ’élimination de paires de
singularités (Lemme I1.3.3). On peut ainsi étendre un résultat de Ya. Eliashberg qui
permet de supprimer certains points complexes sur une surface contenue dans le
bord pseudo-convexe d’un domaine holomorphe (voir [Ell], Théoréme 6.1 et [EI2]).
Pour cela, au lieu de la théorie des courbes holomorphes sur les variétés symplec-
tiques de dimension 4, on utilise le fait remarquable suivant (Proposition 11.2.6):
dans une variété de contact de dimension 3, une surface posséde génériquement un
champ de contact transverse. Grace a cette propriété d’invariance, le probléme
d’élimination reléve de la géométrie symplectique des surfaces.

Les problémes étudiés dans cet article m’ont été exposés par Yasha Eliashberg
lors de conversations merveilleusement enrichissantes pour moi; je I’en remercie
vivement. Je remercie également Frangois Laudenbach et Jean-Claude Sikorav pour
leurs nombreuses remarques et suggestions pertinentes a propos de ce texte.

I — Notion de convexité
1. Définitions préliminaires
A. Structures symplectiques et de contact
Une structure symplectique sur un espace vectoriel V' de dimension 2n est une

2-forme extérieure w dont la puissance extérieure n-iéme est non nulle. L’orthogonal
d’un sous-espace W de V est le sous-espace {v € V | VYw € W, w(v, w) = 0}.
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On dit que W est coisotrope s’il contient son orthogonal. Noter que, si ¢ est un
réel non nul, cw est encore une forme symplectique et que ’orthogonal de W est le
méme pour w et cw.

Une structure symplectique sur un fibré vectoriel de rang pair est un champ de
formes symplectiques sur ses fibres.

Une structure symplectique sur une variété V de dimension 2n est une 2-forme
différentielle fermée w qui induit sur chaque espace tangent une forme symplec-
tique.

Une structure de contact sur une variété V de dimension 2n + 1 est un champ
d’hyperplans ¢ complétement non intégrable, c’est-a-dire défini localement par une
1-forme o telle que ¢ A (do)” ne s’annule jamais. Autrement dit, doy, est en tout point
une forme symplectique. La multiplication de a par une fonction f partout non nulle
change du en f - do;, de sorte que ¢ est muni d’une structure symplectique conforme.
On remarque aussi que, si n est pair, & est naturellement orienté tandis que, si » est
impair, V est naturellement orientée. Dans tous les cas, toute orientation transverse
de & (il en existe si et seulement si £ admet une équation globale a = 0) oriente a la
fois & et V.

B. Feuilletages singuliers de dimension 1

Dans ce texte, on appelle feuilletage singulier (de dimension 1) sur une variété M
de dimension m un feuilletage & défini par un atlas {U, X;} ou: {U,} est un
recouvrement de M, X; un champ de vecteurs sur U, et, pour tout (i, ), il existe une
fonction partout non nulle f; sur U;,n U, telle que X; = f; X;.

Remarque 1.1. Si chaque U, est muni d’'une forme volume 6;, la donnée de X;
équivaut a celle de la (m — 1)-forme i(X;)0; (produit intérieur de 6, par X;).

On dit qu’un champ de vecteurs X sur M dirige & si, pour tout i, il existe une
fonction f; partout non nulle sur U, telle que X =f,X;; on dit que & est orientable
si un tel champ existe.

C. Feuilletage caractéristique d’une hypersurface

Soit S une hypersurface dans une variété de contact (¥, £) de dimension 2n + 1.
La trace sur ¢ du fibré tangent a S détermine une distribution (de rang non
constant) de sous-espaces coisotropes dans {s. La distribution orthogonale pour la
structure symplectique conforme de ¢ est de rang 0 sur le lieu singulier £ ou ¢ est
tangent a S, et de rang 1 ailleurs. Elle définit un feuilletage singulier, au sens de B,
qu’on appele feuilletage caractéristique de S. Localement, si 6 est une forme volume
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sur S et f la 1-forme induite par une eéquation de &, le feuilletage caractéristique est
défini par le champ X tel que i(X)0 =B A (dBf)”~'. On vérifie facilement que le
feuilletage caractéristique de S est orientable si et seulement si le fibré normal de S
est isomorphe au fibré quotient (TV/¢),s.

Remarque 1.2. Hors du lieu singulier X, le feuilletage caractéristique & de S a
une structure de contact transverse, ({ N 7S)/%, invariante par holonomie (voir
[McD]). Sur Z, TS|s = {5 a une structure symplectique conforme, invariante par les
champs locaux qui dirigent & (voir 2.C).

2. Hypersurface caractéristique d’un champ de contact
A. Champ de contact

Soit (V, &) une variété de contact.

DEFINITION 2.1. On appele champ de contact sur (V, &) tout champ de
vecteurs dont le flot préserve &.

Il est bien connu (voir [A]) que:
PROPOSITION 2.2. Les champs de contact sur (V, &) sont en correspondance
bijective avec les sections du fibré normal a &, TV |E. Autrement dit, toute section de

ce quotient se reléve en un unique champ de contact.

COROLLAIRE 2.3. Tout champ de contact donné localement se prolonge
globalement.

Remarque. En présence d’une équation de &, i.e. d’une trivialisation de TV/¢,

une section de TV /¢ n’est autre qu’une fonction appelée hamiltonien du champ de
contact correspondant.

B. Hypersurface caractéristique

Soit X un champ de contact sur (V, ).

DEFINITION 2.4. On appele hypersurface caractéristique de X 1’ensemble
C = C(X) des points ou X est tangent a &.

Sur I’espace des champs de vecteurs (muni de la topologie C*), la propriété
d’avoir une réduction modulo ¢ transverse a la section nulle de TV/¢ est générique.
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Dans ce cas, par abus de langage, on dira que le champ est générigue. Son
hypersurface caractéristique est alors réguliére.

PROPOSITION 2.5. Si X est générique, X est tangent a son hypersurface
caractéristique C et dirige le feuilletage caractéristique de celle-ci.

Démonstration. Le flot de X préserve X et &, donc C, de sorte que X est tangent
a C.

Soit maintenant x un point de C et a une équation locale de ¢ prés de x.
L’hypersurface C est définie localement par I’équation i(X)x = 0 (réguliére puisque
X est générique). Par ailleurs, comme X est de contact, la dérivée de Lie de o vérifie:
L(X)a = ga pour une certaine fonction g. Pour v € T,Cn¢&,, on a alors:

do(x) + (X(x), v) = (LX) - © = (@i(X)o)(x) - v
= (ga)(x) - v — (di(X)a)(x) - v =0

car les deux termes sont nuls. Ainsi X(x) est orthogonal a2 T,.C n¢,.
De plus, si X(x) =0, on a:

(L(X)a)(x) = (ga)(x) = (di(X)a)(x).
Donc £ est tangent a C en x. O

Remarque. Si & est transversalement orientable, il existe des champs de contact
X dont ’hypersurface caractéristique est vide; ce sont les champs transverses a ¢, i.e.
les champs de Reeb associés aux diverses équations de ¢£.

EXEMPLE 2.6. Tout champ de contact X non singulier ou a singularités non
dégénérées est générique.

Démonstration. Soit a une équation locale de &; on veut montrer que d(i(X)a)
est non nul en tout point ou i(X)x est nulle. Comme X préserve £, L(X)x = ga pour
une certaine fonction g. Par suite, di(X)a = ga — i(X) da.

Si X est non singulier en x € C, (i(X) da)(x) est non proportionnelle a a(x) car
da(x) est non dégénérée sur &,. Ainsi, d’apres 'expression de la dérivée de Lie,
di(X)a est non nulle en x.

Maintenant, si X a en x une singularité non dégénérée, son linéaris¢ 4, : T,V —
T.V est inversible. Alors la forme (di(X)a)(x), qui est égale a a(x) o 4,, est non
singuliére. O

C. Singularités des champs de contact

Remarques. (a) Les singularités d’'un champ de contact sont portées par son
hypersurface caractéristique.
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(b) La divergence d’'un champ de vecteurs en un point singulier ne dépend pas
du volume local avec lequel on la calcule: c’est la trace du linéarisé.

PROPOSITION 2.7. Soit (V, &) une variété de contact de dimension 2n + 1 et
soit X un champ de contact générique. A toute singularité x de X est associé un réel
non nul ¢ = c(x) (coefficient de contraction) ayant les propriétés suivantes:

(1) (n + 1)c (resp. nc) est la divergence de X en x (resp. de X\c en x);

(i1) pour toute équation locale o de &, qui induit une forme B sur C, on a:

(L(X)a)(x) = ca(x) et (L(Xc) dB)(x) = c dB(x).

Démonstration. Comme X est de contact, L(X)a = g pour une certaine fonc-
tion g; ainsi, s’il existe, le coefficient cherché est ¢ =g(x). Or, comme X est
générique, g(x) est non nul. Par ailleurs:

L(X)do =dL(X)x =dg A a + g da.

Comme f(x) =0, on a bien: (L(X|c) dB)(x) = c dB(x). Maintenant, pour voir que ¢
ne dépend pas du choix de a il suffit de montrer (i). Mais comme a A (dx)” et (dB)”
sont des volumes locaux respectivement sur ¥ et C. (i) résulte des expressions
ci-dessus par dérivation d’un produit. Par exemple:

L(X)(a A (dx)") = (L(X)a) A (do)" + a A L(X)(da)”

=ga A (do)"+no A L(X)do A (dx)" "' =(n + 1)ga A (dox)”.
4

COROLLAIRE 2.8. Si x est une singularité d’un champ de contact générique, la
valeur propre transverse a C (I’espace tangent a C est stable) est égale a c.

COROLLAIRE 2.9. On suppose que X est, pour une certaine métrique, le
gradient d’une fonction f qui a en x un point critique de Morse d’indice i. Si c(x) est
positif (respectivement négatif ), alors i est au plus égal a n (resp. au moins égal a
n+1).

Démonstration. Soit a une équation de ¢ prés de x et f la forme induite
sur C.

La forme df(x) est une forme symplectique sur 7, C. Si c(x) est positif, I'espace
tangent en x a la vari€té stable de Xic est de dimension i, car la valeur propre
transverse est positive; de plus il est nécessairement isotrope, c’est-a-dire contenu
dans son orthogonal symplectique (voir la remarque de 4.3). Par suite, i est au plus
égal a n. De méme, en raisonnant sur la variété instable, on voit que, si ¢(x) <0,
alors i=n+1. O
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3. Hypersurfaces convexes
A. Définition, exemple

DEFINITION 3.1. On dit qu’une hypersurface S plongée dans une variété de
contact (V, ¢) est convexe s’il existe un champ de contact transverse a S.

Une hypersurface convexe est donc transversalement orientable, c’est-a-dire que
ses voisinages tubulaires sont diffeomorphes a S x R. Par ailleurs, tout germe de
champ de contact le long de S, qui est transverse a S, se prolonge en un champ de
contact global. L’étude des hypersurfaces convexes est donc étroitement liée a celle
des structures de contact sur S x R invariantes par le champ vertical 0/0t, ou ¢
désigne la coordonnée sur R.

