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Représentations of orbifold groups and parabolic bundles

Hans U Boden

1. Introduction

Let X be a compact holomorphic orbifold of dimension 2 Such orbifolds are
topologically classified by their genus and a finite collection of mtegers giving the
cône angles at the cône points in X By a smoothing process which replaces singular
neighborhoods of the cône points with holomorphic disks, we obtain a Riemann
surface Xs with a collection of distmguished points (called parabolic points) Let
E-+X be a holomorphic orbifold bundle By the push forward construction (a
smoothing process on the level of bundles), we obtain a holomorphic bundle S -+ Xs
with parabolic structure, î e a weighted (partial) flag in the fiber êp over each

parabolic point p In this paper, we establish that the bundle S îs parabolic stable

if and only if there îs a unitary connection A on E with constant central curvature
(Theorem 5 1) In particular, E îs projectively flat Thus, we get a description of the

space of projective unitary représentations of the orbifold group as stable parabolic
bundles and use ît to compute the cohomology of the SU(2) -représentation space
of any Seifert-fibered homology sphère

In order to put this resuit into context, let us consider for a moment the case of
holomorphic bundles (without parabolic structure) over a Riemann surface X The
big picture includes the three moduh

the moduh of semistable holomorphic structures on E,

• $ certain1 PU(n)-représentations of nxX,
% Jt the moduh of Yang-Mills2 connections on E

Each of thèse spaces îs a quotient space, in order to avaoid singulanties and
non-Hausdorff behavior, we consider the subspaces

$f ^ yy of stable holomorphic structures,
M* &lt;^0l irreducible représentations,
Jt* Ç M of Yang-Mills minima

1 or equivalently, représentations of nx of the once-punctured surface with prescnbed holonomy
2 Thèse are connections which are cntical points for the Yang-Mills functional



390 HANS U BODEN

In [15], Narasimhan and Seshadri prove that y^%f, with &amp;&gt;*&amp;*. In [4],
Donaldson gives a gauge theoretic proof of the resuit of Narasimhan and Seshadri

by showing M* % ïf. Atiyah and Bott, in [1], give an inductive procédure based on
the stratification of ^, the space of ail holomorphic structures, to compute T/%?7)
in the case where ^ïf &lt;^.

The three moduli hâve counterparts in the world of orbifolds and parbolic
bundles. Namely, given a holomorphic orbifold bundle E -? X with push forward
ê -&gt;XS, we hâve

the moduli of semistable holomorphic parabolic structures on S,

• M certain PU(n)représentations of n°xThX,

• Jt the moduli of Yang-Mills orbifold connections on E.

with analogous subspaces £f £ yy, ^* ç &amp;9 and M* &lt;^M. Mehta and Seshadri
[14] prove ïftf ^0t (with 5^%^*) for genus g ^2 and one parabolic point.
Moreover, the Atiyah-Bott program is extended in [17] to parabolic bundles. In
this paper we give another proof of the resuit of Mehta and Seshadri, i.e. we show
that y &amp; J(* for arbitrary genus. The approach used is essentially Donaldson&apos;s [4],
adapted to orbifolds. Consequently, we hâve 9* % 01* for an appropriately defined1

représentation space. This, along with the Atiyah-Bott program for parabolic
bundles, allows for the cohomology of the représentation space of certain Fuchsian

groups (orbifold fundamental groups).
Lately, the work of Casson and Floer has stimulated interest in the theory of

S£/(2)-representation space of n^I3), where I3 is a homology 3-sphere. Let 0t(X)
dénote the représentations modulo conjugation. If, in addition, I is Seifert-fibered,
then there is a canonical orbifold X so that $(Z) % $(X). Thus, the above program
gives a method for Computing the cohomology of 0t(ll). In carrying this out, we
find that H\^{I)) 0 for / odd. This is not surprising in light of the conjecture of
Fintushel and Stern [6], proved by Kirk and Klassen [11] (see also [3] and [7]). In
both [3] and [7], it is proved that $(L) is a rational variety and therefore simply
connected. We hâve tried to find a simple topological proof of the fact nx$(Z) 0,
but the usual techniques (i.e. Newstead&apos;s [16]) fail.

Having completed this work, we learned of the work of Furuta and Steer [7]
giving the same results by similar methods. In this paper, we extend the results to
compute the cohomology of représentation spaces of Seifert fibrations which are
torsion-free (arbitrary genus). In particular, we hâve complète results for genus 1

and partial results for genus ^ 2. This includes simple connectivity of ail but one

component of $(Z). This one component is diffeomorphic to the SU(2)-représentation

space of a surface of genus g and is singular for g &gt; 2. Andrew Nicas pointed
out to me that one can use Kirwan&apos;s explicit formulas (Sections 4 and 5 of [12]) to

3 i.e. représentations of 7i?rb of the once-punctured orbifoid with prescribed holonomy.
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find the intersection Betti numbers of this component (up to 2-torsion) In a future
article, we hope to address the problem of higher rank bundles (1 e U(n) and SU(n)
représentations) The présence of reducibles, reflected by the fact that Sfïf ^ £f, is
the main obstacle to this program Kirwan&apos;s theory appears to be the best hope for
deahng with thèse issues

We introduce the notion of orbifolds and orbifold bundles in Section 2 The

category of parabohc bundles is introduced in Section 3, where we also define

stabihty (Définition 3 9) and obtain a resuit (Proposition 3 8) which we will need m
Section 5 In Section 4, we estabhsh an équivalence between the catégories of
holomorphic orbifold bundles and parabohc bundles (Propositions 4 1 and 4 4) We
also prove the technical resuit (Proposition 4 5) which is needed for Theorem 5 1,

our main resuit Section 5 contains the proof of this resuit and estabhshes the

relationship between représentations and semistable parabohc bundles In Section 6,

we give, as an application, the computation of the cohomology of y in the rank 2

case and descnbe îts relationship to M{I) for Seifert-fibered spaces I We close this
section with some exphcit calculations where 9* (a component of &amp;) is of dimensions

four and six
Words alone cannot express the thanks I owe to the many people whose support

and encouragement were essential I am especially indebted to A R Jacoby, who
long ago freely gave his time to teach me, and Daniel Ruberman, who suggested
this problem and whose patience and insight at the crucial moments resulted in the

completion of this work

2. Orbifolds

In this section, we bnefly define holomorphic orbifolds, classifying (topologi-
cally) those of dimension 2 We also descnbe the orbifold fundamental group n°rb

We give a présentation for this group in case the orbifold has dimension 2 We
then turn attention to orbifold bundles and develop the complex differential
geometry which we shall use throughout this paper We end with a description of
the second fundamental form for a short exact séquence of holomorphic orbifold
bundles

We now define orbifolds (also called V-manifolds), using the notion of a local
uniformizing System, which we abbreviate 1 u s Before we get into the formahties,
intuititively, an orbifold is locally modelled on an open set in Cn modulo a finite
group Of course, saying what happens on the overlaps is the tncky part

DEFINITION 2 1 A connected metnc space X is a holomorphic orbifold if
(a) For a base of open sets U c X, we hâve a local uniformizing System, î e

triples {0, T, 0} where
1 Ù is a connected open subset of Cn,
2 F is a finite set of biholomorphic bijections of 0,
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3. &lt;j&gt; : Û-* U is F -invariant and induces a homeomorphism Û/F » U.

(b) If U £ £/&apos;, then we hâve an injection, which is a pair {À, ij/} so that
1. A : F -&gt; r &apos; is a monomorphism,
2. ^ : U -+ Û&apos; is a holomorphic embedding such that the diagram

I
&lt;/&gt;&apos;

I
&lt;/&gt;

commutes for ail y e F, where y&apos;

We call the collection of l.u.s. and corresponding injections a defining family 3F
^

and, as usual, consider two families &amp; and 3F
&apos;

équivalent if &amp; u &amp;
&apos; is a defining

family (i.e. satisfies (b)). We shall be mainly concerned with holomorphic orbifolds
of dimension 2, which are (topologically) classified by a fini te list (see [19] for a list
of ail 2-dimensional orbifolds). This follows because any finite subgroup of U(l) is

a cyclic group Za. So, any singular point c e X has an l.u.s. of the form D2jZa
where Za is the standard action on D2 (i.e. multiplication by an #th root of unity).
In this case, the cône point c has cône angle 2n/a. So compact holomorphic
orbifolds X are topologically classified by their genus g and a finite collection of
integers (a,,..., an) giving the cône angles at the cône points (cl5..., cn). We use

X(g; #!,..., an) to dénote this orbifold. For example, Figure 1 is a picture of an
orbifold of genus 3 with three cône points of orders 2, 5, and 7.

The fundamental group of an orbifold is, by définition, the group of deck
transformations of the universal covering orbifold. That such an orbifold exists is

a theorem which we will not prove, because in our case, the orbifolds are good,
namely, they hâve a manifold as a (branched) orbifold cover. In fact, almost ail our
examples are hyperbolic, namely their universal covering is H2 and nfh is a discrète

subgroup of PSL (2, R). Thus, we take as n°rb(X) the group of deck transforma-

Figure 1. JT(3;2,5,7).
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Figure 2 Generators for 7r?rb

Figure 3 The curve x hfted to x

tions of the umversal branched cover The orbifold fundamental group can be

computed m terms of curves on X For consider a closed curve x going once around
a cône point c e X of order a Because c has order a, a neighborhood of c has an
1 u s {D2, Za9 (j)} Lifting x to the path Je in D2, we see that xa lifts to a closed path
in D2, which îs contractible (see Figure 3)
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Thus we hâve generators jc, of order at for each cône point ct e X, We also hâve
the standard generators An Bt coming from the g handles of X (see Figure 2).

Then the product of the x/s is homotopic to n which itself is homotopic to the

product of the [At, Bt]&apos;s, i.e.

Thus, setting X X(g; al9. an), we get the group présentation

l,Bl,...9Ag9Bg9xl9...9xn\xf&apos; l and f\ x, f\ [At9 B,]

We shall often use the following smoothing procédure, which replaces an
orbifold X with its underlying Riemann surface Xs. To do this, choose a collection
of non-intersecting neighborhoods D2 of the cône points ct e X. Dropping the
subscripts, for c e D2 a X we hâve an l.u.s. of the form {D2, Za9&lt;j&gt;}. Let
c &lt;t&gt;~l(c). We see that the action of Za is free on the punctured disk D2\{c}.
Thus, we can glue in a deleted holomorphic disk D2 (D\{c})/Z giving a

holomorphic structure on Xo X\{cQ,..., cn). We compactify this by adding in
the points {/*i,..., A,} to obtain a smooth Riemann surface which we dénote by

In Section 4 we introduce a process of smoothing on the level of bundles. This
replaces an orbifold bundle over X with a bundle over Xs with some additional
data. Briefly, an orbifold bundle is locally a T-equivariant bundle.

0

DEFINITION 2.2. A complex orbifold bundle is a continuous map E-+X
between orbifolds such that for any x e X, there is an open set U containing x with
an l.u.s. {£/, r, (j&gt;} and a compatible l.u.s. for Ev 0~\U) of the form {Ëy, F, (/&gt;&apos;}

where
1. Eu ÛxCn,
2. the F action on Ëa is given by a représentation p : r -? GL(n, C).
3. 9 is covered by S : Ëv -+ Û which is projection onto the first factor.

Remark. The action of F on Ëv 0 x Cn is the diagonal action. One does not
need to assume, as we hâve done, that the bundle is proper, i.e. that the finite

groups for the l.u.s. of U and Ëv coincide, a surjection would suffice.

For us, an orbifold bundle E-+X consists of an honest bundle Eo -* Xo along
with &quot;equivariant trivializations&quot; over each cône point c eC. That is, for
c e D2, we hâve ËDi « B2 x Cn with an action of Za given by a représentation

p : Za -? GL(n, C). Such représentations are determined by their characters.
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In what follows, we use freely the many results of differential geometry for
orbifolds. Namely, a version of the Atiyah-Singer index theorem holds (see [10]),
and the Hodge décomposition theorem holds (see [2]). Of course, to make any sensé

of this, we need définitions of the following differential géométrie gadgets.