EXEMPLE 3.2 (Contactisation d’'une variété symplectique exacte). On dit
qu’une variété symplectique (W, w) est exacte si w est la différentielle d’'une 1-forme
B appelée forme de Liouville. Par dualité symplectique, il revient au méme de dire
qu’il existe sur W un champ de vecteurs X, appelé champ de Liouville, dont le flot
dilate w exponentiellement: L(X)w = w. Si (W, o = df) est un variété symplectique
exacte, la forme f + dt définit sur W x R une structure de contact verticalement
invariante. En outre, le champ de Liouville X, w-dual de B, dirige le feuilletage
caractéristique des hypersurfaces W x {t}, t € R.

Remarques 3.3. (a) La structure de contact ainsi obtenue dépend non seulement
de la structure symplectique w mais aussi de la primitive f choisie. On observe
cependant que, si on change B en f +dh, ou h est une fonction sur W, le
diffétomorphisme ¢ : W x R—» W x R, donné par ¢(x,t) =(x,t + h(x)), vérifie
O*(B + dt) =(B + dh) + dt. 11 établit donc un isomorphisme entre les deux struc-
tures de contact.

(b) Si H < W est une hypersurface transverse a X, la forme induite par  sur H
est de contact. En effet, B A (dB)" ! = (1/n)i(X)w" induit sur H une forme volume.

B. Structures de contact verticalement invariantes

Soit S une variété de dimension 2n. Une structure de contact &, transversalement
orientable et verticalement invariante sur le cylindre S x R, se laisse définir par une
équation globale f +udt =0, ou B et u sont respectivement une 1-forme et une
fonction sur S telles que:

la forme 6 = (df)" ~' A (udf + nB A du) ne s’annule jamais sur S. (*)

En fait 0 Adt =(f +udt) A (d(f + ud))".
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On observe que:

(1) L’ensemble 2 d’équation u =0 est la trace sur S x {0} de I’hypersurface
caractéristique du champ 0/d¢; c’est une hypersurface réguliére sur laquelle f induit
une forme de contact car, le long de X, (%) s’écrit (dB)" ' A B A du #0.

(2) Sur louvert Q@ = S\Z, ¢ est encore défini par B/u +dt =0 et on a: 0 =
u"*(d(B/u))". Ainsi (Q x R, &) est la contactisation de la variété symplectique
exacte (Q, d(B/u)).

Soit Y le champ tangent a S défini par:

B A@p)"~'=i(Y)e. (%)

Ce champ dirige le feuilletage caractéristique de S x {0} (voir 1.C) et vérifie les
relations ci-dessous.
(3) Sur 2 : Y -u= —1/n. En effet:

BA@p)"'=—ni(D)ldu nB A(@p)" 1= —n(Y -w)p A(@h"",

car i(Y)[B A dB" '] =0.
(4) Sur Z, soit X le champ de Liouville de f/u défini par f/u = i(X) d(f/u); on
a:

X =nuY.

En effet:

i(X)0 =u"™ ’i(X)(d(—B—))n =nu"t! b A (d(é))n_l =nuf A (dp)"~".
u u u

PROPOSITION 3.4. Soit S une variété fermée de dimension 2n et soit ¥ un
feuilletage singulier de dimension 1 sur S (voir 1.B). Il existe sur S x R une structure
de contact verticalement invariante qui induit & comme feuilletage caractéristique sur
S x {0} si et seulement si il existe dans S une hypersurface X transverse a F (évitant
en particulier les singularités de F) telle que:
(i) le complémentaire S’ d’un voisinage tubulaire ouvert de X, dont les fibres sont
dans ¥ , est une variété symplectique exacte dont un champ de Liouville dirige
F et sort transversalement sur le bord,

(ii) linvolution du revétement double 0S’ — X, obtenue en suivant les feuilles de
a travers le tube, préserve la structure de contact induite sur 0S’ (voir la
Remarque 3.3b) mais renverse son orientation transverse.
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Démonstration. On suppose d’abord qu’il existe sur S x R une structure de
contact ¢ verticalement invariante qui induit & comme feuilletage caractéristique
sur S x {0}. L’intersection X~ de S avec I'’hypersurface caractéristique du champ
d/0t est une hypersurface de § transverse a & (voir (1) et (3) ci-dessus). Sur
Q =S\2, le champ vertical est transverse a &, donc ¢ est transversalement ori-
entable et défini par une unique équation f + dt =0, ou f est nécessairement une
forme de Liouville sur Q. En utilisant des équations locales prés de X et les
relations (3) et (4) ci-dessus, on voit que le champ de Liouville X associé¢ a f sort
le long de 0S’, si S’ est choisi comme dans I’énoncé. Enfin, la structure de contact
¢’ définie par f sur 0S’ est la trace sur S’ de la structure de contact transverse a
Z et invariante par I’holonomie de % . Il en résulte que I'involution du revétement
0S’ — X préserve &’; mais, comme X change de sens au passage de X, I'orientation
transverse de ¢’ est renversée.

Inversement, on suppose maintenant les conditions (i) et (ii) remplies. On
désigne par dff la structure symplectique exacte sur S’ dont le champ de Liouville
X dirige & et sort le long de 0S".

LEMME 3.5. On peut supposer que:
(il)" Pinvolution du revétement 0S’— X renverse la forme induite par f sur
0S’.

Démonstration. Soit S’ la variété obtenue comme suit: on recolle sur S’ le
cylindre 45’ x [0, oo[ le long de S’ =3dS’ x {0}, en raccordant X avec le champ
d/0r ou r est la coordonnée sur [0, oco[; on note encore X le champ étendu. Si n
désigne la 1-forme induite par B sur 4S’, on prolonge f & S’ en posant § = e'n sur
08’ x [0, oof. Alors (S, df) est une variété symplectique exacte dont le champ de
Liouville est X.

Soit maintenant t l'involution du revétement 0SS’ — Z; par hypothése, il exist
une fonction négative sur 0S’, notée —e”, vérifiant t*n = —e”n; comme t* = id,
on a: t*h = —h. Soit h, un minorant de A sur 95’ et soit

Se=S"U{(y,r) €dS" x[0, oo | r <3[A(y) — hol}-

Alors la forme induite par B sur S, = dS’ est: 1= e ~#)2y; par suite:

t*(h — hg)/2 —(h+ hg)[2

T*y=e = —e e'n = —n.
Enfin on a une isotopie qui envoie S sur S’ en respectant le feuilletage par les

orbites de X, ce qui démontre le lemme.
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Sur §’ x R, I’équation S + dr =0 définit une structure de contact & verti-
calement invariante qu’on cherche a prolonger prés de X x R. Pour cela, on
suppose d’abord X transversalement orientable, et on se donne un voisinage
scindé, U~ x]—1—¢, 1+¢, dans lequel les feuilles de & sont les segments
{pt} x]—1—¢,1+¢[. On choisit le paramétrage pour que:

*INU=2x{0}etdS'nU=2x{—1,1};

*sur S’NnU, X a pour expression —s(d/ds), ou s est la coordonnée dans

I'intervalle ] —1 —¢, 1 + ¢[.

Les relations L(X)f = B, i(X)B =0 et la propri€té (ii)” montrent que Bis ~y =
(1/s)y, ol y est une forme de contact sur £ x {1}. Alors la forme y + s dt définit sur
U une structure de contact qui coincide avec & sur (UnS’) x R.

Enfin, si X n’est pas transversalement orientable, on passe a un revétement de S
dans lequel elle le devient et on fait la construction précédente de maniere
équivariante. O

Remarque (F. Laudenbach). Si n est pair et si S est orientable, ’hypersurface X
sépare. En effet, ¢ est alors orientable, donc transversalement orientable, puisque
S x R est orientable. Par suite, les deux cotés de 2 sont donnés par le signe de J/0t
relativement a cette orientation transverse.

4. Structures de contact convexes

A. Pseudo-gradients d’une fonction de Morse

DEFINITION 4.1. Soit f: M - R une fonction de Morse, c’est-a-dire une
fonction dont tous les points critiques sont non dégénérés. On dit qu’un champ de
vecteurs X est un pseudo-gradient de f s’il existe sur M une métrique riemannienne
et une fonction positive p telles que, partout sur M, on ait X - f>p||df > On a
alors une relation semblable pour toute autre métrique riemannienne. Exemple: le
gradient de f pour une métrique donnée vérifie cette inégalité.

On rappelle qu’une singularité x d’un champ X est hAyperbolique si le linéarisé A,
de X en x est hyperbolique, i.e. n’a aucune valeur propre de partie réelle nulle. Dans
ce cas, le théoréme de la variété stable affirme que les points ayant x pour w-limite
(resp. a-limite) forment une sous-variété immergée appelée variété stable (resp.
instable); son espace tangent en x est la variété stable (resp. instable) du champ
linéaire A,. Il est bien connu que:
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PROPOSITION 4.2. Soif f une fonction de Morse sur une variété M de dimen-
sion m et soit X un pseudo-gradient de f. Alors:

(1) les singularités de X sont hyperboliques et sont exactement les points critiques
de f;

(i) en un point critique d’indice i de f, la variété stable (respectivement instable)
de X est de dimension i (respectivement (m — i)).

Remarque 4.3. Soit A un endomorphisme hyperbolique de R** et @ une forme
symplectique linéaire sur R?". Si (e"))*w =e“w pour c constante positive et
pour tout ¢ réel, alors la variété stable W* du champ linéaire A est isotrope (i.e.
contenue dans son orthogonal symplectique). En effet, pour v, w € W*, w(v, w) =
e “w(ev, e"'w) tend vers 0 quand ¢ tend vers + oo, donc est nul. Ceci permet
d’étendre le Corollaire 2.9 au cas ou X est pseudo-gradient d’une fonction de
Morse.

B. Notion et condition de convexité pour une structure de contact
Dans [EG], Ya. Eliashberg et M. Gromov proposent la définition suivante.

DEFINITION 4.4. On dit qu’une structure de contact ¢ sur une variété V est
convexe s’il existe une fonction de Morse propre f : V' —[0, co[ ayant un pseudo-
gradient complet qui préserve ¢.

Les niveaux réguliers de f sont alors des hypersurfaces convexes. De plus il
découle de 2.C et 4.A que:

PROPOSITION 4.5. Soit (V, &) une variété de contact et f : V —[0, o] une
fonction de Morse propre. Si & est préservé par un pseudo-gradient de f, I’hypersur-
face caractéristique C de ce champ vérifie les propriétés suivantes:

(1) fic est une fonction de Morse propre;

(ii) les points critiques de [ sont sur C et sont exactement les points critiques

de fc;

(iii) un point critique d’indice i pour f donne, pour fc, un point critique d’indice

isii<netdindicei—1sii=zn+1.

Dans la partie III, on montrera comment construire, inversement, des structures
de contact convexes sur une variété V' de dimension 3 a partir d’'une fonction de
Morse et d’une surface dans V vérifiant les conditions ci-dessus.
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C. Exemples de structures de contact convexes

EXEMPLE 4.6 (Contactisation d’une variété de Weinstein)

Définition (Ya. Eliashberg et M. Gromov, [EG]). On dit qu'une variété sym-
plectique (W, w) est de Weinstein s’il existe une fonction de Morse propre
fo : W—[0, oo[ ayant un pseudo-gradient complet X, qui dilate w exponentielle-
ment: L(X,)w = w. Une telle variété symplectique est donc exacte car, comme w est
fermée, on a w =dpf ou B =i(X,)w.

Dans ces conditions, la structure de contact & définie sur W x R par I’équation
p +dt =0 est convexe. En effet, le champ X = X, + #(0/0t) préserve & puisque
L(X)(B + dt) = B + dt. De plus, X est un pseudo-gradient compiet pour la fonction
de Morse propre f : W x R—[0, oo[ donnée par f(x, 1) = fo(x) + t2.

Un exemple typique de variété de Weinstein est I’espace cotangent (a une variété
quelconque) muni de sa structure symplectique canonique w. Dans ce cas, on peut
choisir X, pour que f =i(X,)w différe de la forme de Liouville canonique par la
différentielle d’une fonction. La contactisation de B est alors isomorphe a la
structure de contact canonique sur ’espace des 1-jets de fonctions (voir la Remar-
que 3.3a): cette structure est par conséquent convexe.

EXEMPLE 4.7. La structure de contact donnée sur S*"*! par les tan-
gentes complexes a la sphére unité de C”*' est convexe. En effet, si z; = x; + iy,
1 <j<n+1, sont les coordonnées, cette structure a par exemple pour équation la
forme induite par —X y; dx;; on vérifie alors que le champ de contact associ¢ au
hamiltonien x, est un pseudo-gradient de la fonction y,. L’hypersurface caractéris-
tique de ce champ est la sphere équatoriale d’équation x, = 0.

EXEMPLE 4.8 (Structure canonique sur la variété des éléments de con-
tact). Soit n: ¥V —> M le fibré des éléments de contact sur une variét¢é M de
dimension n + 1. Alors la structure de contact canonique sur V (voir [A]) est
convexe.

Argument. Etant donné une fonction de Morse propre f, : M —[0, o[, on
choisit un pseudo-gradient complet X, de f, ayant la propriété suivante: en tout
point critique de f;, les valeurs propres de X, sont réelles et distinctes. Comme tout
champ de vecteurs sur M, le champ X, se reléve naturellement en un champ de
contact X sur V. Il s’avére alors que X est un pseudo-gradient complet pour une
certaine fonction de Morse propre f : V —[0, o[. On obtient f en perturbant
comme suit la fonction f; - © au-dessus d’un voisinage des points critiques de f,:
au-dessus d’un tel point x, le champ X est tangent a la fibre F =n~'(x) et n’est
autre que le champ induit naturellement par le linéarisé de X, sur I’espace projectif
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cotangent; comme les valeurs propres de X, sont réelles et distinctes, X|r est le
gradient d’une fonction de Morse g : F—[0, oo ayant exactement n + 1 points
critiques d’indices tous distincts; c’est cette fonction g, convenablement pondérée et
prolongée, qu’on ajoute a f; o 7.

Remarque. L hypersurface caractéristique du champ X ci-dessus est le conormal
du champ X,.

II — Sur le feuilletage caractéristique des surfaces en dimension 3
1. Propriétés des feuilletages caractéristiques

On s’intéresse ici aux feuilletages singuliers d’une surface S qui peuvent se
réaliser comme feuilletages caractéristiques par plongement de S dans une variété de
contact de dimension 3. Dans une telle variété, naturellement orientée, le fibré
normal de S est isomorphe au fibré /\> T'S; ceci permet de parler de germes de
structures de contact le long de S sans spécifier de variété ambiante.

A. Forme générale des feuilletages caractéristiques

DEFINITION 1.1. On dit qu’une singularité x d’'un champ de vecteurs Y est
isochore si la divergence de Y en x est nulle. Une singularité isochore de Y est aussi
une singularité isochore de f - Y pour toute fonction f; cette notion est donc bien
définie pour les feuilletages singuliers au sens de 1.1.B.

PROPOSITION 1.2. Soit & un feuilletage singulier sur une surface S. On fixe
une orientation sur la variété )\* TS et on s’intéresse uniquement aux germes de
structures de contact le long de S qui donnent cette orientation.

(a) F est le feuilletage caractéristique induit sur S par un germe de structures de
contact si et seulement si & est sans singularités isochores.

(b) Si S est fermée, deux germes de structures de contact qui induisent le méme
feuilletage caractéristique F sont isomorphes: ils sont conjugués par un germe de
difféomorphisme qui est isotope a I’identité parmi les difféomorphismes préservant % .

Démonstration. (a) L’absence de singularités isochores est nécessaire; en effet, si
o est une forme de contact qui induit sur S une forme # nulle en x, la forme df(x),
qui n’est autre que do(X)ker a(x)» €St NON dégénerée; autrement dit, le champ Y donné
prés de x par B =i(Y)dp a une divergence non nulle en x.
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La réciproque et le (b) reposent sur le fait suivant: soit .S, une surface orientable;
une I-forme a = f, + u, dt sur S, x R est de contact si et seulement si:

0
u dp, + B, A (du, — a—ﬂt') ne s’annule jamais. (%)

En particulier, B, etant donnée, les couples (uy, (0B,/01),_,) qui vérifient cette
inéquation pour ¢ =0, avec un signe fixé, constituent un ensemble convexe; or ces
couples sont ceux qui déterminent un germe de structure de contact. On suppose
maintenant S orientable et on prend sur S une forme d’aire w telle que
w A dt donne 'orientation choisie sur /\> 7S = S x R. On suppose de plus que F
est transversalement orientable, c’est-a-dire donné par une équation f =0, ou f est
une 1-forme sur S. On désigne par u la fonction définie sur S par dff = uw, et on se
donne une 1-forme y sur S telle que la 2-forme B A y soit positive ou nulle par
rapport a w, et strictement positive hors du lieu singulier de f. On pose alors
B, = B + t(du — 7). La condition (*) montre immédiatement que la 1-forme B, + u dt
définit une structure de contact prés de S x {0} dans S x R; en effet:

0B,

i

udﬂ+BA<du— >=u2w+ﬂ/\y.

Or, comme % est sans singularités isochores, # ne s’annule en aucun point du lieu
singulier de .

Enfin, si S n’est pas orientable ou si & n’est pas transversalement orientable, on
pallie ce défaut en passant a un revétement d’ordre 2 ou 4 sur lequel on effectue la
construction précédente de maniere invariante.

(b) En passant éventuellement au revétement double de S sur lequel & devient
transversalement orientable, on se raméne au cas ou les deux germes de structure
de contact sont transversalement orientables. Ils admettent alors des équations o,
et a, qui induisent sur S la méme forme. La formule (*) montre que le noyau &
de a, =(1—s)a,+ sz, est, pres de S, une structure de contact pour tout
s €[0, 1].

On cherche maintenant, par la méthode de J. Moser, une isotopie (¢,), s € [0, 1],
qui transporte &, sur &, i.e. vérifie: ay A @ ¥a, =0. Cette condition signifie que le
chemin s+ @}a, reste sur le rayon {rey, r >0} dans l’espace des 1-formes;
autrement dit:

0
plag A a—(q:?‘as) =0  pour tout s.
s
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En notant X, le générateur infinitésimal de (¢,), cette relation s’écrit:

oa,
(L(Xs)as)lés = _—5; |&s*

On prend pour X, le champ vérifiant a la fois

' . oo
i(X)o, =0 et (i(X,)da),, = —=,-

Ce systeme posseéde une unique solution par définition des structures de contact.
De plus, si v est un vecteur de {E,nTS =¢&,nTS, on a (da,/0s)(v) =0, donc
do, (X, v) = 0. Ceci montre que X, est tangent a & le long de S. On utilise enfin que
S est fermée pour intégrer X, en une isotopie. O

B. Propriétés génériques des feuilletages caractéristiques

L’espace des feuilletages singuliers sur une surface S (au sens de 1.1.B) a une
topologie naturelle comme quotient de I’espace des champs de plans le long de la
section nulle dans /\? T'S. Si maintenant S est plongée dans une variété orientée V
de dimension 3, 'application qui & un champ de plans sur V associe le feuilletage
induit sur S est ouverte. Comme I’ensemble des structures de contact forme un
ouvert, son image est un ouvert dans I’espace des feuilletages singuliers de S. Par
ailleurs, les structures de contact €étant localement stables d’aprés un théoréme de
J. Gray [G], on voit:

LEMME 1.3. Soit # une propriété C*-générique des feuilletages singuliers et S
une surface plongée dans une variété de contact (V, ). On peut bouger S par une
isotopie C*-petite pour que son feuilletage caractéristique vérifie P.

EXEMPLE 1.4. On rappelle qu'un champ de vecteurs sur une surface fermée
est dit de Morse—Smale s’il vérifie les trois propriétés suivantes:

(i) les singularités et les orbites périodiques de X sont hyperboliques;

(ii) I’ensemble a-limite (resp. w-limite) de tout point est une singularité ou un

cycle limite;

(iii) il n’y a pas de connexions de selles.
D’aprés un théoréme de M. Peixoto, un champ de vecteurs sur une surface
orientable fermée est C*-génériquement de Morse—Smale.
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Soit alors S une surface orientable fermée dans une variété de contact (¥, £). Si
¢ est transversalement orientable, le feuilletage caractéristique de S est dirigé par un
champ de vecteurs qu’on peut rendre de Morse—Smale par une isotopie C*-petite
de S dans V.

2. Surfaces convexes
A. Découpage d’une surface convexe

On rappelle qu’une surface S, plongée dans une variété de contact (V, &) de
dimension 3, est dite convexe s’il existe un champ de vecteurs de contact transverse
a S. Une telle surface est transversalement orientable, donc orientable. Il découle
immédiatement des Propositions 1.3.4 et 11.1.2(b) que:

PROPOSITION 2.1. Soit (V, &) une variété de contact de dimension 3, S une
surface orientable fermée plongée dans V et F son feuilletage caractéristique. Alors
la surface S est convexe si et seulement s’il existe sur S une courbe I' transverse a &,
en général non connexe, qui découpe S en sous-surfaces ou & se laisse diriger par un
champ dilatant, pour une certaine aire, et sortant sur le bord.

Remarque. En particulier, si S est convexe, toute feuille de # coupe I' au plus
une fois.

Dans la suite, on dira que I' est le découpage de S (voir la Remarque 2.3). La
donnée d’un champ de contact X transverse a S matérialise ce découpage par la
courbe des points de S ou X est tangent a ¢&.

PROPOSITION 2.2. (a) Soit S une surface fermée. Deux structures de contact
verticalement invariantes sur S x R qui définissent la méme orientation et induisent le
méme feuilletage caractéristique F sur S x {0} sont isotopes: elles sont conjuguées
par un difféomorphisme produit ¢ x Id, ou ¢ est isotope a I’identité parmi les
difféomorphismes qui préservent &% . De plus, si le découpage de S associé au champ
vertical est le méme pour les deux structures, il est préservé tout au long de I’isotopie.