Suppose E-+X is an orbifold bundle with compatible l.u.s.&apos;s {£/, T, 0} for
U a X and {Ev, /\ &lt;/&gt;&apos;} for Ev cz E. Then a section s : X-*E is an orbifold section

if s descends from an T-equivariant C°° section s : U -&gt; Ëv. Since an orbifold X has

natural tangent bundle TX and cotangent bundle T*X, we can construct the
associated tensor bundles. Let TXC TX ®RC and T*XC T*X ®R C be the

complexified tangent and cotangent bundles. We use f\k T*X&lt; to dénote the bundle
of complex alternating A&gt;tensors and Qk(X) the orbifold sections of /\k T*XC.
Notice that Q°(X) is just the smooth maps from X into C, namely C^iX). Then the

exterior derivative extends by complex linearity to give

d:Qk(X)-+Qk+l(X).

For the orbifold bundle E-+ X, we dénote by Qk(E) the orbifold sections of the

bundle E ® f\k T*X&lt;. Then a connection on E is a C linear map

V :O°(E)-+Ql(E)

satisfying V(fs) (df)s +f(Vs) for fe Q°(X) and s € Q\E). Thus, V has a description

locally as a T -invariant connection f in the F -bundle Ëv -&gt; Û. With a

connection P, we get the induced covariant derivative

A hermitian me trie h is a F -invariant hermitian metric It in Ëy-* Û. We call a

bundle E-+X with a hermitian metric a hermitian bundle. Given a hermitian
bundle E ^X, the connection F is hermitian if it satisfies

for 5, € O°(£), where we hâve written (•, •) for the metric.

Using the complex structure on X, we décompose the /r-forms into

Q\X) 0 Qp&gt;«(X).

p + q k

The holomorphic structure on X gives the Dolbeault operator
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and the exterior derivative décomposes into d d + 5. Likewise, we décompose the
bundle-valued forms into (/?, q) components by

Then a holomorphic structure for E is a map

satisfying d&quot;(fs) (iïf)s +f(d&quot;s) for fe Q°(X) and s e Q°(E). Given the connection

F, we can décompose it

dv dp + dp,

where dp is the (1, 0)-component and d&apos;v the (0, l)-component of dv. We say a

connection is compatible with the holomorphic structure d&quot; provided

d&quot;v d&quot;.

Because X has dimension 2, any connection détermines a holomorphic structure
(the integrability condition is just d&quot;v o d&quot;v 0). Likewise, given a hermitian bundle
E with holomorphic structure, then there exists a unique hermitian connection

compatible with the holomorphic structure.
The argument in Section 5 minimizes the trace norm of a connection in a

holomorphic bundle. We shall need the following description of the induced
connections on sub- and quotient bundles. The underlying principle is that while
exact séquences of C00 bundles always split, the same is not true of holomorphic
bundles. The obstruction to their splitting is measured by an extension class, with
représentative the second fundamental form which we describe now.

Suppose 0-&gt;P-&gt;E-&gt;Q -*Q is a short exact séquence of holomorphic orbifold
bundles. Then a hermitian metric on E détermines a C°° splitting E P@Q. Let

nP and nQ be the projections E-+P and E-+Q. The metric defines hermitian
metrics on P and Q by restriction. This, together with the holomorphic structures,
détermine the connections A, AP, and AQ on the bundles £, /\ and Q respectively.
For s e O°(P), we hâve AP(s) nP(A(s)). Likewise, for s e Q°(Q), we hâve

AQ(s) nQ(A(s)). This follows by uniqueness of the metric connections, because

one can check that nP o A and nQ o A satisfy the requirements for being metric
connections on P and Q. For s e Q°(P), consider the différence

ol(s)=A(s)-Ap(s)sQ1(Q).
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If/g Q°(X), then a(/s) =/a(s), thus a is linear over Q°(X) and can be représentée!

by a 1 -form a e Q X(P* ® Q). In fact, if s is a holomorphic section of P9 as e(21O(0,
thus a g Ql0(P* ® 0. Similarly, if s g Q°(Q% then fis ^(5) - AQ(s) g Ql(P) for
0 g Q0l(Q*(g)P). In fact, jff is the adjoint of -a. To see this, take s} g Q°(P) and

s2 g Q\Q), then in terms of the metric, we hâve

0 (5,, s2) d(s{ ,s2)= (A(sl), s2) + (5,, ^(^2))

(^P(5,) + ^l5 .y2) + (Si, ^e(^2) + ps2)

Because the curvature of a metric connection is a (1, l)-form, we see that
fîp o. Thus, P represents a homology class in HOtl(Q* ® P). The connection A has

matrix description

A-&gt;A&gt; *

Furthermore, P 0 o A préserves the splitting, i.e. the splitting is actually a

splitting of holomorphic bundles. We call P the second fundamental form and its

homology class [ p] the extension class. If [ P] 0, then for some choice of metric,
the splitting E P ®Q is holomorphic.

3. Parabolic bundles

In this section, we define the notion of a parabolic bundle over a Riemann surface
X. A parabolic bundle S is just a holomorphic bundle over X with the additional
structure of weighted flags (not necessarily full) in the fibers êp over a (finite) set of
points p e X. We shall see in Section 4 that holomorphic orbifold bundles really are

parabolic bundles in an explicit way. Before we proceed, we point out that already
at least two excellent références exist for this material (see [14] or [18]).

DEFINITION 3.1. Given a compact Riemann surface X with a finite set of
points {Pj}n\&lt;^X (called parabolic points), a parabolic bundle over (X, {pj}) is a

holomorphic bundle ê over X with parabolic structure, i.e. for each parabolic point
P^{Pj}u we hâve

1. Sp= FpX^&gt; Fpa 3 • • • 3 FPtt a descending flag and
2. 0 ^ ap, &lt; ap2 &lt;• - - &lt;apr &lt; 1 associated weights.

The multiplicity of the weight api is mpi dim (Fpi) — dim (FPtl+ï).
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For the purpose of clarity, we shall write &quot;S is a parabolic bundle over X&apos;\ when
the parabolic points in X and the parabolic structure on g are understood.

DEFINITION 3.2. We define the parabolic degree of a parabolic bundle g by
the formula

pardeg (g) deg (g) + £

and the parabolic slope by

pardeg (&lt;f

rank (g)

DEFINITION 3.3. Given two parabolic bundles gl and g2 over X, a parabolic
morphism is a map ^ : gl-+g2of holomorphic bundles which respects the parabolic
structures. Le. for each parabolic point p with the parabolic structures on gk at p
for k 1, 2 given by

we require that 1/^ satisfîes

a)&gt;a^^p{F})^F^x. (1)

We use the notation ParHom (gug2) for the set of parabolic morphisms of two
bundles. A bundle isomorphism ^ is a parabolic isomorphism if both \j/ and \j/~l are

parabolic maps. We use ParAut (g) to dénote the set of parabolic automorphisms
of a bundle.

Remark. We can replace condition (1) by the following équivalent condition on
\l/p. Given the weight a], let a) be the smallest weight such that a\ ^ a), then we

require

it,p(Fl)^Fj. (2)

If there is no such aj, then we demand that ^fp{F)) 0. Because a) &gt; aj_u we see

that conditions (1) and (2) are équivalent.
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Remark. Given the parabolic bundle S, consider the group of parabolic bundle
automorphisms i// : ê -*ë lying over the identity map of X, denoted by ParAut (S).
Then since ifr is a parabolic map, we must hâve ^p(Fpl) FPtl. Thus ParAut (£) is

independent of the weights (i.e. it dépends only on the quasi-parabolic structure of
S, namely the unweighted flag structure).

LEMMA 3.4. Ifêx-^ê2^êz &amp; a séquence ofparabolic morphisms, then &lt;p © ^
is a parabolic map.

Proof Suppose p e X is a parabolic point. We use the notation {FJ, a)} for the

weighted flag in St at p for i 1, 2, 3. Given the weight a*, let a) be the smallest

weight with a\ ^ a). Then by condition (2), \j/p{F)) s F,2. Also, if fl£ is the smallest

weight with a) &lt; al, then (again by condition (2)) (t&gt;p(Fj) Ç Flk. Thus we see that
(0 o \li)p(F)) çFj. On the other hand, let a\ be the smallest weight with a] ^ a\.
Since a,1 ^ a3k9 we see that aj ^ aj. Thus Fl^Fl =&gt;(&lt;/) o ^(F,1) £ Fj A final
application of condition (2) shows 0 o \j/ is parabolic.

Given a short exact séquence of holomorphic bundles over X

i n
ô i ô 2 ©3 ^ v,

then a parabolic structure on S2 détermines a unique parabolic structure on &amp;x and

ê2 as we shall explain in short order. We first remark that the converse is true
(namely that parabolic structures on Sx and Sz détermine a parabolic structure on
$2). The interested reader is referred to page 68 of [18].

Suppose we hâve a parabolic structure on ê2- Then at each parabolic point
p g X, we hâve the weighted flag

0 &lt;:&lt;!?&lt;û2&lt;-&quot;&lt;a?2£ 1.

We define the parabolic structure on Sx first. Let Hl i~l(F*) (think of this as

^). We get a flag from the non-increasing séquences of subspaces

by removing those terms for which the inclusion is not proper. The easiest way to
do this is to choose a subsequence {/j,..., /rJ c {1,..., r2} so that

Hl2+X • • Htri-ll + X
• Hl2=&gt; Hl2+
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Set F) Ht and a) a2t for j 1,. r,. This gives the following flag for êXp

To define a parabolic structure on S3J set //, n(F?) and use the same technique
to get a flag from Hx 3 //2 3 • • • 2 //r2, i.e. choose a subsequence {/,,..., /ri} c
{1,. r2}, and set F* //, and a] 0? for y 1,..., r3. This gives the weighted
flag for 63p.

Remark. Notice that the weights are assigned to the $x and êz by forcing
1. a) a) where j greatest integer with i(F)) £ Fj.
2. al à] where j greatest integer with n(Fj) £ /*.

If we give Sx and ^3 thèse canonical parabolic structures, i and n are parabolic
morphisms.

We call êx with this canonical parabolic structure, a parabolic subbundle of &lt;^2-

Likewise, we call $3 a parabolic quotient.

Warning. The following (seemingly innocent) statements are jaise.
(1) A parabolic isomorphism is an isomorphism that is a parabolic map.
(2) A parabolic subbundle is given by an injection that is a parabolic map.
(3) A parabolic quotient is given by a surjection that is a parabolic map.

The trivial flag êp =&gt;0 with weight ax =0 provides an easy counterexample to (1).
For (2) and (3), notice that the canonical procédure spécifies exactly what the

weights of the flags in a subbundle and quotient must be. With this in mind, we
define

DEFINITION 3.5. A short exact séquence of parabolic bundles is a short exact

séquence of bundles

where êx is a parabolic subbundle of é2 and ê3 is a parabolic quotient.

LEMMA 3.6. Suppose 0* is a parabolic bundle over X and
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is a short eact séquence of parabolic bundles over X. Then

1. ^ : 9 -» Sx parabolic oi o\jj @&gt; -+g2 parabolic.
2. (f) : $?, -&gt; 9 parabolic o 4&gt; ° n : S2 -&gt; 9 parabolic.
3. pardeg (£,) -f pardeg (&lt;f3) pardeg (&lt;f2).

Proof. Lemma 3.4 and the observation that i and n are parabolic proves (=&gt;)

for both (1) and (2). Choose p parabolic. We will use the following notation for the

flags of thèse bundles at p. Let {Ff,af} be the weighted flag of 9 at p and {F), a)}
be the weighted flag of êx for i 1, 2, 3.