(b) Pour i =0, 1, soit S; une surface convexe dans une variété de contact (V;, ;);
soit &, son feuilletage caractéristique et X; un champ de contact transverse a S; (la
donnée de X, oriente S;). Si S, et S, sont fermées (compactes sans bord) et s’il existe
un difféomorphisme de S, dans S, qui respecte les orientations et envoie %, sur #,,
alors il existe un germe de difféomorphisme de contact, de (V,,, S,) dans (V,, S,) qui
envoie X, sur X,.
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Démonstration. Le (b) résulte immédiatement du (a) qui se démontre exacte-
ment comme le (b) de la Proposition 1.2. L’isotopie consiste a glisser le long des
feuilles de # pour faire tourner I'une des structures de contact jusqu’a I’amener sur
l'autre. Ceci n’est en général possible que si S est fermée. O

Remarque 2.3. La Proposition 2.2 montre que le feuilletage caractéristique &
d’une surface convexe S détermine totalement, a isotopie prés parmi les courbes
transverses a &, le découpage I', c’est-a-dire la trace sur S de la surface caractéris-
tique d’'un champ de contact transverse. Au paragraphe 3, on verra dans quelle
mesure cette courbe révéle la géométrie du feuilletage caractéristique de S. Aupara-
vant on donne des critéres géométriques de convexité et de non-convexité et on
montre en particulier qu’une surface orientable est génériquement convexe. Cette
généricité, exceptionnelle, est a rapprocher du fait que tout ouvert connexe de R
(respectivement de C) est convexe (respectivement pseudo-convexe): en dimension
3, dimension minimale des variétés de contact, la convexité est une propriété
dégénérée.

B. Exemples de surfaces non convexes

Une structure de contact sur S x R invariante par d/dt est (localement) définie
par des équations du type f +udt =0 ou f et u sont respectivement une 1-forme
et une fonction sur (un ouvert de) S telles que:

udf + B Adu ne s’annule jamais. (%)

Le feuilletage caractéristique & de S est alors défini par f =0. Si w est une forme
d’aire sur S et si Y est le champ qui dirige &# défini par i(Y) w = B, la condition
(**) s’écrit encore

udiv, (Y)—Y - -u#0. (*%x)

Ceci montre immédiatement que le feuilletage caractéristique d’une surface
convexe fermée S ne peut étre défini par une forme fermée (non singuliére). Par
exemple, les tores invariants de la fibration de Hopf dans S ne sont pas convexes
pour la structure standard. On voit de méme que, si S est convexe, son feuilletage
caractéristique & ne présente aucune feuille fermée ayant une application de
premier retour tangente a 'identité. En effet, au voisinage d’une telle feuille F le
feuilletage # admet une équation B = 0 ou dp, - est identiquement nulle; il est alors
impossible de trouver une fonction u telle que u df + B A du ne s’annule pas sur F
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puisque u a nécessairement des points critiques. Enfin, la convexité interdit
certaines connexions de selles; pour étre précis, on pose:

DEFINITION 2.4. Soit x une singularité non isochore d’un feuilletage singulier
& . On dit qu’on oriente positivement & en x lorsqu’on choisit, pour diriger # prés
de x, un champ de vecteurs dont la divergence en x est positive.

Si S est convexe, aucune de ses feuilles caractéristiques ne joint deux selles en
étant séparatrice stable de I'une et de I'autre pour leur orientation positive. Ceci
résulte par exemple de (*xx): si, prés d’une telle feuille F, on oriente le feuilletage
par un champ Y dirigé de la selle x, vers la selle x,, on doit avoir u(x,) négatif et
u(x,) positif. Or, d’aprés (**x) u ne peut s’annuler qu’en décroissant dans la
direction de Y.

C. Exemples de surfaces convexes

DEFINITION 2.5. On dit qu’un feuilletage singulier # sur une surface fermée
S est de Morse—Smale s’il vérifie les conditions suivantes:
(i) Ies singularités et les feuilles fermées de # sont hyperboliques;
(i1)) ’ensemble limite de toute demi-feuille est une singularité ou une feuille
fermée;
(iii) & ne présente aucune connexion de selles.
On dit que & est presque de Morse—Smale s’il vérifie (i), (ii) et:
(iii’) quand on oriente & positivement prés des selles, les variétés stables
associées ne se rencontrent pas.

PROPOSITION 2.6. Soit S une surface fermée orientable plongée dans une
variété de contact (V, ). Si le feuilletage caractéristique F de S est presque de
Morse—Smale, alors S est convexe.

Démonstration. D’aprés (b) de la Proposition 1.2, il suffit de construire sur
S x R une structure de contact invariante par /0t qui met & comme feuilletage
caractéristique sur S x {0}. Autour de chaque feuille fermée (resp. de chaque
foyer), on prend un anneau (resp. un disque) a bord transverse a #. Prés des selles,
on oriente # positivement. Utilisant (ii) de la Définition 2.5, on place des bandes
autour de leurs variétés stables de sorte que la réunion de ces anneaux, disques et
bandes soit une surface S, a bord transverse a &# (voir Figure 1). Par construction
d’aprés le (iii") de la Définition 2.5, sur un voisinage U de S,, # est dirigé par un
champ Y sortant le long de 45, et dont les singularités sont a divergence positive.
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Figure 1

Il existe alors une forme d’aire w sur S telle que div,, (¥) > 0 sur U. On pose u =1
donc u div, (Y)—Y -u >0 sur U.

Sur la surface a bord S’ =adh(S\S,), # est un feuilletage non singulier
transverse au bord et sans feuilles fermées. D’aprés (ii) comme S est orientable, S’
est une réunion d’anneaux feuilletés par des segments allant d’un bord a 'autre. On
peut alors terminer en utilisant la Proposition 2.1 ou le raisonnement élémentaire
suivant. On choisit sur S’ un champ non singulier Y’ dirigeant & et coincidant avec
+ Y sur un voisinage collier U’ de 05" dans Un S’. On pose u’ = +1 sur U’ selon
que Y’ = +Y; on cherche alors a prolonger a S’ le germe de u” au bord de maniére
a avoir: u’ div, (Y') — Y -u’ >0 sur §’. Ce prolongement résulte immeédiatement
de la remarque suivante.

Remarque 2.7. Soit h : [0, 1] - R une fonction positive en 0 et négative en 1. Il
existe une fonction v : [0, 1] - R égale 4 1 prés de 0 et & —1 prés de 1 telle que
vh — dv/df soit positive; on prend v(6) = w(8) exp ([§ h(0) do) ou w :[0, 1] > R est
une fonction décroissante convenable. O
3. Déformations de feuilletages caractéristiques

A. Une forme réduite de feuilletages caractéristiques

Soit S une surface fermée orientable plongée dans une variété de contact (¥, &)
de dimension 3 avec un feuilletage caractéristique & de Morse—Smale. D’aprés la
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Proposition 2.6, il existe un germe de champ de contact transverse a S. Etant
donné un voisinage quelconque U de §, il est facile de prolonger ce germe en un
champ de contact dont le flot définisse un plongement S x R— V d’image V, < U.
Sur Vo= S xR, §,=¢), est une structure de contact invariante par 0/0t et la
surface caractéristique de ce champ de contact est un cylindre I' xR ou I
découpe S =S x {0} comme indiqué en 2.1. Alors toute fonction 4:S—>R a
pour graphe une surface convexe S, contenue dans V), ayant “méme découpage
I'” que S.

PROPOSITION 3.1. Il existe une fonction h:S — R telle que le feuilletage
caracteristique &, de S, soit de Morse—Smale et se présente, sur chaque composante
S’ de la surface obtenue en découpant S, suivant I', de la maniére suivante:

(1) si S’ est un disque, 97,” ¢ @ pour unique singularité un foyer et n’a aucune

feuille fermée: c’est topologiquement un feuilletage radial;

(i1) si S’ n’est pas un disque, F/’},I . @ exactement une feuille fermée et n’a pour

singularité que des selles.
De plus on peut choisir h négative ou nulle.

On démontre cette proposition en C; elle résulte également de la Proposition 3.6.

B. Elimination des singularités

DEFINITION 3.2. Etant donné un feuilletage singulier sans singularités iso-
chores sur une surface, on dit qu'un foyer x, et une selle x, sont en position
d’élimination simple (resp. en position d’élimination cyclique) si lorsqu’on oriente
positivement le feuilletage prés de x,, une et une seule séparatrice stable vient de x,
(resp. les deux séparatrices stables viennent de Xx,).

LEMME D’ELIMINATION 3.3 (voir [El1] Théoréme 6.1 et [EI2]). Avec les
notations et les hypothéses de 3.A, soit x, et x, un foyer et une selle de & en position
d’élimination simple ou cyclique.

(a) 1l existe dans S un anneau A disjoint de I' et vérifiant:

* les seules singularités de & sur A sont x, et x,;

* &4 ne présente pas de feuille fermée;

* & est transverse au bord de A.

Les deux configurations sont représentées sur les Figures 2 et 3.

(b) 1l existe une fonction k : A -] — o0, 0] a support dans ’intérieur de A et telle

que le feuilletage caractéristique sur le graphe de k n’ait aucune singularité.
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Figure 2

Figure 3

Démonstration. (a) Soit S’ la composante connexe de x, dans la surface obtenue
en découpant S le long de I'. Il existe sur S’ un champ qui dirige &, sort le long
de 0S’ et dilate une certaine forme d’aire sur S’. En particulier ce champ oriente
positivement & prés de x, et la variété stable W*(x,) reste dans S’.

Si x, et x, sont en position d’élimination cyclique, on prend pour 4 un voisinage
annulaire de la réunion {x,}u W".

Si x, et x,; sont en position d’élimination simple, de deux choses I’'une: ou bien
l’autre branche de W* vient d’un foyer x,, ou elle vient d’une feuille fermée F
nécessairement disjointe de I'. Dans le premier cas, on prend pour 4 un disque
voisinage de la réunion {x,, x,}u W*, privé d’un disque autour de x,. Dans le
second cas, on se donne d’abord un anneau 4’ autour de F a bord transverse a & ;
la branche de W* qui vient de F coupe alors 64’ en un point x; on prend pour A4
un voisinage de la réunion de ’arc qui joint x a x, dans W* et de la composante de
x sur 0A4’.

(b) Comme A est disjoint de I', la structure de contact sur 4 x R est la
contactisation d’une forme de Liouville f sur 4; autrement dit, elle a une équation
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de la forme B + dt = 0. Ainsi, pour toute fonction k : 4 — R le feuilletage caracté-
ristique sur le graphe A, de k est défini par f + dk = 0.