(1) We must show that if «f &gt; a), then ^(ff)sF|+1. But since &lt;?, is a

parabolic subbundle, we hâve F*, a£ with F,1 i ~!(Fj) and a) a|. Moreover /r is

the largest integer with this property, i.e. F) # i~x{F2k + in fact Fj+l i~X(F\ +
Since i o xj, is parabolic, (i o ^)p(FD s^ +1. Thus ^p(Ff) cr&apos;fFj,,).

(2) For this we must show that if a) &gt; af, then $(F73) £Ff+,. Because &lt;f3

is a parabolic quotient, F/3=7r(Ff) and aj=a*. Since 0 o rc is parabolic,
(&lt;/&gt; o tt^F?) £ Ff+ The resuit (2) now follows.

(3) Clearly deg (Sx + deg {S2) deg (^2). But in our description of the canon-
ical procédure it is évident that the sets of weights of êx and of &lt;f

3 form a partition
of the set of weights of $2 (taken with multiplicity). Thus

where n) is the multiplicity of the weight a) in F} for i 1, 2, 3.

By Section 4 of [15], any non-zero map a : S -+&amp; of holomorphic bundles has

a canonical factorization

0&lt; JT &lt; &amp; &lt; M &lt; 0

where a i o p o n and P has maximal rank. In particular, rank (I) rank (M) n.

Maximal rank means that /\n (p) : /\n (Ê)-+/\n (J() is not the zéro map. If /\n (p)
is nowhere zéro, p is said to be of full rank and then p is seen to be isomorphism.
In any case, it follows that deg (2) ^ deg {M) with equality o p is an isomorphism.

We are interested in the analogous statement for parabolic bundles. Suppose S
and ^ are parabolic bundles and that a is a parabolic map. Then J(^ being a

subbundle of #&quot;, and J, a quotient of ê, inherit canonical parabolic structures. By
Lemma 3.6, P is a parabolic map. The next lemma shows that pardeg (1) £
pardeg {M).
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LEMMA 3.7. IfP : Sx-^ê2 is a maximal rank, parabolie map between parabolie
bundles. Then pardeg (^,) pardeg (&lt;f2).

Proof. We first show how the resuit follows if P has full rank, and then we
address the more gênerai case.

Consider a parabolic point p e X. Since /? has full rank, /? is an isomorphism. In
particular, deg(^,) =deg(&lt;^2). Writing out the two weighted flags

&lt; a2 &lt; &apos; &apos; &lt; ar &lt; 1 with multiplicités

0 ^ ft, &lt; b2 &lt; - - - &lt; bs &lt; 1 with multiplicities nx,.. ns9

we see that the resuit will follow if we show that, for each parabolic point, we hâve
the inequality

n,bt
1

In order to prove this, we write out each sum and claim

bx +
&quot;-&apos;

+ *! + ••• + *5 +
•&quot;&apos;•

-f Z&gt;^ û, 4- m- -h fli + • • • + ar + — + ar.

There are N dim (^ip) dim {S2p) terms in each expression, so we prove the

claim by simply showing that the ith term on the left (bk) is greater than or
equal to the ith term on the right (aJt)9 where j : {1,..., N} -#• {1,..., r} and
k : {1,..., N} -&gt; {1,..., s} are the choice functions.

Suppose not, namely that ah &gt; bkt for some 1. Since jS is parabolic, it follows that

P{F))^Fli+l. Further, since pp is an isomorphism, rank 0(1^) =rank(Fjj). But
rank (Fjt) ^ N — i + 1 and rank (Fl[ + l) &lt; N — i -f 1, which gives the desired
contradiction.

Now we prove the proposition in the gênerai case (P is maximal rank). This

means that for generic points q e X, pq is an isomorphism. The problem: there is no
reason parabolic points must be generic. Call nongeneric points singular. Because X
is a compact Riemann surface, there is a finite number of singular points {qt}.
Further, we hâve an exact séquence of sheaves

0 —? S\ —&gt; s2 —* y —* 0,
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where y is a sum of skyscraper sheaves with support on {qt}. We are tempted to
call £f a skyline sheaf! In any case, deg(5^) deg(&lt;^2) — deg(^,) by the short
exact séquence. For each qn let y, be the amount which P drops rank at q,. More
precisely, yt — codim (fi(SXq)) in Slqr Since Sf is a skyline sheaf, deg(«9^) £,}&gt;,.

Since the previous argument will apply to the generic parabolic points, it suffices to
show that, for any singular parabolic point p with y the amount that /? drops
rank at /?, then

(3)

where we use the same notation for the multiplicities and weights as before.
To prove (3), we note that because each a, &lt; 1, we hâve

Hère, as before, aJt means the /th term in the expanded sum (j is a choice function).
Writing out the remaining terms in each sum, we claim

bx + • • • + bx + • • • + bs -H • • • + bs ^ a{ + • • • + aJ(N _y). (4)

There are JV terms on the left of (4) and N — y terms on the right. Comparing the

(y + i)th term on the left (bk(y + j)) with the ith term on the right (aJt), we claim that
bk ^ aJt. For otherwise ah &gt; bk(y +

=&gt; Pp(Fj) £ ^*(y +„+1 because j8 is parabolic.
But this forces /? to drop rank more than y at /?, a contradiction.

In summary,

PROPOSITION 3.8. Any nonzero parabolic map a\g -*3F has the following
canonical factorization

0 9 S Ê ?O
1

$

0 &lt; Jf &lt; &amp; &lt; M &lt; 0,

where

1. the two rows are short exact séquences ofparabolic bundles;
2. p is a parabolic map and satisfies a i o p o n,
3. rank (J) rank (.#),
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4. deg (2) ^ deg (Jt) with equality o P is a bundle isomorphism.
5. pardeg (J) ^ pardeg (Jt) with equality hère and in (4) p is a parabolic

isomorphism.

We close this section with the following

DEFINITION 3.9. Suppose S is a parabolic bundle. Then
1. ê is parabolic stable if /i(«^) &lt; \i(S) for ail proper subbundles «F.

2. &lt;f is parabolic semistable if /*(#&quot;) ^ /i(^) f°r ail proper subbundles ^\

4. Push forward construction

Suppose X is a holomorphic 2-dimensional orbifold and E is a C&quot; holomorphic
orbifold bundle over X As in Section 2, we construct A^, the smoothing of X, with
holomorphic structure. Further if {cu c2,..., c^} is the set of cône points of X,
their image under our topological identification X % Xs is a set of distinguished
points {pi,P2, &gt; • - &gt;Pn} which we call parabolic points. We will show how to use

the holomorphic structure of E to obtain a holomorphic bundle over Xs with the

additional data of partial flags over each parabolic point pt.

PROPOSITION 4.1. Given a holomorphic orbifold bundle E over X, there is a
natural parabolic bundle S over Xs. Hère, by natural, we mean that given a

holomorphic map of orbifold bundles &lt;j&gt; :EX-&gt;E2, there is an associated parabolic
morphism of the parabolic bundles $ : Sx -+S2 (see Proposition 4.5).

Proof We construct the sheaf of sections of S. It will follow from our
description that this sheaf is actually locally free and hence describes a vector
bundle. First consider the situation over a non-singular neighborhood U of X. Then

Ev is a (regular) holomorphic bundle over U. Thus, sections of Ev are in an
obvious way sections of êv. Of course we are using the fact that U is simulta-
neously a smooth neighborhood for both X and Xs.

Next, consider the situation over a cône point c, of X. Choose a neighborhood
U « Û/Ffj of ct not containing any other cône points. We may assume that E has

the trivialization Ev « Êu/ru where Ëv a 0 x Cn. Sections of Ev over U are just
rv-invariant sections of Ëv over 0. Taking holomorphic coordinates Û &amp;D2 &amp;

{z e C\z\ ^ 1} and ËV^D2 xC&quot;, then local sections of E are holomorphic, rv-
invariant maps

s:D2-+D2xCn,

z*-+{z,f(z)).
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Because the action of Fu is necessarily holomorphic, we know Fv is cyclic. We can
choose a generator a for Fv ^ Zm so that

(j:D2-&gt;D\

z i—? œz,

where œ e2ni/m. Since the action of Zm on the bundle is the diagonal action, a acts

on Cn by a matrix p(cr). By choosing a basis {el9..., en} of eigenvectors for p(&lt;r),

we see

Because ^ is Fv -invariant, s satisfies cr(s) --= asa ~l =s. But

u(sa~\z))

So we that since 5 is Fy -invariant

f(â&gt;z)) (z, p(a)f(œz)).

p(a)f(œz) =f(z).

Writing/(z) =f\(z)ex

p(a)f(œz)

œkift((ôz)ex + -- + cok»fn(œz)en.

In thèse coordinates for !:&lt;,, équation (5) becomes

œkf, (œz) =ft(z), for i 1 ,...,n.

(5)

M(z)^n in terms of the basis {e,,. en), we see that

(6)

Now we use the holomorphicity of s. This implies that each / is a holomorphic
map, i.e.

/(z)=
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Taking /th derivatives of both sides in Equation (6) and evaluating at z 0, it
follows that cij 0 unless j fc,(mod m). Thus

where/(zm) is a holomorphic function on U % 0/ v^ D2/Zm. Thus

/(z) zkix{zm)ex + • • • + z^/rt(z-K

and

Âzm)=fi(zm)ei -h •••+/„(z-K

are local holomorphic sections. The sheaf of sections is, by construction, locally
free, and we call the associated bundle S the push forward bundle and / the push
forward section.

This bundle has additional structure of a descending (partial) flag at the

parabolic point p e U. Order the basis {e,,..., en} so that

/œkl 0 \
•. satisfies 0 £ kx &lt;. k

\ 0 &lt;ok&quot;)

By reindexing, we can write

ok&apos;x 0

kn &lt; m.

•î*r

where 0 ^ k\ &lt; k&apos;2 &lt; • • &lt; k&apos;r &lt; m

0 œ1

and are repeated according to their multiplicities w,,..., «r. Let W, be the
w^&apos;-eigenspace of p(&lt;r) and define

Fpi — Wt@-&apos;&apos;®Wr with associated weight al—k&apos;ljm for i 1,..., r.

Then
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is a flag with weights

0 ^ ax &lt; a2 &lt; • • • &lt; ar &lt; 1.

We will see from Proposition 4.5 that this correspondance is natural and from its
corollary (Corollary 4.6) that the parabolic bundle is canonical. This ends the proof
ot the proposition.

Remark. Although there is no canonical choice for the basis {ex,..., en }, the
eigenspaces Wt are canonical. And so the flag Fx =&gt; F2 =&gt; • • • z&gt; Fr is canonical.

DEFINITION 4.2. Given a flag Fx z&gt; F2 3 • • • zd Fr, whose successive quotients
Fi/Fi+i are °f dimension «f, then a basis {ex,... 9en} for ^ is &amp;flag basis if

K1 + i,---?^} is a basis for F2,

K1 + W2+1,...,^} is a basis for F3,

{«?„,+ +nr_1 + ,,...,^n} is a basis for Fr.

Remark. Occasionally it will be convenient to list the weights repeated accord-
ing to their multiplicities. Then we will write

O^oii £a2£ • • • ^a,, &lt; 1,

where the af are the a} repeated dim (Fj/FJ + l) times. For example, in the construction

above, it is clear that a, kt /m.

From a parabolic bundle S over Xs, we construct the pull back bundle E over
X, an orbifold bundle which pushes forward to S. Roughly, we use the flag data to
construct local représentations of cyclic groups on Cn. Notice that any parabolic
bundle which is a push forward has rational weights of the form k/m where m is the
order of the cône point in X. Thus, not every parabolic bundle can be pulled back
to an orbifold bundle. We begin with a définition. Suppose Xs -* X is our topolog-
ical identification, with parabolic points pt e Xs corresponding to cône points cl e X,
i.e. il/(pt)=ct.

DEFINITION 4.3. Given a parabolic bundle S over Xs. We say a parabolic
bundle S over Xs is commensurate with X if the weights of the flag over each
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parabolic point p, are rational numbers of the form k\ml where mt is the order of
the cône point c, e X.

PROPOSITION 4.4. If S is commensurate with X, then there exists a holomor-

phic orbifold bundle E over X so that S is the push forward of E.

Proof For each parabolic point pl9 choose small 2-disk neighborhoods Dt of pt
so that Dlr\DJ 0. Let Xs0 Xs\\JtDt. Let Ut ^{Dt) be the corresponding
neighborhoods for each cône point ct e X. We hâve £/, « D2/Zmr Setting
Xo X\{JtUi9 we hâve a diffeomorphism X^^Xq. We define the bundle over the

nonsingular part of X by Eo 0Ao)*(&lt;^o)-

Now we need to define E over each U,. We chose a particular Ut and drop the

/-subscripts in what follows. Let {ex,..., en} be a flag basis for the flag

$P ^i ^ F2 =&gt; * * * =&gt; Fr,

0 ^ ax &lt; a2 &lt; &apos; &apos; &apos; &lt; ar &lt; 1

and 0 ^ a, ^ a2 ^ • • ^ aw &lt; 1 be the weights repeated according to their multiplic-
ities. We may assume ê &amp; D2 x C&quot; where {ex,..., en} is our basis for C1. Since we
assumed ê is commensurate with X, there exists kte Z with 0 ^ kt &lt; m so that

a, k, /m for ail /. We define a function

/z*« 0
zl : C* -+ GL(«, C) by d(z) [

A
&quot;

•.v 7 J w V 0 z*&apos;

Notice that A is independent of choice of flag basis. Let œ e2ni/m and choose a

generator a e Zm so that

Define the action of Zm on D2 x Cw by d(z, v) (wz, J(co)t;) and set

Now check that on the intersection UlnX0 S\ there is an equivariant patching

map. Clearly, since S1 dD2 is the Zm-cover of S1, the action is free. We hâve to
patch together the two Zm actions on the bundle §l x C1, one which is trivial on the
second factor, the other nontrivial (twist by A(œ)). Let &lt;x0 dénote the first action and
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&lt;t, the second We need to construct a map F so that

S1 x C-^S1 x Cn

i- i-
S1 x Cn &gt; S1 x Cn

commutes Defining F by

F O X C —? O XC,
(z, r) h-&gt; (z, /d(z)r),

we check that ît is our required equivanant patching map

Suppose Ex and E2 are holomorphic orbifold bundles over X Given a holomorphic

orbifold bundle morphism

\/ 2

x,

we show how to construct the push forward morphism of parabohc bundles

\ /2

We outhne the idea informally Suppose sx îs a local holomorphic section of Ew,
and let s2 (/&gt;(sl) be the local section of E2U Then we hâve the push forward
sections 5, and s2 of Sx and ê2 We define &lt;j)(sx) s2 Of course, to see that this îs

well-defined, we need to know that every local section sx of êx is the push forward
of a canonical section sx of Ex This is the content of Proposition 4 4 We are
interested in provmg a stronger resuit, namely that $ is a parabohc morphism
(recall Définition 3 3)

We formulate this statement in terms of umtary connections Suppose Ex, E2 are

unitary orbifold bundles over X, and Ax, A2 are umtary orbifold connections m El9
E2 respectively We push forward the holomorphic structures d&quot;A{i d&quot;Al, to obtain
parabohc bundles êXyê2 over Xs Let d&quot;X2 be the (0, l)-component of the connection
A\*® 1 + \®A2 on E\*®E2 So

d&apos;[2 Q°(Et®E2)-+Q0l(Ef®E2),
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and d&quot;2((t&gt;) =0o&lt;/&gt; is a holomorphic orbifold morphism. Then,

PROPOSITION 4.5. Given (j&gt;:Ex^E2, then d&apos;x&apos;2(&lt;t)) =0o&lt;£ : gx -+S2 is a
parabolic morphism.

Proof. Let p e Xs be a parabolic point and

0 ^ a? &lt; l &lt; - - - &lt; a\r2 £ 1

be the weighted flags for êx and ê2. We must show that $p satisfies condition

$P{F]) c F,2+ 1 whenever a) &gt; a).

Equivalently, writing $p $tJ(p) in terms of flag bases

{e\,...,elmi} for^lp and {*?,...,&lt;} for ^,
this requires

$v(p) 0 whenever a,1 &gt; a,2, (7)

where

0 £ aj ^ ai ^ • • • £ a^ &lt; 1 and 0 £ a2 £ a^ • • -^ a22 &lt; 1

are the weights repeated according to their multiplicities.
Let c g X be the cône point associated to p, and suppose c e U % O/Tu over

which the bundles Ex and E2 hâve trivializations

£i&lt;/ » Ëiu/Tu where £1£/ « f7 x CWl

and

^21/ * Ëiu/Tu where ^2t/ « # x C&quot;2.



Représentations of orbifold groups and parabolic bundles 411

Further, we may assume U « D2 and Tv^Zm, where a a generator for Zm gives
the standard elliptic action, which is just multiplication by œ e2nifm

a :D2-+D2,

Z h-+(OZ.

Let px and p2 be the représentations of the Zm actions on Êw « 0 x C1 and
E2U&amp; U x C2. Then

&lt;t : 0 x Cni-&gt;Û x CWl,

(Z, t&apos;i h-? (COZ, Pi ((T)^!

and

a: OxC&quot;*-&gt;OxC&quot;*9

(Z, 172) I—? ((OZ9 |

Choose bases

{*!,...,&lt;?£,} for C&quot;1

and

so that

Pj (ty) •. ^
I where Q &lt;. kx ^ k2 ^ - - - ^ kn

x
&lt; m

and

where 0 ^ «! ^ h2 ^ • • -^ nn. &lt; m.
0 CD &quot;** &apos;

As can be seen from Définition 4.2,

{ej,... ,eiË} and {e2l9 ...9e*2}
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give flag bases for êx and ê2- A local section s1 of Exu is a T^-equivariant map
Û -* Ëxu, which is given by a Zm -equivariant map D2-&gt;C&quot;1 in thèse coordinates. As
in the proof of 4.1, write sl(z) I s] (z)e\ in terms of the basis {e\,..., e\x}. Then
each .s,1 (z) satisfies

s](z)=zk&gt;$](zm)9

where 5J (zm) is the push forward section on Sx. Applying the same considérations
to the local section s2 of E2U gives s2(z) 2 s2(z)e2 where

s2(zm) is the push forward section on S2- Now we write 0^ : Ëxu -»£2t/ as a matrix
(&lt;/&gt;iy). Since rfï2(^&gt;) 0, we know that $ is holomorphic, i.e. that &lt;f)(sl) is holomorphic.
Thus we can apply the above considérations to s2 (t&gt;(sl). Further, we define

$ : ê, -x?2 by sending the section s1 to s2. Writing $ also as a matrix (&lt;£,,), then

X 4&gt;tJ(z)s) (z) ^2(z) zhJS2{zm\

It follows that

z^(z)=zV,,(^m). (8)

But since (t&gt;tJ(z) is bounded as z -?0, we see that

(^(0) 0 whenever kx&gt;hy (9)

But since a* kjm and a2 A,/m, clearly condition (9) is équivalent to condition
(7). This proves (=&gt;) of the claim. To see (&lt;=), notice that if $ is parabolic, then we

can define &lt;f&gt; via Equation (8). Thus &lt;f&gt; will be well-defined precisely when &lt;j&gt;&apos;\s parabolic.
By its définition, 4&gt; is holomorphic, thus, dfrn{&lt;t&gt;) =0. This complètes the proof. D

An easy conséquence of Proposition 4.5 is

COROLLARY 4.6. If g e ^rb(£), then g g ParAut (&lt;f).

Proof. Let dAAg be the orbifold connection on E*®E induced by A* and Ag.

Then g € yorb(E) =&gt; dAAg(g) 0, and g g ^rb(£) =&gt; dAAg(g) =0.
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5. Main theorem

At this point we hâve developed the tools for orbifold and parabolic bundles

necessary for the following generalization of [4]. As the argument in this case is very
similar, we pay particular attention to those steps of the argument which are not
found in [4]. We remind the reader of the définition of parabolic slope for a

parabolic bundle S

pardeg (g)
rankW

*

Recall further that S is parabolic stable if, for every proper subbundle 3F c S, we
hâve

THEOREM 5.1. Given an indécomposable holomorphic orbifold bundle E over X,
leî ê be the parabolic bundle over Xs obtained by pushing forward E, then ê is

parabolic stable o 3 unitary orbifold connection A compatible with E with constant
central curvature, i.e. *FA — 2nifi • /, where \i }i($) and I dénotes the identity
matrix. This connection is unique up to isomorphism.

In order to prove this, we define a functional J(A) on connections A as follows.
For any n x n hermitian matrix M, let

t(M) y/tr(M*M) Y, W.
1=1

where Xt are the eigenvalues of M. We can define t equivalently by,

n

x(M) max £ \(Met9 e,)\, where {et} is an orthonormal basis for Cn,
{*,) i=l

since this max will be obtained by a basis of eigenvectors for M. It is easy to check

that t is a norm from this characterization. Also, we see that if M is written in

the block form M \ then x(M) ^ \tr(A)\ + \tr{B)\. This follows since

I \(Me,, e,)\ \tr(A)\ -h \tr(D)\ for the standard basis. We can extend this to smooth
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self-adjoint sections s e O°(End E) by

N(s) ¦a
where orbifold intégration is understood, i.e. over a neighborhood of the forai
U « 0/Fu, we integrate by

z(s)2.
v\]o

Since N is norm équivalent to the usual L2 norm, it extends to L2 sections. If
{s, e L2(û°(End E)} is a séquence and xn lim inf x(s,) then by Fatou&apos;s lemma, we
observe that It^ \\l2 ^ lim inf N(s,). Define J(A) for an L2 connection A by

J(A)=N(-^

By the previous observation / is upper-semicontinuous, i.e. if At -+B weakly in L\,
then J(B) &lt;. lim inf J(At).

Also J(A) 0 &lt;=&gt; A is of the type required by the theorem. We will minimize
J(A) along a gauge orbit to obtain a connection A with J(A) 0. The pertinent
gauge group hère is the complexified gauge group y%th of orbifold gauge transformations

which are gênerai linear in each fiber. Thèse are precisely the bundle

automorphisms of E preserving its holomorphic structure. Consider a connection A,
and décompose dA into the (1,0) and (0, 1) components

If g e ^orb&gt; tnen ^ acts on a connection dA by

Thus, g(A) A + a, where
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The curvature tranforms by FA + a
— FA + dAa +a a a. This gives

Using FA dAdA +dAd&apos;A, we can write this more conveniently as

FA+h-\dAd&apos;Ah-dAhh-ld&apos;Ah)9

where h =g*g.
First, we need the foliowing theorem of Uhlenbeck (adapted to orbifolds, see

[5]).

PROPOSITION 5.2. Suppose At is a séquence of L2 connections with \FAi\Li
bounded. Then 3 a subsequence {/&apos;} and L\ gauge transformations gt&gt; so that g^A,)
converges weakly in L2.

Suppose E is a holomorphic orbifold bundle and A any connection compatible
with E. Let ^^rh{A) be the gauge orbit of A in se&apos;. For any orbifold connection A&apos;

on E (not necessarily compatible with the holomorphic structure), let êA&gt; be the

parabolic bundle obtained by pushing forward E with holomorphic structure
induced by A &apos;, namely d&quot;A. With this notation, we are ready to prove the following
conséquence of Proposition 5.2.

LEMMA 5.3. Either inf {J(A&apos;) \A&apos;e9gb(A)} is obtained in ^coxh{A\ or 3 a

unitary connection B on E so that êA and êB are not isomorphic, but hâve the same

rank, degree9 and parabolic degree, and satisfy
1. J(B) &lt;inf

2.