Soit alors w une forme d’aire quelconque sur 4 et Y le champ donné par
i(Y)w = f. On cherche a ajouter a Y le w-hamiltonien Y, d’une fonction k a
support dans I'intérieur de 4 de sorte que Y + Y, soit non singulier (ici Y, est défini
par i(Y,)w = dk). Pour cela on se donne, sur 4, un feuilletage par cercles paralléles
au bord qu’on note 4. Sur un voisinage B de 04 dans 4, & et ¢ sont transverses.
Sur A\B, le champ Y est borné. On choisit donc une fonction k : 4 -] —00,0], &
support dans I'intérieur de A, constante sur les feuilles de ¢, et dont le w-hamil-
tonien Y, est trés grand sur A\B. Alors Y + Y, est non nul sur A\B. Sur B, Y est
non singulier et est transverse 4 Y, la ou Y, est non nul. Par suite Y + Y, est
partout non nul. O

Remarque 3.4. Dans le cas ou x, et x; sont en position d’élimination cyclique,
on crée ainsi une feuille fermée.

Dans le cas ou x, et x; sont en position d’élimination simple, toutes les feuilles
vont d’un bord a I'autre de I’anneau.

On peut facilement vérifier que cette construction préserve la caractére Morse—
Smale du feuilletage.

C. Fin de la démonstration de la Proposition 3.1

Soit S’ une composante de la surface obtenue en découpant S suivant I'. Sur §’,
on choisit un champ Y qui dirige & et qui dilate une forme d’aire donnée; les foyers
et les orbites fermées de Y sont alors répulsifs.

(i) On suppose que S’ est un disque. Alors S’ ne contient pas d’orbites fermées
puisque Y est dilatant. Si x; € S’ est une selle de Y, sa variété stable reste dans S’,
donc x, est en-position d’élimination avec un foyer. Quand on a éliminé toutes les
selles, il reste un seul foyer.

(i) On suppose maintenant que S’ n’est pas un disque. Les orbites de Y qui
partent d’un foyer x, € S’ ne peuvent aller vers une orbite fermée F = S’. Elles ne
peuvent non plus toutes sortir puisque S’ n’est pas un disque. Par suite, 'une au
moins va vers une sells x, € S’ de sorte qu’on peut éliminer tous les foyers de S’.
Maintenant, comme I’ensemble «-limite de tout point de S’ est dans S’, §” contient
au moins une orbite fermée. Si elle n’en contient qu’une, on a terminé. Si elle en
contient deux, F et F’, alors S’ n’est pas un anneau et il existe au moins une selle
x dans S’ dont une séparatrice et une seule vient de F’. — En effet, sinon, soit
Y15+, les selles dont une séparatrice (et en fait toute la variété stable) vient de
F’; ’ensemble des points de S’ qui ont pour a-limite 'un des y;, ou F’, est une
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composante connexe de S’, mais S’ est connexe. — Par le procédé inverse de
I’élimination cyclique, on remplace F’ par un foyer x, et une selle x, en position
d’¢limination cyclique. La séparatrice de x qui venait de F’ vient maintenant de x,
de sorte que x, et x sont en position d’élimination simple. O

D. Feuilletages adaptés a un découpage donné

Soit S une surface fermée convexe dans une variété de contact (V, &) de
dimension 3, et soit X un champ de vecteurs de contact transverse 4 S dont le flot
définit un plongement S x R— V. On note I' le découpage de S associé a X, courbe
des points de S ou X est tangent a £ et on désigne par S, la surface compacte a
bord obtenue en découpant S suivant I'.

DEFINITION 3.5. (a) On appellera isotopie admissible de S dans V toute
isotopie de S a travers des surfaces transverses a X, qui évitent en particulier les
singularites.

(b) On dira qu’un feuilletage singulier de S est adapté a I si le feuilletage induit
sur S, est dirigé par un champ qui dilate une certaine aire et qui sort transversale-
ment sur le bord 5.

PROPOSITION 3.6. Soit F un feuilletage de S adapté a I'. Alors, il existe
une isotopie admissible é,:S -V, s €[0, 1], telle que le feuilletage caractéristique
sur 6,8 soit 6,% . De plus, pour tout s € [0, 1], le découpage de 6,S associé a X est
o,I.

Démonstration. On désigne par &£ le feuilletage caractéristique de S et par &, la
structure de contact verticalement invariante induite sur S x R par le flot de X,
Y : S x R— V. On se donne sur S une forme d’aire w telle que w A dt oriente S x R
comme &,; enfin on prend un voisinage tubulaire fermé A4 de I', assez petit pour que
F et #, le feuillettent! par segments d’un bord a 'autre.

Sur (S\int 4) x R, &, admet une unique équation du type i(Y,)w + dt =0, ou
Y, est un champ sur S\int 4 qui dirige &%, et qui dilate w. Par ailleurs, comme &
est adapté a I' il existe sur S\int 4 un champ Y qui dirige & et qui dilate une
certaine aire; en observant que divtegw(Y) =e " #div, (e?Y), on remplace Y par un
champ Y, qui dilate w. Pour se[0,1], on pose Y, =(1—-s)Y,+sY,. Alors,
I’équation i(Y,)w + dt = 0 définit, pour tout s dans [0, 1], une structure de contact

' Ce texte a été rédigé avant la réforme de 'orthographe qui enjoint d’écrire feuillétent.
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¢, verticalement invariante sur (S\int 4) x R. Maintenant, sur un petit voisinage
U de A4 dans S, on prend des champs Y, et Y} qui dirigent respectivement %, et
Z et qui coincident avec + Y, et + Y, sur Un(S\int 4); pour s € [0, 1], on pose
encore Y, =(1—-5)Yy+sY]. Sur U x R, la structure de contact &, est définie par
une unique équation du type i(Yg)w + u, dt; la fonction u, s’annule sur I', est
égale a +1 1a ou Y= + Y, et satisfait sur U : u,div, (Yy) — Y5 - u, > 0.

En utilisant alors la Remarque 2.7, on fabrique une famille u, de fonctions sur
U telles que, pour tout s € [0, 1], on ait u, div, (Y}) — (Y, - u,) >0, avec u, = +1
la ou Y; = +Y,. On obtient ainsi sur S x R une famille encore notée &, s € [0, 1],
de structures de contact verticalement invariantes; par construction, la surface
caractéristique du champ vertical est I' x R pour toutes les structures & et le
feuilletage caractéristique induit par £, sur S x {0} n’est autre que &.

La méthode de J. Moser (voir la démonstration de la Proposition 1.2) fournit
alors une famille de champs de vecteurs verticalement invariants sur S x R, qui,
puisque S est fermée, s’intégre en une isotopie ¢, vérifiant ¢*&, = ¢&,; de plus
les diffeomorphismes ¢, : S x R— S x R préservent 0/0t donc I' x R; par suite
@, ' (S x {0}) est toujours transverse a /0t et est découpé par son intersection avec
I' x R. En composant avec une translation verticale, on peut s’arranger pour que
@5 '(S x {0}) soit contenue dans S x ] —o0, 0]. On pose alors d, =¥ o @5 s « (o) -

a

Remarque. La proposition précédente permet, comme le Lemme 3.3, d’éliminer
les singularités et de démontrer la Proposition 3.1. Elle donne également d’autres
formes réduites pour le feuilletage caractéristique des surfaces convexes; par exem-
ple:

EXEMPLE 3.7 (Feuilletage associé a une décomposition en anses). Soit
(S, X, I', S;) comme précédemment. Par décomposition en anses de S, on entend
une collection finie d’arcs 7,, ..., 7, disjoints dans S, allant du bord au bord, et
tels que le complémentaire dans S, d’un voisinage régulier Q de S, Uy, U---UY,
soit une réunion disjointe de disques 4,, ..., 4,.

A toute décomposition en anses de S, on associe un feuilletage singulier
de S, unique a homéomorphisme prés, de la maniére suivante: sur chaque
disque 4;, on met un feuilletage radial et, sur Q, on prend le feuilletage décrit
sur la Figure 4; ce feuilletage est dirigé par un champ sortant sur S, rentrant
sur 0Q\0S;, qui ne posséde aucune orbite fermée et a pour singularités
exactement r selles a divergence positive dont les variétés instables sont les y;;
noter que les variétés stables de ces selles viennent des centres des disques 4,.
Par recollement, on construit sur S des feuilletages adaptés a I', sans feuilles
fermées.
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IIT — Construction de structures de contact convexes en dimension 3
1. Structures de contact convexes et surfaces essentielles
A. Résultats d’existence

DEFINITION 1.1. (a) Soit ¥ une variété de dimension 3 et f: V' —[0, + oo
une fonction de Morse propre. On dit qu’une surface C plongée dans V, non
nécessairement connexe, est f-essentielle si elle vérifie les trois propriétés suivantes:

(1) fic est une fonction de Morse propre;

(i) tous les points critiques de f sont sur C et sont exactement les points

critiques de fic;

(iii) un point critique d’indice 1 ou 2 pour fest d’indice 1 pour f.; il revient au

méme de dire que f et fi- ont les mémes extrema locaux.

(b) On dit qu’une structure de contact sur une variété orientée de dimension 3
est positive si elle induit 'orientation donnée.

THEOREME D’EXISTENCE 1.2. Soit V une variété orientée de dimension 3 et
f:V —]0, cof une fonction de Morse propre. Il existe sur V une structure de contact
positive préservée par un pseudo-gradient complet de f si et seulement s’il existe dans
V une surface C f-essentielle.

Remarque. En 1.4, on a vu que 'existence d’une surface f-essentielle est néces-
saire; on va démontrer dans cette partie qu’elle suffit. Le probléme de I’existence de
surfaces essentielles pour une fonction donnée sera discuté dans la partie IV; il
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découlera de cette discussion une version du théoréme de R. Lutz et J. Martinet
(voir [Ma]) pour les structures de contact convexes, a savoir:

THEOREME 1.3. Toute variété orientée de dimension 3 porte une structure de
contact positive convexe.

DEFINITION 1.4 (Ya. Eliashberg [EI3]). On dit qu’une structure de contact
sur une variété ¥ de dimension 3 est vrillée (overtwisted) s’il existe un disque de
dimension 2, plongé dans V, dont le feuilletage caractéristique présente un cycle
limite (avec exactement une singularité a I'intérieur selon [EI3], mais les arguments
de II.3 montrent que cette condition n’ajoute rien).

R. Lutz a décrit un procédé pour construire sur toute variété de dimension 3 une
structure de contact vrillée [Lu]; on en donnera une version “convexe” montrant
que:

COROLLAIRE 1.5. Toute variété orientée de dimension 3 porte une structure de
contact positive convexe et vrillée.

D’apres un théoréme de M. Gromov et Ya. Eliashberg (voir [Gr] et [Ell]), les
structures de contact vrillées ne sont pas symplectiquement remplissables (voir [El1]
et [EG] pour la définition). Il existe par suite des structures de contact convexes non
symplectiquement remplissables, ce qui répond a une question de [EG].

B. Schéma de la démonstration du Théoréeme 1.2

Soit @, < a, < - - - les valeurs critiques de f, qu’on suppose distinctes (uniquement
pour simplifier ’exposé), et soit b, < b, < - - - des valeurs réguliéres intermédiaires,
Clest-a-dire telles que g, <by<a;<b; <---. Onpose V,={xeV|fl(x) <b} et
C,=CnV,.