Proof Choose A, e ^^xb{A) a minimizing séquence for /. Because N is norm-
equivalent to the L2 norm, it follows that \\FAi \\Li is bounded. Applying Proposition

5.2 (with a mild abuse of notation), we obtain a subsequence of connections A,
and gauge transformations g, so that gt(At) -+B weakly in L]. Since J is upper-
semicontinuous, we hâve

J(B) £ lim inf J(At) inf {J(A&apos;) \A&apos;e &lt;&amp;corh{A)}.
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To complète the proof, we need to show that ParHom (&amp;A&gt; SB) # 0, the conclusion
of the theorem being established if SA « êB or not. Using A * on E* and B on E
we construct the connection A*®\ + \®BonE*®E Hom (E, E). Consider the

(0, l)-component of this, namely

dAB : Q°(Hom (E, E)) -&gt;û°-l(Hom (E, E)).

Then by Proposition 4.5, s e ker(dAB) os e ParHom (^, £B), so we need to
show:

CLAIM. ker(rfis)#0.

Suppose otherwise. Since d&quot;AB is first order elliptic, we hâve

||z.2 ^ clklU? f°r some c &gt; 0, and ail s.

By the Sobolev inequalities L\ u L4, we hâve \\s\\la ^ c1 \\s\\Li

Now ^,-^B converges weakly in L\, and so by the Sobolev inequalities, it
converges in L4. Thus

\Kb(s)\\L2 - ld&apos;AAi(s)lL2 * \KB(s) - d&quot;AAi{s)\\L&gt; Z c3\\B - A, |U4|H|L4,

where the first estimate is just the triangle inequality, and the second is seen by
noticing that d&quot;AB — d&quot;AAi is the (0, l)-component of B - A,. It follows that

\\d&quot;AAM) Wl2 &gt; \\d&quot;AB(s) \\L2 - c3 \\B - At \\L4\\s ||L4

Z(c2-c3\\B-At\\L4)\\s\\L4

^ c||5|L4 for some c &gt;0,

where the last inequality follows by choosing / large. This holds for ail s, contradict-
ing the fact that ker (dAA) #0. D

We now need two estimâtes (Lemmas 5.4 and 5.5) to show that if ê is parabolic
stable, then the second case of Lemma 5.3 cannot hold. To this end, recall from
Section 2 that, given any short exact séquence of holomorphic orbifold bundles

0-&gt;P-&gt;£-&gt;(?-0, (10)
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then a hermitian structure on E détermines aC00 splitting of (10), and the second

fundamental form P e Q0A(Q* ® P) is the obstruction to this splitting being holo-
morphic. In terms of a unitary connection A on E and the induced connections on
P, Q denoted by AP, AQ, we see that in this splitting, A has the form

A-(A&quot;

and the curvature FA has the form

fp-PaP* dp

-dp* FQ-p*Ap
&gt;

where d : Ql(P*® Q) -+Q\P*®Q) is the covariant derivative of the connection

A%®l + l®AQ. Of course we can push forward the en tire séquence in (10) to
obtain a short exact séquence of parabolic bundles

0-&gt;^-xf-&gt;j2-*0. (11)

It follows that P is the obstruction to this séquence admitting a parabolic splitting.

Remark. This notation for the second fundamental form is the adjoint of that
in [8]. The important point hère is that p* a P and —p a P* are positive semi-

definite (1, l)-forms. Since *(dz a dz) 2/ — *(dz a dz) we can normalize so that

*tr(p a p*) -*tr(ft* a P) 2ni\P\2.

LEMMA 5.4. Suppose E is a holomorphic orbifold bundle with parabolic push

forward 3F&apos;. Then if 0-&gt;J?-+^-+jV-&gt;0 is any short exact séquence with

li(Jt) &gt; fi(^) {-=&gt;\i(3F) ^ v(jV))9 then for any unitary connection B compatible with
E, we hâve

dcf
J{B) ï&gt; rank {Jt)(\x(M) - /x(^)) -h rank (Jf\\i(&amp;) - \i(Jf)) Jo

with equality o the séquence splits.

Remark. Note that by hypothesis, Jo ^ 0. We first show how this lemma proves
(=&gt;) of Theorem 5.1. For suppose E is an indécomposable holomorphic orbifold
bundle with unitary connection A and J(A) 0. Then if M is a proper parabolic
subbundle of S we hâve \i(M} &lt; ii($). Otherwise, by the lemma, Jo 0 J(A) =&gt; S
décomposes, which is a contradiction. Thus S is stable.



418 HANS U BODEN

Proof. Set fi
hâve

Following the notation introduced above, for any B, we

_(F^-pAp* dp \
~\ -dp* F^-P*Ap)&apos;

where F^ FB^ and iv FBjr. Note that BM and 2?^ are the induced connections

on the pullbacks of J( and Jf respectively. From the properties of r on block
matrices, it follows that

X\2Û lui

tr
2ni *+..u)

Thus, by Cauchy-Schwarz we see

V2\l/2

(&lt;Fm~P Al?*) \ I f /?
&quot;¦ ^—:

!&quot; ^ * ^ur 1 + tr\ ~ - p a

rank

where the last two steps hold because

|| P \\2,

tr ^4
2jtl

rank

rank

0,

:0

by hypothesis. Furthermore, equality above impies P 0, which is équivalent to a

holomorphic splitting of the séquence. D
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For the second estimate, we again look at short exact séquences of holomorphic
orbifold bundles, except that now we assume the middle term E has parabolic stable

push forward S\

LEMMA 5.5. Suppose E is a holomorphic orbifold bundle ofrank n, and that its
push forward bundle S is parabolic stable. Assuming {by induction) that theorem 5.1

is true for bundles with rank &lt; n, then given any short exact séquence

ofparabolic bundles, then 3 an orbifold connection A compatible with E (i.e. S % SA

so that

def
J(A) &lt; rank

Note: since S is parabolic stable, ii(0&gt;) &lt; ii($) and \x(ê) &lt; n(£)9 thus JX is positive.

Proof To any parabolic bundle, we hâve a canonical (Harder-Narasimhan-
parabolic) filtration (see [18]). Applying this to ^, we get

so that each quotient Mt 9% \&amp;t _ x
is semistable with decreasing slopes /x, \i{Mt

Note that \it ^ fix =ju(^,) &lt;ii{$) by stability. Now Jit is semistable, thus has a

filtration of the form

each of whose quotients &lt;&amp;lJ=z{J£l)jl(J(l)j-\ is stable with slope

Although this filtration is not canonical, the isomorphism class of

def m&lt;

dépends only on that ofJf, (see p. 71 of [18] for détails). Since rank (#,,) &lt; rank (S),
we can apply the inductive hypothesis to each (élJ. To facilitate our discussion, we
will adopt the following breach of ethics, namely we will say &quot;A is a connection on
S &quot; when we really man that A is an orbifold connection on E whose push forward
is &lt;f, i.e. SA « S. With the aforementioned amoralities, we apply Theorem 5.1 to get
a connection AtJ on Vv whose curvature FtJ satisfies *FtJ —2nint. Since ^ (^,)i,



420 HANS U BODEN

this gives a connection A(^i){=Aa on (Jit\ for each i. Furthermore, given
connections A{^{) on {Jtt)j and AtJ+x on ^tJ+l along with a choice of second
fundamental form /?l7 e Q0A(&lt;$*+, ®(Jtt)j) for the exact séquence

thèse détermine a connection on (Jtt )J+l by the formula

Proceeding inductively, we get connections A\ on each Jtt. Since 0&gt;x =Jtx, this

gives a connection on ^. The same argument applied to the short exact séquences

gives, at long last, a connection A^ on ^. Then Ap-+A% as t -+0, where ^4^ is a

connection on ©, Gr (^,) whose curvature satisfies *F% — 2niA^. Hère /l^ is

the diagonal matrix

0

where fit is repeated dim(^l) times. Notice that by construction

-1 pardeg (^,

- pardeg

rank

rank

The same considérations applied to 21 to yield the filtration

0 c J, c J2 c • • • c 3,q Ê9

(12)
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with semistable quotients Jf% =1J1,_1 whose slopes Àt /i(J/\) are decreasing.
Note that Xt ^ kq &gt; fi($) by stability. A construction similar to that given above

builds connections A% on 1 so that A^-^% as t -?0, where A % is a connection on
whose curvature satisfies *F% —2niA^ where

0

Again notice that

2ni
rank (13)

Using the connections A&apos;p and Aj constructed above, we get an operator rf, on

J*®^. (Actually, the breach of ethics is rather severe hère, since dt is really the

covariant derivative on the orbifold bundle corresponding to the pullback of
J* ® 0&gt;.) For each r, we choose a harmonie (with respect to dt) représentative /?, of
the extension class of ê. By changing the scale, we may assume || /?, \L2 1. Also,

The ct can be uniformly bounded, since dt^&gt;d0. Thus there is a uniform bound for
I j3, ||co. This gives the connection Ast on ê

A&apos;

with curvature

0

Now -Ap+n(S) • I? has ail positive eigenvalues, and so do sufficiently close

operators. For thèse operators t( • tr( ¦ Furthermore, *tr(p, a fif) — — 2ni\ fi, \2.
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Using this and formula (12) we see for small 5 and t,

2ni -s2\P,\2

lui
rank (&amp;)W) - n(&amp;)) - *2\ Pt \2 + &amp;i(t)

where

as t -» 0.

Similarly, — AM + y(S) • 1M has ail négative eigenvalues. And so for sufficiently
close operators, t( • — tr( ¦ Also *tr(Pf a P,) 2ni\ P, \2, and so by formula 13)

-s2\P,|22ni
&gt; r&gt;K * j y2ni

rank (J)(/x(J) - //((?)) — s2| fit \2 -h ^2(0-

Putting this ail together, we see that for small s and /,

K2ni
S

It follows that

J(ASsl)2=\(Jl-2s2\p,\2 + ô(t))2

Since we hâve a uniform bound on || p, \\c0, we can choose s small enough so that

Jxs* Jxs2 [ \fi2t\&gt;s&lt; [ |AP.
Jx Jx

Then by choosing t so that ô(t) is negligible, then J(Ast) &lt; Jx as required, D
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We are now ready to prove (&lt;=) of Theorem 5.1. Suppose that S is stable and

that the theorem has been proved for bundles of lower rank. Let A &apos; be a unitary
connection in E. Then,

CLAIM: inf {J(A) | A e ^^Th{Af)} is attained in 9^(A&apos;).

For if not, then, by Lemma 5.3, we hâve a connection B and parabolic
bundle &amp; — SB with same rank, degree parabolic structure as S so that
J(B) &lt; inf {J(A) | A e ^^Th{A&apos;)} and ParHom (&lt;f, #&quot;) # 0. Choosing a / 0 e
ParHom (&lt;f, ^), by Proposition 3.8 we hâve the canonical factorization of a

0 &gt; &amp; y s —^-&gt; â —&gt; 0

0 &lt; JT &lt; &amp; * M &lt; 0,

where a i o p o n, rank (Jt) rank (J) and pardeg (^) ^ pardeg (^). Notice that

From Lemma 5.4 applied to the bottom row we get that

J(B) &gt; Jo.

Moreover, applying Lemma 5.5 to the top row we get a connection A on i with

J(A)&lt;Jt.

But since \i(2) &lt;&gt; n(Jt), ix(g) \i(?) and \i(0&gt;) ^ \i(Jf\ we see Jo ^ J{ and so

a contradiction. This proves the claim.

Now we must show that J(A) 0 for this minimizing connection A e y%Tb(A&apos;).

Suppose not. Then, because E is indécomposable, ksxd*AdA constant scalars, for
if s g ker d*AdA is a self-adjoint section of End (E), then the eigenspaces of s give a

holomorphic splitting of E. Projecting *FA/2ni onto ker d%dA9 we get

2^7



424 HANS U BODEN

Using the Inverse Function Theorem (working 1 ker d*AdA) we get a self-adjoint
section of h e Q°(End (E)) with id%dA(h) *FA + 2nifjt • /. Set gt 1 - th. Then for
/ small, gt e 9gh. If At =gt(A\ then

and

FAt =FA +d&quot;A{gtd&apos;Ag7x) +d&apos;A{g7xd&quot;Agt)

+ g7\d&quot;Agt)gt(d&apos;Ag7l)

FA+t(dAd&apos;A-dAd&apos;A)h+q(t,h),

where

ll9(^*)IU2^cb/2ll*|.

Using the fact that *(dAd&apos;A -dAdA) -id*AdA we see

*Fa r *FA - it

f^ +1* &apos; l\ 1 - 0

And it follows that

So in order for J(A) to be a minimum, we must hâve J(A) 0.

As for uniqueness, suppose A and B g(A) are two connections so that
FA FB \i -1. Writing g u - gf where u s &amp;orh and g&apos; is self-adjoint, by unitary
invariance of J(A), we can assume g =g&apos;. We see that

Now, using the fact that g =g*, we get

«M*2 d&quot;g2g-2d&apos;Ag2 -{(^^
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Taking the trace t tr(g2), ît follows that Ax ^ 0 Now by the maximum pnnci-
ple, we get that Jt=0 and so d&quot;Ag2 0 d&apos;Ag2 Thus, since the bundle îs

indécomposable, ît follows that g îs a constant scalar, and so A B

6. Applications

Using the inductive procédure of Atiyah and Bott, adapted to parabohc
bundles as in [17], we compute //*(&lt;9^), where £f îs the moduh of stable parabohc
bundles For simphcity, we assume the bundles are rank 2 and parabohcally
flat In applications, we often restrict further to the cases where the under-
lymg Riemann surface X îs either the Riemann sphère or the torus This
îs because by Computing //*(5O, we can deduce the cohomology of the

SU(2) représentation space of any torsion-free Seifert fibration over S2 or T2

(see Theorem 6 4 and formula (21)) This includes ail the Seifert fibered hom-
ology sphères, for example As a conséquence of this and [6], we get information
about Casson&apos;s invariant and so also the Floer homology of thèse homology
sphères

For starters observe that as a conséquence of Grothendieck&apos;s theorem [9], the

assumption genus 0 gives a rather dull moduh space in the case of non-
parabohc bundles (this îs because only hne bundles are stable) In fact, the case of
parabohc bundles over S2 îs only mteresting when there are many (îe &gt;2)

parabohc points In the rank 2 case, £f îs a smooth complex manifold of complex
dimension n — 3, where n the number of parabohc points Because the authors
of [14] concentrate on the n 1 case, they assume genus ^ 2, which îs necessary
for a nontnvial moduh space We developed Theorem 5 1, the natural generaliza-
tion of [4] and [14], because we wanted a représentation theoretic interprétation
for £f for ail genus (compare Theorem 4 1 of [14])

This section îs divided into eight parts The fîrst section gives a brief account
of equivanant cohomology The second decnbes the stratification on the space V
of holomorphic structures ansing from the Harder-Narasimhan parabohc filtra-
tion The third introduces the gauge groups (êc and 9 In the fourth, usmg a fact
(due to Nitsure) that the fîltration îs equivanantly perfect, we dérive a formula for
the equivanant homology of the semistable bundles The fifth section shows how
to deduce the singular homology of the moduh space Sf of stable bundles m the

case when semistable stable The main issue îs that H*(Sf) îs torsion-free In the
sixth section, we mterpret thèse formulas in the case where X has genus 0 and 1

The seventh section shows how this relates to the cohomology of the SU(2)
représentation space of certain Seifert-fibered spaces And m the last section, we
perform exphcit computations of
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6.1. Equivariant cohomology

For a topological group G and any G-space Y, consider the universal bundle
G-+EG-+BG. Let

YG=EG xGY EG x Y/~9 where (eg,y) ~(e,gy).

Then we hâve the fibration Y -&gt; rG -* 5G, and the equivariant cohomology of Y is

defined by H%(Y) H*(YG). If the G-action on Y is /m&gt;, then YG c* Y/G. It
follows that

HG(Y)=H*(Y/G).

On the other hand, if the action is trivial, then YG ~ BG x F and so

H%(Y)=H*(BG x F).

Also, if Y is contractible, then 7G es 5G and so

In the course of the argument, we will need the following:

PROPOSITION 6.1. Suppose H is a normal subgroup ofG which acts trivially on
Y so that the quotient G G /H acts freely. Suppose further that the fibration
BH-^BG^BG is trivial Then, YG BH x Y/G. If, in addition, BH and YG are
torsion-free, then Y/G is torsion-free and HG(Y) H*(BH)®H/(Y/G).

Proof. Since BG BH x BG, we see that EG EH x EG. So

YG EG x G Y (EH xEG) xgY BH x(EG xgY)

because the action of H is trivial on both Y and EG. So, YG BH x YG. Now since

G acts freely, YG Y/G Y/G. The rest now follows from the Kunneth theorem.

6.2. The filtration on &lt;&amp;

Fix E a rank 2, C00 bundle over a Riemann surface X of genus g. Suppose that
E has a topological parabolic structure, i.e., over the finite set {pt}&quot; cz X of
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parabolic points, we hâve weighted flags

Further assume that E is parabolically flat, i.e.

def n

pardeg (E) deg (E) + £ («î + «2) 0.

Remark. Temporarily ignore the possibility of trivial flags, which are ones of the
form Ep Fx with one weight of multiplicity 2 because trivial flags impose no
restrictions on parabolic automorphisms of E, and in fact, their sole effect is that
they contribute to the parabolic degree when the weight is nontrivial.

Consider ail holomorphic structures d&quot; on E, namely C-linear operators

d&quot; \Q%E)-&gt;Q*\E)

satisfying d&quot;(fs)=(5f)s+f(d&quot;s) for feC°°(X) and seQ°(E). Because lis a

complex curve, the integrabihty condition d&quot; ° d&quot; 0 is automatically satisfied, thus

by the Newlander-Nirenberg theorem, each d&quot; détermines a holomorphic bundle

(with parabolic structure) which is denoted by ê. Let # be the space of ail
holomorphic structures. Then &lt;€ is an oo-dimensional affine space modeled on
O0ïl(End£). To see this, consider two operators d&quot;u d2e&lt;tf. Then the différence

d\ - d&quot;2 : ao(E)-*Q°-\E) is linear over C°°(I), thus d&apos;[ - d&apos;2&apos; e Q01(End E).
Recalling Définition 3.9, let #, and ^ss be the subspaces of ^ of parabolic stable

and semistable structures. For any bundle ê g V\Vm9 there is a unique destabilizing
Une subbundle L of S, where

is a short exact séquence of parabolic bundles and

pardeg (L) &gt; 0 (o pardeg (Q) &lt; 0).

Set A=deg(L) and el=dim(LpnF2) for each parabolic point pt. Then the

parabolic degree is determined by X and e (e1,..., en) by the formula

pardeg (L) X + X [( 1 - e,)a\ + e,*&apos;2]. 14)
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We say that ê is of type (À, é). Bundles of type (À, é) form a locally closed,
connectée! submanifold #A e of finite codimension in c€. Note further that each ^Xe
is nonempty. This is because given (À, e), we can built a bundle of this type by
taking a direct sum. The argument given in [17] cardes over to show that the
stratification

X,e

is equivariantly perfect (in a sensé we shall explain shortly).

Remark. Nitsure restricts attention to the case where the genus g ^ 2. The only
reason for this is that for higher rank and genus 0, it is not clear (in fact not true!)
that each strata is nonempty. Actually, we shall see that for certain parabolic
structures, there are no semistable rank 2 bundles. Keeping track of &quot;empty&quot; strata
is one of the difficulties in generalizing this procédure to rank 3 and higher.

6.3. The gauge groups ^c and 0&gt;

We now defîne the two &quot;gauge groups&quot; with natural actions on c€. The

complexifîed gauge group

#c Aut E {g : E -? E over X with gx e GL(2, C) for ail x e X},

and the parabolic gauge group

^ ParAut E {g e &lt;0C with gPi(F\) F&apos;2 for 1 ^ i &lt;: n}.

Thèse act on ^ by

The (êc orbits are isomorphism classes of holomorphic structures on E, and the 9
orbits are parabolic isomorphism classes of parabolic holomorphic structures on E.

We use the Kuranishi method to identify the tangent and normal spaces to the gauge
orbits. Suppose gt is a curve in (SC with g0 1. Then gt(d&quot;) d&quot; + g7ld&quot;gt. Taking
the derivative and evaluating at 0, we get d&quot;g\ where g&apos; e Q°(End E) is the derivative
of gt at 0. Thus, the tangents to the gauge orbits at d&quot; are éléments of im d&apos;\ where

d&quot; : G°(End E) -&gt;Q01(End E).
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Also, the normal bundle at d&quot; is just coker d&quot; and we identify the tangent space
of #/^c at [d&quot;] with H\X, End E). Similarly, the tangent space to &lt;€\9 at
[d&quot;] is Hl(X, ParEnd E) where ParEnd E is the sheaf of parabolic endomorphisms
of E.

Remark. This is actually quite tricky, requiring Sobolev complétions and ail. To
treat this right we must descend into the nether-world of sheaf theory. We refer the
adventuresome to [17].

Atiyah and Bott prove that the stratification on # induced by the Harder-
Narasimhan filtration is (êc perfect, and Nitsure proves that the stratification on #
induced by the parabolic filtration is &amp; perfect. In either case, you can deduce the

equivariant cohomology of the top stratum (^ss) from that of the unstable strata

C^i,e) along with the equivariant cohomology of the whole space.

6.4. The equivariant cohomology

Because the stratification on # is perfect, we hâve the formula for the equivariant

Poincare polynomials (where we use P for equivariant H*)

Pt(V) /*,(*„) + £ t^PWx*), (15)

where dÀe codim (^J. We calculate the various pièces of the above formula.
First, since # ~ *,

To calculate this, we use the fibration

n
where !F is the flag variety, which in this case is CPl x • • • x CPl (n is the number
of nontrivial flags).

Remark. For rank 2, a (nontrivial) flag is just a point in CPl. Thus, a choice of
parabolic structure is an élément of &amp; CPl x • • • x CPl. A partition of unity
argument shows that the action of &lt;êc is transitive on parabolic structures, giving
a surjection (êc&apos; -*&lt;F with fiber the subgroup 9 of parabolic gauge transformations.
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On the level of classifying spaces, we get a fibration

p -+B0&gt;-&gt;B&amp;c. (16)

This is a séquence of pull backs of the following fibration

where G U(n), P is a parabolic subgroup, and F is the corresponding flag. Both
F and BP are torsion-free with cohomology in only even dimensions. It follows that
the Leray-Serre spectral séquence collapses at the E2 term (since d : even -&gt; odd),
and therefore this fibration is cohomologically trivial. Consequently, the fibration
(16) is also cohomologically trivial. Now, by Theorem 2.15 of [1], B(SC is torsion-
free with homology given by

So B0&gt; has no torsion and as in [17] we hâve

d-&apos;2)3

Having computed H%(&lt;&amp;), we turn our attention to the other terms in formula
(15). We compute dke in terms of k and e. This, with P,(^u)&gt; wiH yi&amp;â the

equivariant cohomology of (€ss.

Now each strata ^e is a union of orbits, thus the normal to VÀte is a quotient
of H\X, ParEnd E). Given S e ^^e, let ParEnd&apos; E dénote those endomorphisms
which préserve the filtration Oclc&lt;f, Then the tangent space to ^Àe contains

H\X, ParEnd&apos; E). Letting ParEnd&quot; E be the quotient

ParEnd&apos; E c&gt; ParEnd E -&gt; ParEnd&quot; E,

we can identify the normal to ^Ae with Hl(X, ParEnd&quot; E). From the exact séquence

and the fact that pardeg (L) &gt; pardeg (Q) =&gt; ParHom (L, Q) 0, it follows that
H°(X, ParEnd&quot; E) 0.