Alors V., , s’obtient a partir de V, par attachement d’une anse unique d’indice
égal a l'indice de f au point critique x, ., de valeur g, ,. Comme C est f-essen-
tielle, C, ., s’obtient simultanément a partir de C, par attachement d’une anse
d’indice égal 4 Iindice de fic en X, ,. Précisément, soit H; = D' x D>~ une anse
d’indice i =0, 1, 2, 3; P’attachement de H; sur ¥V, est donné par un plongement
@ : 0D x D3~ "> 9V,; la paire (V. 1, V,) ne dépend que de la classe d’isotopie de
@. Pour j < i, soit D/ le sous-disque D’ x {0} contenu dans D’; alors pour un choix
convenable de ¢, ’anse qu’on attache a C, est D/ x D?~/ avec j =0, 1, 1, 2 quand
i=0,1,2,3; on la recolle suivant la restriction de ¢ 4 0D/ x D?*~/c oD’ x D*~".
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Par récurrence sur k, on va construire sur ¥, une structure de contact positive
Sk> ainsi qu'un pseudo-gradient X, de fi =f),, qui préserve ¢, et dont la surface
caractéristique est C,. Pour cela on va distinguer quatre cas correspondant aux
différents indices possibles. Il n’est pas nécessaire de se soucier du probléme de
complétude car on peut toujours le régler aprés coup; en effet:

Remarque 1.6. Soit ¢ un nombre positif donné, S une surface fermée et & une
structure de contact verticalement invariante sur S x [0, 1]. Alors il existe sur
S x [0, 1] une structure de contact ¢’ ayant les propri€tés suivantes:

(i) ¢ coincide avec ¢ prés du bord;

(ii) &’ est préservée par un champ X’ qui est égal a d/0t prés du bord, et dont

les orbites sont les segments {-} x [0, 1] parcourus en un temps c.

Démonstration. On étend & en une structure de contact verticalement invariante
sur S xR et on choisit un difftomorphisme p : [0, c] - [0, 1] qui coincide avec
I'identité preés de 0 et avec une translation pres de c; on prend alors pour ¢’ et X’
les images par Id x p de & et 0/0t. a

2. Attachement des anses d’indice 0 et 3
A. Le modeéle

Sur R? orienté par dx A dy A dz, le champ de plans d’équation dz + uy dx +
vx dy =0, u, v € R, est une structure de contact positive si et seulement si v —u > 0.
Ce champ de plans est préservé par tous les champs de vecteurs du type

0
ax;;+by%+cz£, a,b,celR, avec c =a+b;

en effet, leur flot au temps ¢ est donné par (x, y, z) = (e“x, e®y, e“'z). Enfin, pour
v—u>0et c=a-+b, la surface caractéristique du champ de vecteurs de contact
ainsi défini a pour équation: ¢z + (au + bv)xy = 0.

Soit {, la structure de contact d’équation dz — y dx + x dy = 0. Les champs de
contact

0 0 0
= X — e —_— = —
Z, xax +yay + 2z > et Z, Z,

ont pour surface caractéristique le plan {z =0} et sont des pseudo-gradients
respectivement de g, = x?+ y2+z2 et g3 = —g,.
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On désigne par H; I'anse d’indice 3: {(x,y,z) e R*| x>+ y*+2z2< 1} qu'on
oriente par {,; on note F; le bord de H; muni de I'orientation induite par le champ
rentrant Z;: cette orientation est opposée a I'orientation usuelle de la sphére unité
de R?* comme bord de la boule.

B. Anses d’indice 0

Comme g, est le minimum de f] il existe un diffeomorphisme de V|, sur la boule
fermée B® = {(x, y,z) e R*| x>+ y? +z? < 1} qui respecte les orientations, qui en-
voie C, sur B>n{z =0} et qui, & une transformation affine de R prés, conjugue
Jo=fiv, avec x*+ y>+z2. Alors I'inverse de ce diffeomorphisme transforme {, en
une structure de contact £, sur ¥V, et envoie le champ Z, sur un pseudo-gradient
X, de f,; par construction, ce pseudo-gradient préserve &, et a C, pour surface
caractéristique.

Tout “attachement” d’une anse d’indice 0 se traite de la méme maniére.

C. Anses d’indice 3

Sur V,, on dispose, par hypothése de récurrence, d’une structure de contact
¢k ainsi que d’un pseudo-gradient X, de f; =f|,, qui préserve ¢, et a pour surface
caractéristique C,.

DEFINITION 2.1. Soit S < ¥, une surface. On dira qu’une isotopie J, de
plongements de S dans V), est admissible si, pour tout s, J,S est transverse a X, dans
V. et coupe C, suivant 6,(SnC,).

Il est clair qu'une telle isotopie se prolonge en une isotopie de plongements
0, : V, = V, admissible au sens suivant:

* pour tout s, §, envoie C, dans C,;
* pour tout s, d*X, est encore un pseudo-gradient de f, et préserve évidemment
la structure de contact positive §*¢&,.

On suppose maintenant que V), , , s’obtient a partir de V, en attachant une anse
d’indice 3, c’est-a-dire en recollant une boule sur une composante sphérique S de dV.
Simultanément C, , , s’obtient en attachant a C, un disque le long de S "0C,; cette
intersection est donc une courbe connexe I'. On désigne par ¢ : F; — S un difféomor-
phisme d’attachement qui respecte les orientations et envoie F;n{z =0} sur I
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LEMME 2.2. On peut trouver une isotopie admissible 6, : S -V, s € [0, 1], telle
qu’il existe un germe de difféeomorphisme  : (H, F3) = (Vy, 0,8) ayant les propriétés
suivantes:

(1) Y|, est isotope a 6,¢ parmi les difféomorphismes de F; dans 6,S qui envoient

Fyn{z =0} dans 6,T,
(i1) Y transporte {, sur &, et Z5 sur X,.

Démonstration. D’aprés la Proposition 11.2.2, il suffit de trouver une isotopie
admissible ¢, pour laquelle le difféomorphisme é,¢ : F;— d,S respecte les orienta-
tions et envoie le feuilletage caractéristique induit par {, sur celui induit par ¢,.
Cette isotopie est immédiatement donnée par la Proposition I1.3.6 puisque le
feuilletage obtenu sur S en transportant par ¢ le feuilletage caractéristique de F; est
adapteé
ar. O

Soit maintenant J, une isotopie admissible de plongements V, — ¥, qui prolonge
I'isotopie d, du lemme ci-dessus (voir 2.1). On peut attacher H; 4 V, de maniére a
recoller d’une part 6% (£,) avec {,, et d’autre part §¥(X,) avec Z;. On prolonge
alors f; a cette variété par une fonction sur H, qui admet Z, pour pseudo-gradient
et vaut (a, , , — x> — y?—z?) prés de l'origine. Sur les autres composantes de dV,,
on ajoute un collier extérieur jusqu’au niveau b, , ;; 1a, on prolonge X, trivialement
puis &, de maniére invariante.

3. Attachement des anses d’indices 1 et 2
A. Le modele

Sur R? orienté par dx A dy Adz, soit {, la structure de contact positive
d’équation dz + y dx + 2x dy = 0. Les champs de contact

0 0 0
Z,=2x ox y6y+zﬁz & ) Z,

ont pour surface caractéristique le plan {z =0} et sont des pseudo-gradients
respectivement de g, =x*>—y* +z% et g, = —g,.

Etant donné ¢ >0, on désigne par H, = H,(¢) I’anse d’indice 1 {(x, y, z) e R’ ]
x2+22<¢% y*<1} et on note F,=F,(¢) la surface H,n{y = +1}. La donnée
de {, et Z, oriente H, et F,. De méme, on désigne par H, I'anse d’indice 2
{(x,y,2) eR3|y?<e?, x*+2z*< 1} et on note F, la surface H,n{x*+z>=1};
H, et F, sont orientées par la donnée de {, et de Z,. Si on paramétre F, par
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WA

? 8=0 ? 8=n

{8=3n 5)={z=0) {z=0}={0=m )}

Figure 5

@,y) > (x=sinb, y, z =cos ), 0 € [0, 2n], 'orientation décrite précédemment est
donnée par df A dy. Par ailleurs le feuilletage caractéristique induit par {, a pour
équation: (y cos @ —sin 0) df + 2sin 6 dy =0; il se présente donc comme sur la
Figure $.

On montre facilement que:

LEMME 3.1. Pour i=1,2 et ¢ >0 donné, soit h; un germe non singulier
de fonction le long de F,, égal a une constante négative sur F,. Alors h; se prolonge en
une fonction sur H, qui coincide avec g; prés de [l'origine, et dont Z, est un
pseudo-gradient.

B. Anses d’indice 2

On suppose que V., (resp. C, ;) s’obtient en attachant a V, (resp. & C;) une
anse d’indice 2 (resp. d’indice 1). Cet attachement est donné par un plongement
¢ : F,—» S =0V, qui respecte les orientations et qui rencontre I’ = dC, exactement
le long de F,n{z =0}. La courbe d’attachement @, image par ¢ de F,n{y =0},
coupe donc I' en deux points et est ainsi partagée en deux arcs notés @ et O _.
Enfin, on désigne par S, la surface obtenue en découpant S suivant I'. Pour
construire la structure de contact &, ., et le champ X, ., sur V, . ,, il suffit, d’aprés
le Lemme 3.1, de démontrer que:

LEMME 3.2. On peut trouver une isotopie admissible 6, : S - V,, s € [0, 1], telle
qu’il existe un anneau A autour de ©, et un germe de difféomorphisme  : (H,, F,) —
(Vy, 6, A) ayant les propriétés suivantes:

(1) ¥,r, est isotope a 6,¢ parmi les plongements de F, dans 6, A qui rencontrent

6, T exactement le long de F,n {z = 0};

(i1) Y transporte {, sur & et Z, sur X,.
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Figure 6

Démonstration. On commence par fabriquer une isotopie admissible
0,: 8->V, se[0,1], telle qu’il existe un anneau 4 autour de @, et un difféomor-
phisme ' : F, > d1 A qui respecte les orientations, qui rencontre d1I" exactement le
long de F,n{z =0} et qui conjugue les feuilletages caractéristiques induits respec-
tivement par {, et £,. Pour cela, on se donne deux arcs y, et y_ ayant leurs
extrémités sur I" et vérifiant les conditions suivantes (voir Figure 6):

* y, et y_ sont contenus dans un voisinage tubulaire Q2 de @ dans S et sont
isotopes respectivement a @ , et @ _ dans Q; de plus ils ne coupent pas I" dans
leurs intérieurs;

* y, traverse @, en un seul point m, ;

* dans Q, @ coupe I entre y, et y_.

On compléte alors la donnée de y, et y_ en une décomposition en anses de S, (voir
Exemple I1.3.7). Le feuilletage associ¢ induit sur S un feuilletage &# adapté a I'
(Définition I1.3.5) qui, sur un anneau A4 autour de @, est conjugué au germe du
feuilletage caractéristique de F, le long du cercle {y =0,x*+z2=1}. La Pro-
position I1.3.6 fournit une isotopie admissible J; : S = V, telle que 674 ait pour
feuilletage caractéristique 67(# ). On obtient ainsi le difffomorphisme cherché
Yy’ i F,—01A.