Représentations of orbifold groups and parabolic bundles 431

We may now calculate the précise value of dke — %(X, ParEnd&quot; E) by
Riemann-Roch. Let End&apos; E be the endomorphisms (not necessarily parabolic)
which préserve the filtration and End&quot; E the quotient

End7 E c&gt; End E -? End&quot; E.

Then we hâve a short exact séquence of sheaves

0 -? ParEnd&quot; E -+ End&quot; E -+ S -? 0,

where S is a skyscraper sheaf with a one dimensional stalk over each parabolic
point p, with e, 1. Thus

d/e=h\X, ParEnd&quot; E)

-x(ParEnd&quot;£)

But we calculate *(End&quot; E) k - 2k + 1 - g by Riemann-Roch, where k deg (E).
Since S is a skyscraper sheaf, x(S) A°CY, S) £, er Thus,

&lt;e 2A-/r + (g-l)+2&gt;,. (17)

To complète the calculation, we find P,{^x,e) for a&apos;l the uns table strata. It is

shown in 3.4 of [17) (or see 7.12 of [1]) that

But, ^&gt;(L) 0&gt;{Q) C*, and &lt;#SS(L) =&lt;£SS(Q) =J(X), the Jacobian. Since C*
acts trivially, H£.(J(X)) H*(BU(l))®H*(J(X)). Thus WJ(^) //

and so

Putting it ail together, Equation (15) implies
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6.5. The cohomology of Sf in the case &lt;$ss &lt;€s

Now, because we are interested in H*(£f), we assume that semistable bundles
are in fact stable. This assumption holds for our application (torsion-free Seifert

fibrations) and boils down to an arithmetic requirement on the weights (for
example, that the nontrivial denominators are relatively prime). In order to
compare the parabolic and the nonparabolic cases, we first give an outline for
(regular) stable bundles. In [1] it is proved that ^ss =(é&gt;s whenever the rank and
degree of the bundle are coprime. Another conséquence of (rank, deg) 1 is that

is torsion-free. This follows by considering the séquence

If (rank, deg) 1, then the corresponding fibration

BU(\) -+ B&lt;S -+ B§

is trivial. Moreover, H*(BU(\)) and H%{^S5) are torsion-free. It now follows from
Proposition 6.1 that

HU^ss) H*(BU(\))®H*(&lt;?)9

taken with Z coefficients.

For gênerai parabolic bundles, it is observed in [17] that H*(£f) is torsion-free
provided (rank, deg) 1. Now we prove the stronger resuit that for rank 2

parabolic bundles with at least one nontrivial flag, H*(£f) is torsion-free. From the

short exact séquence

we get the fibration of classifying spaces

In order to prove H*(&amp;*) is torsion-free, we need to show that this bundle is trivial.
Because the fiber is a K(Z, 2), this bundle is classified by an élément of

9 K(Z, 3)] H\B0&gt;, Z).
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We want to see that the bundle is trivial; it is enough to show that the map

\ Z)

is onto. But since B0&gt; and BU{\) are torsion-free,

Z) s H2(B0&gt;, Z) s

and similarly, H2(BU(l), Z) s n, £/(l). Thus, it suffices to show that the map
71,(7(1) -&gt; 7r,^ coming from the inclusion C* c* 0&gt; induces a direct sum. The
fibration &amp; -+&lt;§c -+&amp; gives the long exact séquence in homotopy

Both tt2^£Z©--©Z and %X(SC^Z®Z are free abelian, and because
is abelian, we hâve nx£P ^ Z© • • • ©Z. Composing with the inclusion gives
the commutative triangle

C*
&apos;1 V

which, on the level of homotopy, gives

nxU(\)

c-&gt;0.

Atiyah and Bott prove that im(j^) is a direct summand of nx&lt;Sc in case

(rank, deg) 1. But it is possible (in fact likely) that im (i+) is a direct summand
of 7i,^ even though im (j\) is not. This is the content of

PROPOSITION 6.2. Suppose that ê is a rank 2, parabolic bundle with at
least one nontrivial flag. Then the image of the map nxU(l)-+nx&amp; is a direct
summand.
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Proof. The gênerai statement follows easily from the case where there is eactly
one nontrivial flag so that &amp; CPl. Let r be the map which restricts an automor-
phism to the nontrivial parabolic point p. Then on the level of homotopy, since we

may replace the groups with their maximal compact subgroups, r^ maps the

séquence

0 n2CPl &gt; nx0&gt; &gt; nx$c 0 (19)

0 &gt; 7i2CPl &gt; nx U{\)®nx U(\) &gt; nx U(2) &gt; 0. (20)

Hère (/&gt;+ is induced by the natural inclusion &lt;f&gt; of the maximal torus of U(2), i.e.

\ forzx,z2eU(l).

In U(2), the curves &lt;f&gt;(e&apos;e, 1) and (/&gt;(\,e10) are homotopic to the generator for
7i! (7(2), so ker &lt;/&gt;* is gênerated by (1, — 1), where we hâve identified (20) with

Now, a splitting a&apos; of (20) détermines a splitting a of (19) by a{x) o&apos; o r^(x) for
xenx0&gt;. We check that the map (j&apos;O&gt;0) 1, &lt;r&apos;(0, 1) =0 is a splitting. Further,
since r o i(z) (z, z) for z e f/(l), we see that r+ o ïj|t(l) (1, 1) g tc, U(l) ® nx U(l).
It follows that (T o 1^(1) 1 en2CPl. Thus im(ï^) is indeed a direct sum. This

argument carries over to more parabolic points without difficulty.

In the previous section, we saw that H%(^ss) is torsion-free. Further, if ^ss #5,
since C*cz&amp; acts trivially and &amp; acts freely, we may apply Proposition 6.1

to conclude that H%(&lt;#ss) H*(BU(\))®H*(Sr). It follows from
(1 -t2)Pt(&lt;#ss) and formula (18) that

In the case of genus 0 and 1, this équation gives the cohomology of the SU(2)
-représentation space of any torsion-free Seifert fibered three manifold over S2 and T2,

which will follow from the next two sections.
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6.6. Resuits for genus 0 and 1

a: Genus 0

Assuming that X has genus 0 and rewriting Equation (21), we get

IA (22)
X,e J

It follows that H\Sf) 0 for / odd. In the next section we shall see how Sf is related

to 3ë(Z), the représentation space of Seifert fibered homology sphères I. Thus, we
conclude that $(Z) has only cohomology in the even dimensions, which we expect
based on a conjecture of Fintushel and Stern. This conjecture was proved by Kirk
and Klassen in [11] (see also [3] and [7]). With additional results about 7r,(y), we
would hâve an independent proof of that conjecture (based on the work of Smale).

Unfortunately, our method is homological in nature. For example, we could
conclude (as was done in [1]) that nx(£f) 0 if we knew that ail the codimensions
dXe ^ 2. Unfortunately, this is not the case. Another way around this is to prove
that y is a rational variety as in [3] and [7]. Anyway, formula (22) is a useful and

fairly simple tool for computation. For example, one can calculate the possible
codimensions and their multiplicities to deduce the cohomology of Sf. First,
consider the case when y is empty, so that (1 - t2) I,ke t2d^ (1 + t2)n~ \ For a

given n, we can solve this to find 1Lx%e t2dk&gt;e. For example, if n 3, we get

£ t2dKe i + 3/2 + 4,4 + ^ F^ 0
X,e

Since (1 - t2) &quot;Lke t2d^ is the polynomial (1 + t2)n~l - (1 - t2)Pt(Sf), the power
séries must be of the form q(t) + LfLnat2i where q(t) is some polynomial. In fact,
for each aï, there is a finite list of possibilités for this power séries.

For n 3, then the only nontrivial case is

£ t2d^e 4,2 + 4,4 + ^ p^cf) 1.

k,e

This reflects the fact that y is either empty or a point [6], If n 4, then

This reflects the fact that Sf is either empty or an S2 [6]. If n 5, then
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It follows immediately that 0 ^ b ^ 6. In fact, b ^ 0. This is observed by Kirk and
Klassen [11], where Jthey prove that thèse four dimensional components are either
S2 x S2 or CP2 # hCP2 where 0 ^ h £ 5. We now list the possibilities for n 6

where we hâve

£ t^Ke (7 _ £)f2 + 16/4 + (25 + 6)f6 + 32*8 • =&gt; /&gt;,(y) 1 -h bt2 + 6f4 -h t*.

Again, it is immédiate that 6^7, but it is not clear (although true because £f is

Kâhler) that b 0 is not realized. In the last section, we will explicitly compute an

n 5 and n 6 example, showing that the bound on &amp;, in thèse cases, is sharp.
Thèse bounds on the second Betti number b2 generalize as follows. Since Sf is a
2/î - 6 manifold, set P,(^) S;~o3 *2l&apos;2i and solve for the power séries E^ f2&lt;^.

For instance, if n 7, then dim «9^ 8, and so ^,(«9&quot;) 1 + f8 + 62(/2 + r6) -h 6V.
Solving (22), we get

£ z2^ (g _ Z,2)/2 + (22 -h Z&gt;2 - b4)t4 + (42 + Z&gt;4 - b2)t6

+ (56 + 62)r8 + 64r10 + •••.

But of course, the coefficienits must ail be nonnegative and we conclude that b2 ^ 8

and b4 ^ 22 + b2 ^ 30. This process extends to the gênerai case of n nontrivial flags

to give that b2 ^ n -h 1. Moreover, we get the recursive relation

among the Betti numbers b2&apos;. This, in turn, yields bounds on the Euler characteris-
tic x(^)- F°r instance,

8 for « 5,

2. x(^) ^ 48 for « 6,

3. x(Sf) ^ 48 for n 7.

Thèse give bounds for Casson&apos;s invariant of Seifert-fibered homology sphères,

which follows from the next section. Before we address the genus 1 case, we

comment that this information for genus 0 gives us much information for the higher

genus cases. In fact, fixing the weights and parabolic structure of the bundle, but
allowing the genus of the underlying surface to increase, we notice that by knowing
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the séries £Aé? t2dx&gt;e for genus 0, we know the corresponding séries for genus g; it is

obtained by simply multiplying the genus 0 séries by t2g. This is because the same
unstable strata occur but their codimensions dke hâve increased by g (see formula

b: Genus 1

Assuming now that A&apos;has genus 1 we rewrite Equation (21) to get

Z^ (23)

We introduce the notation ^° for the stable bundles of fixed déterminant. While £f
corresponds to U(n) représentations, S0 corresponds to SU(n) représentations. It is

easy to show, using the fibration SU(n) -» U(n) -+U(\), that ^=y°x J(X), where

J(X) dénotes the Jacobian. Thus, in the genus 0 case, y and «9*° coincide. In
gênerai, we hâve

Using (23), we get

Pt(y°) 77^2 (O - &apos; + &apos;2)2( 1 + t2)n ~l - 1 - t2) X t»**\ (24)

The séries ZA e
t2dke differs from that of the previous (genus 0) case by a factor of

t2, coming from the fact that the codimensions dke hâve increased by 1. So, for
example, the trivial case in genus 0 (when (1 -12) E^ t2dke (1 + t2)n~ l) now
gives

Using formula (24) we get

n
In fact, &lt;9*° % S2 x • • • x S2. This follows by considering SU(2) représentations of
the following group présentation:

*?*(*) &lt;fl, b9 xl9.. xn I x? 1, [a, b]xx • • • xn 1&gt;.
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We use capital letters for the images of the corresponding éléments in SU(2). Thus,
in S£/(2), X, is required to lie in the set of a\h roots of unity. The set of ath roots
of unity is a disjoint union of S2&apos;s. Picking a connected component of the

représentation space means choosing a spécifie copy of S2 for each Xt. Because the

corresponding component of the genus 0 représentation space is trivial, it follows
that Xx - • - Xn # 1. Thus, applying Corollary 1 of [16], we see that A and B, the

images of the other two generators, are determined up to conjugation. We conclude
that this component of the genus 1 représentation space is in fact S2 x • • • x S2.