Maintenant, on prolonge ¥’ en un germe de difféomorphisme, encore noté y’,
(H,, F,) = (Vy, 014), qui envoie Z, sur X,. Ainsi, &, (resp. ¥, {;) induit sur § x R
(resp. A xR), via d; et le flot de X,, une structure de contact #, (resp. n)
verticalement invariante. Il suffit alors d’établir le fait suivant:

SOUS-LEMME 3.3. On peut prolonger n a S x R en une structure de contact n,
verticalement invariante donnant sur S x {0} le méme feuilletage caractéristique et le
méme découpage que 1.
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Démonstration de (3.3 = 3.2). Comme S est fermée, on peut maintenant ar-
guer de I'unicité des structures de contact verticalement invariantes qui induisent
un feuilletage caractéristique donné sur S x {0} (Proposition I1.2.2): il existe une
isotopie @, : S x R—S x R, qui préserve a la fois 0/0t et les niveaux S x {t}, telle
que ¢, redresse n, sur n,. On obtient alors I'isotopie admissible (d,) et le difféo-
morphisme ¥ cherchés en corrigeant par ¢, l'isotopie (4;) et le difféomorphisme
Y.

Démonstration de 3.3. Comme Y’ rencontre d;I" exactement le long de
F,n {z =0}, il existe une fonction h: A4 —R telle que, si n, est définic prés
d’un point de 4 x R par une équation f + udt =0, alors n, est définie prés de
ce point par B +e"udt=0. On prolonge h arbitrairement dans un voisinage
de I

Sur S xR, n, induit une structure de contact verticalement invariante,
globalement définie par une équation du type i(Y)w + u dt =0 ou:

* @ est une aire sur Sy ;

* Y est un champ qui sort le long de 05 et qui dirige le feuilletage de S, induit
par &, c’est-a-dire le feuilletage associé a la décomposition en anses choisie
sur Sy ;

* u est une fonction positive sur int S, nulle au bord et vérifiant « div,, (Y) —
Y -u>0.

Soit A, la partie de S, correspondant a A; sur 4, x R, 5 induit une structure
de contact d’équation i(Y)w +e"udt =0. D’ow: w(div, (Y)—Y -h)—Y -u >0,
autrement dit:

wY  -h)y<udiv,(Y)—Y -u. (%)

11 s’agit donc de prolonger 4 a S, en préservant cette inégalité. On observe que, sur
un voisinage U assez petit de 0S5, la fonction 4 donnée arbitrairement vérifie (*)
puisque u s’annule sur 65, . Le fait qu’on puisse alors prolonger 4 résulte des deux
remarque suivantes:

* Surint S, ou u >0, (%) s’écrit Y - h <div,,(Y) — Y - Log u. Or toute orbite
de Y qui sort de A, va en un temps fini sur 05, sans recouper A,. Sur un tel
segment d’orbite, h est donné pres des extrémités, mais la variation de —Log u est
infinie et div,, Y est borné; on peut donc prolonger 4 sur ce segment.

* Une orbite de Y qui rentre dans A, vient d’un foyer sans couper A,
auparavant. Sur lintervalle de temps correspondant du type ] —oo, 74], £ n’est
donné que prés de 7,. La condition (%), qui majore sa dérivée par une quantité
strictement positive et minorée, n’empéche pas de prolonger 4 en une fonction a
support compact. O
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C. Anses d’indice 1

On suppose que V., (resp. C,,,) s’obtient a partir de V, (resp. de C;) en
attachant une anse d’indice 1 sur deux points pet gde I' = 0C, = § = dV,. On note
Do €t g, les points de coordonnées (0, 1, 0) et (0, —1, 0) dans R>. D’aprés le Lemme
3.1, il suffit d’établir le fait suivant:

LEMME 3.4. 1l existe un germe de difféomorphisme (V,, p, q) = (H,, po, qo) qui
envoie &, sur {, et X, sur Z,.

C’est dans ce lemme, dont la démonstration est facile, qu’intervient I’orien-
tabilité de V.

IV — Construction de surfaces essentielles

Dans cette partie, on donne des méthodes pour construire, sur les variétés de
dimension 3, des fonctions de Morse ayant des surfaces essentielles (voir Définition
III.1:4). Jai eu le plaisir de discuter cette question avec plusieurs personnes, en
particulier Slava Kharlamov, Frangois Laudenbach, Christine Lescop et Alexis
Marin; je tiens a les remercier de leurs suggestions et remarques.

1. Quelques exemples
A. Exemples de surfaces essentielles

EXEMPLE 1.1 (F. Laudenbach). Soit V, une variété compacte de dimension 3
a bord connexe C = 0V, et soit f, : ¥, — R une fonction ayant les propriétés suivantes:
(i) f, est non singuliére et sa restriction & C est une fonction de Morse;
(ii) tout minimum local (resp. maximum local) de fyc est un minimum local
(resp. maximum local) de f, sur V.
Alors il existe sur le double V =V, u. V, de V, une fonction de Morse f pour
laquelle C est une surface essentielle.

Remarque. On verra plus loin (Lemme 2.2) que, si ¥V, possede une fonction f
vérifiant (i) et (ii) alors ¥, est un corps en anses.

Démonstration. Un moyen simple pour construire le double V de V, est le
suivant: on se donne une fonction de Morse g, : (V,, C) = ([0, 1], 1) sans singularité
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prés du bord. On prend sur ¥, x [ —1, 1] la fonction g(x, 5) = g,(x) + s2 et on pose
V={g=1}cVyx[—1,1)]. Il sagit d’'une variété lisse qui s’identifie au double de
V, via les deux applications Vy— V, x = (x, +(1 —go(x))"?), qui envoient C sur
Cx{0}cV.

Soit maintenant © la projection Vy x[—1,1] =¥, et f la restriction a V de
Jo o m. Comme le noyau de d(f, > #) contient en tout point d/ds et comme ’espace
tangent a V est défini par d(g, - m) + 25 ds =0, on voit que les points critiques de
f sont tous situés sur C x {0} = V' n(V, x {0}) et correspondent exactement aux
points critiques de foc. De plus la condition (ii) entraine que tout minimum (resp.
maximum) local de fc est un minimum (maximum) de f. O

EXEMPLE 1.2 (V. M. Kharlamov). Soit I un entrelacs de S*etn: V- 5% un
revétement double ramifié au-dessus de I'. On suppose qu’il existe une surface de
Seifert C,, bordée par I, et une fonction de Morse f, sur S* vérifiant les conditions
suivantes:

(i) les points critiques de f; sont sur C,\I' et sont exactement les points

critiques de foc,;

(ii) foic, n’a ni minimum local ni maximum local sur T
Alors C = n~!(C,) est une surface essentielle pour f = f; o 7.

Remarque. Pour de nombreux entrelacs, on peut trouver une surface de Seifert
vérifiant (i) et (ii) avec pour f; la fonction hauteur standard sur S°.

Démonstration. Les points critiques de f (resp. de fic) sont de deux types:

* les préimages par n des points critiques de f, (resp. de fyc,);

* les préimages par n des points critiques de fo . Pour f, un tel point x € V" est
d’indice 1 ou 2 suivant que for a en 7(x) un minimum ou un maximum; pour fic,
un tel point est toujours d’indice 1 d’aprés (ii). O

B. Un exemple de fonction n’ayant aucune surface essentielle (confectionné avec C.
Lescop).

EXEMPLE 1.3. Soit p, g des entiers premiers entre eux 0 < g < p — 1. L’espace
lenticulaire orienté L(p, q) posséde une fonction de Morse “canonique” f qui est
ordonnée et a exactement un point critique de chaque indice 0, 1, 2, 3. Si cette
fonction posséde une surface essentielle C alors ou g =1, ou g =p — 1, ou ¢q est
impair et p =2(q £ 1).

Démonstration. Soit b une valeur réguliére de f comprise entre les valeurs
critiques d’indice 1 et 2. On pose Co=Cn{f<b}, I =0C,c {f = b} et on note O
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la courbe d’attachement de I'anse d’indice 2 sur la surface {f=b}, qui est un
tore orienté. Enfin, on désigne par u un méridien orienté de ce tore (u borde un
disque dans {f < b}) et par 4 la courbe orientée déterminée par les 2 conditions
suivantes:

* le nombre d’intersection avec u est +1: [A] - [u] = +1;

 pour une bonne orientation de @, [@] = g[u] + p[A].
On distingue deux cas suivant que C, est orientable ou non.

(a) Si C, est orientable, c’est un anneau et la courbe I' a deux composantes
isotopes, I'y et I';, qui coupent u une fois chacune. En les orientant convenable-
ment, on a, pour i =0, 1:

[I';] = m{u] + [4],
donc
O] - [[1=pm—gq, oumel.

Ainsi, I' coupe @ en au moins 2|pm — q| points; or, puisque C existe, © coupe I' en
exactement deux points, d’ou pm —q =0, 1 ou — 1. Par suite, oum =0etg=1(a
moinsque g=0etp=1)oum=1etg=p—1.

(b) Si C, n’est pas orientable, c’est un ruban de Mdbius et I" est connexe. Avec
I'orientation convenable, on a [I'] = m[yu] + 2[4], ou m est un entier impair.

Le méme argument qu’avant montre qu’on doit avoir mp —2¢q =0,2 ou —2;
par suite, m = 1 et p = 2(q + 1), avec g impair pour que p et g soient premiers entre
eux. O

Remarque 1.4. Compte tenu de la Proposition 1.4.5, cet exemple montre qu’il
existe des champs de vecteurs qui, pour des raisons globales, ne préservent aucune
structure de contact.

2. Une méthode générale pour construire des surfaces essentielles
A. Scindement par une surface essentielle

DEFINITION 2.1. Soit S une surface et I' une courbe fermée de S, en général
non connexe. On dira que I" partage S ‘“‘équitablement” si on peut recouvrir S par

deux sous-surfaces, en général non connexes, qui sont toutes deux bordées par I' et
ont méme caractéristique d’Euler—Poincaré.
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LEMME 2.2. Soit V une variété de dimension 3, f: V —[0, co[ une fonction de
Morse propre (a valeurs critiques distinctes) et C une surface f-essentielle transver-
salement orientable dans V. Alors:

(i) C sépare V en corps en anses;

(i1) C coupe chaque niveau régulier de [ suivant une courbe qui partage équitable-

ment ce niveau.

On rappelle qu’un corps en anses compact est une variété de dimension 3 compacte
a bord obtenue en attachant sur une boule des anses d’indice 1; dans le cas non
compact, on désigne par corps en anses une limite inductive de corps en anses
compacts.

Démonstration. On choisit une orientation transverse de C et on se donne deux
valeurs réguliéres de f, b, <b,, entre lesquelles f prend exactement une valeur
critique. Pour i =0,1, on pose V;={f<b;}, C;=CnV,, Si={f=b} et [, =
CnS,;. Ainsi, V, (resp. C,) s’obtient a partir de V, (resp. de C,) en attachant une
anse H (resp. K < H: voir la discussion de I1.1.B). On observe que K sépare H en
deux composantes; on les note H~ et H*, K étant transversalement orientée de H ~
vers H*.

Si la valeur critique de f entre b, et b, est le minimum absolu de f, C, est un
disque qui sépare la boule ¥, en deux boules (& bord anguleux). De plus, I'; est un
cercle et partage donc équitablement la sphére S,.

On suppose maintenant que V, est réunion de deux corps en anses, éventuelle-
ment non connexes et 4 bord anguleux, qui s’intersectent exactement le long de C,,.
On les désigne par Vg et Vi, C, étant transversalement orientée de V vers Vi .
On suppose de plus que I'y partage équitablement S,.

Comme P’attachement de K sur C, doit respecter 'orientation transverse, C,
sépare V,en Vi =VyuUH ™ et Vi =V§ UH™*. Ainsi C sépare V en deux sous-
variétés V'~ et V*.

Pour montrer (i) et (ii), on observe que le bord de V}*, pour i=0,1, se
décompose en deux parties: C; et S =V nS,. Par hypothése, S; et S¢ ont la
méme caractéristique d’Euler. Or:

» Si H est d’indice j =0, 1, Vi s’obtient & partir de V'§ en attachant une anse
d’indice j. De méme, Sit s’obtient a partir de S en attachant une anse d’indice j, d’ou:

XSE) = (=17 + x(SF),
donc

x(ST) = x(S7)
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* Si H est d’indice j =2, 3, Vi est homéomorphe & V5 : on recolle simplement
une boule le long d’un disque contenu dans le bord. Cependant, Sit s’obtient a
partir de S35 par une “demi-chirurgie” d’indice j (il s’agit d’une chirurgie le long
d’un arc ou d’un disque s’appuyant sur le bord de S&). On a alors:

(SE) = (1) + x(S),

donc, comme précédemment,

xS = x(S1). .

B. La construction principale

LEMME 2.3. Soit S une surface fermée, I'y une courbe fermée dans S, non
nécessairement connexe, et a un arc simple joignant dans S deux points de I', sans
autre intersection. Il existe alors une fonction de Morse f : S x [0, 1] =[O0, 1] vérifiant
les propriétés suivantes:

(1) f a exactement deux points critiques ordonnés d’indices respectifs 1 et 2; de
plus, pour t proche de 0 ou 1, fisy=1t;

(ii) f posséde une surface essentielle qui coupe S x {0} suivant 'y et S x {1}
suivant la courbe I, dessinée sur la Figure 7 et obtenue comme suit: on ajoute
une petite composante fermée I' ', d’un cété ou de I’autre de o et on fait la
chirurgie de Iy le long de a dans un voisinage de o évitant T'”.

(i) Si I'y partage S équitablement, C est transversalement orientable, et T,
partage aussi S équitablement.

Démonstration. Le méthode est la suivante: on réalise S x [0, 1] en attachant
successivement une anse d’indice 1 sur S x [0, €], puis une anse d’indice 2 en
position d’élimination; simultanément, on attache deux anses d’indice 1 a I'y x [0, €]
de maniére a obtenir la surface essentielle voulue.

a N\ S L
ro ./

(I; = o)

Figure 7
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Soit o, a, éléments de I'y les extrémités de «. Pour i =0, 1, on choisit en «; une
base (v;, w;) de I’espace tangent a S ayant les propriétés suivantes:

(1) v, et v, sont tangents a I'y et sont du méme coté de «;

(2) w, et w, sont tangents a a et rentrent dans «.

On attache alors l'anse d’indice 1, H, = {(x,y,2) e R*|0<x < 1,y*+z2< 1},
sur S x {¢} comme suit: on envoie (i, 0, 0) sur a;, (3/0y)(i, 0, 0) sur v; et (8/0z)(i, 0, 0)
sur w,. Plus précisément, les points (i, y,0) avec —1 <y <1 vont dans I, et les
points (i, 0, z) avec 0 <z <1 vont dans a. On attache ainsi K, = H,n{z =0} sur
I, x {e}. On désigne par C, la surface obtenue et par I' son bord supérieur:
I' =0C\T,.

Pour i =0, 1, on note maintenant a; le point de o image de (i,0,1) et a’ le
sous-arc de « joignant a et a. Dans le bord latéral de H, Hn{y*+z?*=1}, on
choisit un arc a” transverse aux cercles {x = const.}, isotope a extrémités fixes au
segment {(x, 0, 1) |0 < x < 1} et qui coupe en deux points 'ensemble {(x, +1,0) |
0 < x < 1} (voir Figure 8).

On attache alors une anse d’indice 2 le long de ® =a’ua”. Comme a” est
transverse aux cercles {x =const.}, la variété ainsi obtenue est difféomorphe a
S x [0, 1] d’aprés le lemme d’élimination de S. Smale [Mi]. De plus, par construc-
tion, ® coupe I' en deux points de sorte qu’on peut attacher (de manicre unique)
une anse d’indice 1 4 C,. On voit alors sans peine que la surface C obtenue vérifie
les conditions de I’énoncé. O

EXEMPLE 2.4. Si S est la sphére S? et si I'y est un cercle, la courbe I'; que
donne le Lemme 2.2 est formée de trois cercles emboités (i.e. dont le complémen-
taire est réunion disjointe de deux disques et deux anneaux).

COROLLAIRE 2.5. Il existe une fonction de Morse g : S* x [0, 2] - [0, 2] véri-
fiant les propriétés suivantes:
(i) pour t proche de 0 ou 2, gis2, (4 =1;
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(ii) g posséde une surface essentielle C qui coupe S* x {0} et S* x {2} suivant un
cercle, et qui rencontre S* x {1} suivant trois cercles emboités.

Démonstration. Soit f: S* x [0, 1] - [0, 1] “la” fonction donnée par le Lemme
2.3 en prenant pour Iy un cercle. On obtient g en recollant f avec la fonction:
S?x[1,2] »[1,2], (x, ) = (2= f(x, 2~ 1)) ]

COROLLAIRE 2.6 (Version convexe de la modification de Lutz [Lu]). Toute
variéeté de dimension 3 qui porte une structure de contact convexe porte une structure
de contact convexe et vrillée.

Remarque. Ce corollaire montre comment déduire le Corollaire III.1.S du
Théoréme III.1.3.

Démonstration. Soit V la variété. S’il existe sur V' une structure de contact
convexe, il existe, d’aprés la Proposition 1.4.5, une fonction de Morse propre
f:V—][0, o[ possédant une surface essentielle C. Pour une valeur réguliére b
de f, légérement supérieure au minimum absolu et pour ¢ assez petit, I'’ensemble
{b — ¢ <f < b+ ¢} est un cobordisme produit W =~ S? x [0, 1] que C coupe suivant
un cylindre a base circulaire I' x [0, 1]. Le Corollaire 2.5 permet de remplacer f par
une fonction de Morse propre f': V —[0, o[ possédant une surface essentielle C’
qui coupe S = {f'=b} = S? suivant trois cercles emboités. Le Théoréme III.1.2
donne une structure de contact positive £’ sur V qui est invariante par un pseudo-
gradient X’ de f” admettant C’ pour surface caractéristique. La Proposition I1.3.1
montre qu’alors, & une isotopie admissible pres, le feuilletage caractéristique de S
présente deux cycles limites, chacun d’eux bordant un disque avec exactement une
singularité a I'intérieur. a

C. Un théoreme d’existence

THEOREME 2.7. Sur toute variété de dimension 3, il existe une fonction de
Morse positive et propre qui admet une surface essentielle transversalement orientable.

Remarque. Le Théoréme 2.7, avec le Théoréme III.1.2, entraine immeédiatement
le Théoréme III.1.3.

Démonstration. Soit V la variété, et f: V —[0, o[ une fonction de Morse
propre, ayant un seul maximum si V est fermée et aucun si V' est ouverte. Soit b,
et b, deux valeurs réguliéres de f entre lesquelles f prend une seule valeur critique a.
On pose V,={f<b,} pour i=0,1et S={f=b}.
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Si a est le minimum absolu de f; fiy, posséde une surface essentielle transver-
salement orientable. On suppose donc maintenant que f;,, posséde une surface
essentielle transversalement orientable C,, de bord I'j, et on distingue trois cas,
suivant 'indice de la valeur critique a.

Indice 1. V, s’obtient a partir de V|, en attachant une anse H d’indice 1. Quitte
a changer I'attachement de H par isotopie, on peut attacher simultanément sur C,
une anse d’indice 1 de maniére a avoir, pour f, , une surface essentielle transver-
salement orientable.

Indice 2. D’apres le Lemme 2.2, I' partage S équitablement. Par suite la courbe
d’attachement @ de I’anse H d’indice 2 coupe I’y en un nombre pair 2r de points.
Si r =1, on peut attacher a C, une anse d’indice 1, K = H, ce qui donne pour f},
une surface essentielle transversalement orientable. Si r =0, on bouge @ par
isotopie pour créer deux points d’intersection. Maintenant si » > 1, on applique le
Lemme 2.3 a4 un sous-arc « de @ qui joint deux points consécutifs d’intersection
avec I'y. On élimine ainsi ces deux points en remplagant fj,  par une fonction f” qui
a deux points critiques de plus d’indices respectifs 1 et 2; on a alors une nouvelle
surface essentielle C; transversalement orientable dont le bord I'; partage encore
équitablement la surface {f" =by}={f=b,}. En répétant plusieurs fois cette
opération, on se rameéne au cas ou r = 1.

Remarque. Pour les variétés compactes a bord, la démonstration est finie; pour
les variétés ouvertes et non compactes, on termine par un argument classique de
limite inductive.

Indice 3. Comme f a un seul maximum, la surface S = {f =b,} est une sphére.
Si I'y < S est un cercle, on peut, en attachant ’anse d’indice 3, recoller un disque a
C,, ce qui donne la surface essentielle transversalement orientable cherchée.
Maintenant, si I’y n’est pas connexe, on procéde comme suit.

D’aprés le Lemme 2.2, I', partage S équitablement. Par suite, il existe une
composante I' de I', qui vérifie les propriétés suivantes:

(1) T ne borde pas un disque de S\ Iy,

(2) dans 'un des hémisphéres de S délimités par I', toute composante de I,

borde un disque de S\I',; on note S’ cet hémisphere et S” 'autre.

(Pour voir que I’ existe, on observe que, si aucune composante de I'y ne vérifie (1),
S\TI', est formé d’une part d’'une réunion disjointe de disques, et d’autre part d’un
disque troué. Par conséquent, I'y ne partage pas S équitablement. Pour obtenir (2),
on choisit une composante I' vérifiant (1) “‘minimalement”.)

Maintenant, on prend une composante I'* de I', dans S’ et, dans S”, on choisit
une composante I'” qu’on peut relier & I' par un arc a* sans recouper I',. La
construction inverse de celle de Lemme 2.3 permet d’éliminer I'* tout en faisant la
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somme connexe de I' et I'” le long de a*. La courbe ainsi obtenue partage encore
S équitablement et a deux composantes de moins. En répétant cette opération, on
rend I’y connexe ce qui termine la démonstration.
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