Just as in the previous case, there is a finite list of possibilities for Lke t2dxe for
each n. For example, if n 3, then the only other case besides that already
mentioned is

£ t2d^ 4,4 + 4,6 + ^ p^ + 4,2 + 2,3 + 4,4 + ,6

Likewise, for n 4, the only other possibility is

£ t2d^ 4,4 + g,6 + ^ p^ + 5,2 + 2,3 + g,2 + 2t5 + 5/6 -f /8.

We now show that &amp;*° is simply connected. In the genus zéro case, £f nonempty =&gt;

ail dXe ^ 1. In this case, either y0 % S2 x •

&quot;

• x S2, or ail dle £ 2. In the second

case we argue just as in Theorem 9.12 of [1] to show that y0 is simply connected.

For higher genus, namely g ^ 2, this argument cardes over immediately to give
simple connectivity of «S&apos;70.

6.7. Relationship between &amp; and

We explain what this ail has to do with représentation spaces of Seifert-fibered

spaces I foliowing the ideas of [6] and [3]. First, we introduce the notation for the

SU( 2) -représentation space. In particular, recall that

®(X) Hom* (h,T, SU(2))/SO(3) for manifolds I,

and

Hom* (nïTb(X), SU(2))/SO(3) for manifolds X.

Hère, Hom* indicates the nontrivial représentations. We prove that if I is

torsion-free Seifert fibration, then there is a two dimensional orbifold X so that
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Although there is no well-defined homomorphism nxZ-&gt;n°xTb(X),

nxl and n°Tb(X) hâve a common quotient F.
So suppose E is a torsion-free Seifert fibration over Fg, the genus g surface.

Then I has the Seifert invariants {(b0, (û,, 6,),..., (an, bn)}, where the bt are not
unique, but, because Hx (I) is torsion-free, must satisfy

n h \
Z -1=1, (25)

where a — ax • • • an. We use I(g; ax,..., an) to dénote this Seifert fibration. It
follows from (25) that the {ax,..., an) are pairwise relatively prime, and so we

may order them so that the only possibly even at is ax.
The following argument shows that we may assume that b, is even for i # 1 and

that bx is odd. Because we can change each bt by a multiple of at at the expense of
changing b0, and because each at is odd for / &gt; 1, we hâve bt even for i &gt; 1. Further,
we may assume b0 is even by adding ax to bx, which, though it may not affect bx &apos;s

parity, certainly affects 6o&apos;s. Finally, if bx is even, then each term in équation (25)
is even, which is a contradiction.

In the following group présentations, we adopt the convention that i 1,..., n

and y 1,..., g. Then n nx(I) has the présentation

n &lt;Ar BJ9 xnh\h central, x? h ~\ f] \.Aj&gt; BA FI *. hb°&gt;-

Now consider the orbifold X X(g\ 2ax,..., an) and the présentation of its
fundamental group n°xTh n°xrh(X) (see Section 2)

n?b (Ar BJ9yt \yfi l9y? 1 for i &gt; 1, ft [AJ9 BJ] fU 1&gt;.

The groups n and n°xTb, hâve the common quotient group F defined by

F &lt;AJ9 BJ9 zx | z&quot; central, zf « 1, z?&lt; 1 for / &gt; 1, \\ \Ap B3] ft z, 1&gt;.

There is an obvious map &lt;/&gt; : n°rb-^F. Define the map ^ : ^-?T by making the

following assignments:

t)=At and

t)=z, and
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To check that \f/ is well-defined, use the fact that \}/(h)2n 1 and \jt(h)2n + x

zf».
Then it follows that

^(x,)*&apos; zf&apos; 1 \l/(h)~b&apos; for / &gt; 1 since bt is even,

^(jd)0» z?1 il/(h)~bl since *, is odd, and

since *o is even.

Clearly both &lt;t&gt; and \j/ are onto. Consider the maps

(j&gt;* : Hom (F, S£/(2)) -&gt; Hom (7r?rb, SU(2))

and

»A* : Hom (F, 5î/(2)) -^ Hom (tt, SU(2)),

defined by precomposition. Then (j&gt;* and ij/* are one-to-one because 0 and ^ are

onto. In fact, both &lt;/&gt;* and \j/* are onto. This is obvious for 0*, the reason being
that if p g Hom (7r?rb, 5f/(2)) then, since p{xx)2a* 1, we must hâve p(xi)a&apos; ± 1,

which is central in SU(2). As for ^*, notice that for any élément p e Hom (tc, SU(2)),
we hâve p(h) ± 1. This follows by considering the two cases: p is either reducible

or irreducible. First, if p is irreducible, then h central =&gt; p(h) ± 1. On the other
hand, if p is reducible, then since p factors through i/,(n) Z2g which is generated
by AJ9 BjJ 1,..., g, p(h) +1. Now consider p e Hom (n, SU(2)). We can define

y g Hom (r, SU(2)) by setting y(Aj) p(Aj), y(Bj) p(5,), and y(zt) p(xt). Then

y is well-defined because p(h) ± 1 and bt is even for i # 1. Clearly the assignment

p t-» y gives an inverse to ^*. We conclude

Hom (7r?rb, S(/(2)) s Hom (f, Sf/(2)) s Hom (tc, SU{2)).

Since conjugation commutâtes with the above isomorphisms, we see:

THEOREM 6.3. &amp;(Z(g; au...,an))^ &amp;(X(g; 2a,,..., an)).

We now investigate the method for Computing H*($(X)). Suppose X
X(g; 2ax,..., an). We décompose the représentation space into its connected compo-
nents
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where â (a,,..., aw) are the rotation numbers. More precisely,

p g ®a(X) if p(Xj M,^ e
°2ni^M-\ for ail j9

where x, refers to the generator in the présentation of n°rb(X). It is obvious that thèse

components are in fact disjoint. Each a, is a fraction with denominator at (for
i 1, a, has denominator 2a,). Further we can assume that 0 ^ a, ^ 1/2 by conjugat-
ing, if necessary. The séquence â (al5..., &lt;xn) détermines n pairs of weights by
setting the weight at pt equal to (a,, 1 — a, if a, ^ 0 and (0,0) if a, 0. By abuse of
notation, we dénote the weights again by â. Let &lt;9*(2, k, 0, â) dénote the moduli of
stable parabolic bundles over the genus g surface Xs of rank 2, degree k, parabolic
degree 0, and weights â. The degree k is equal to the number of nontrivial weights,
i.e. the order of the set {j | a7 # 0}. This justifies shortening «9^(2, k, 0, â) to Sf&amp;. We
further introduce Sf\ as the corresponding moduli of stable bundles with fixed
déterminant. A conséquence of the main theorem is

COROLLARY 6.4

Remark. For â nontrivial, dim (5^°) 2n + 6(g - 1), where n is equal to the
number of nontrivial flags, i.e. the order of the set {j | a, # 0 and a, ^ 1/2}.

The idea is to use formula (21) to compute H*{^d) which computes H*(
one component at a time. In order to do this, we need to check that (€s ^ss. This
is équivalent to requiring that there are no reducibles in âëd(X). This holds provided
â is nontrivial. Since the weights are fractions with denominators a, which are

relatively prime and at least one of them is nonzero, for any line subbundle L,
pardeg (L) is not an integer. In particular, pardeg (L) # 0. This vérifies that (€s #J5

for ôl nontrivial. On the other hand, if â 0, then 50 &amp;(Fg), représentations of the
surface of genus g. If g 0, then this component consists solely of the trivial
représentation. If g — 1, then this component consists entirely of reducibles and is

diffeomorphic to the pillowcase S2. If g ^ 2, then the reducibles form a subvariety
of @(Fg), which need not be smooth. This component is the only one of
$(X) where our technique fails and is the only reason we restrict to the cases

where g 0 or 1. In fact, Kirwan explicitly computes the intersection Betti
numbers of this component for higher genus (see Proposition 5.9 of [12]),
giving a complète answer modulo 2-torsion. For genus 2, this component
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turns out (by accident) to be smooth with Poincare polynomial

Our work, along with the results contained in [12], give a complète description of
the cohomology of the SU(2) représentation space of any torsion-free Seifert
fibered 3-manifold.

A computer is helpful because there are potentially so many components.
For example, the easiest example of a cohomology sphère with five fibers is

I( 2, 3,5,7, 11). To calculate &amp;(Z), we hâve to check over 150 components.
Luckily, computers are more patient than graduate students. We hâve a program
that performs this calculation for n ^ 7, and theoretically we could do it for any
number of fibers.

6.8. Explicit computations

Assuming g 0, consider the orbifold X X(4, 3, 5, 7, 11). We first compute
the cohomology of ^S(X) &lt;9^ where â (J, |, 5, f, fy). Listing ail possible destabi-

lizing Une bundles L-+E with pardeg (L) &gt; 0, we compute the codimensions
d dXe of their strata. Because there may be several différent strata WXt0 with the

same codimension d, we introduce the multiplicitiy md of d, which is the number of
times a strata with dXe — d occurs. In terms of the power séries,

X,e

Each md 2^ mxd where mXd is the number of times a strata with deg (L) À and

dke d occurs.
In order to keep track of ail the fractions, we will use the notation j?

(fii,..., fi5) for the larger weights, i.e. pl 1 — a,. So the flag at pt has the two
weights a,, ftt. Notice that in this case, l&lt;Sa,&lt;2 and 3&lt;Zj8, &lt;4. Setting
ê (el9..., e5) equal to the intersection numbers of L, we can check the condition

pardeg (L) &gt; 0 with formula (14) and compute dke with formula (17). Notice
that the différent ways for L to intersect the flags are enumerated by the 25 32

ways of choosing a five bit word ê. Since ë contributes Z et to the codimension, we

partition the set of ail five bit words W into the subsets Wh {ê | £ et h) for

A=0,...,5.
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Because pardeg (E) 0, we must hâve deg (£&quot;) — 5. Now, E could hâve

destabilizing subbundles L only if X deg (L) ^ — 3. (If X ^ — 4, then the parabolic
degree of L is at most — 4 + S /?, &lt; 0 which is not destabilizing.) On the other hand,

if À &gt; — 1, then the parabolic degree of L is at least — 1 H- S a, &gt; 0, so no matter
what the intersection numbers ê are, L is destabilizing. So we just check the two
cases X —3, —2.

For X — 3, the following intersection numbers give pardeg (L) &gt;0:

• any ë e W4, giving dke 2, and also

• ê (l, 1, 1, 1, 1), giving dKe ï&gt;.

We can list this in the table

A .3

m_

2 5

3 1

For X — 2, the following intersection numbers give pardeg (L) &gt; 0:

• any ê e W2, giving dke 2,

• any ë e W3, giving dÀe 3,

• any ê e W4, giving ^ e 4, and

• ë (l, 1, 1, 1, 1), giving dKe 5.

Summarizing this in the table

i oA — — L

m -2,d

2 10

3 10

4 5

5 1
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Likewise, for each A ^ — 1, we get a table of the form

d

21 + 4

2/1 + 5

21 + 6

21+ 7

21 + 8

21+9

1

5

10

10

5

1

Computing md ZA mXd, we find that

£ mdt2d \6t4 + I6t6 + --

and conclude

Now consider the six-dimensional component where n 6 and â
(i&gt;

5&apos; f» f» nf» n)- Hère, there are 26 64 possible ways for a Une bundle to intersect
the flags, and we keep track of them ail with the six bit word ë. Again, we partition
the set of ail words W into the subsets Wh {ë \ £ et h} for h 0, ,6.

Using the same notation, we see j5&quot; (|,f,f, f, n&quot;, n)- ^e ^ave deg(£) -6,
and because S jS, &lt;c 5, a destabilizing Une bundle L must hâve deg(L)^ —4.

Furthermore, since S a, &gt; 1, if deg (L) ^ — 1, then no matter what the intersection
numbers are, L is destabilizing. Thus, we need to check the cases deg (L) A — 2,

-3, and -4.
For A — 4, only ë (1, 1, 1, 1,1, 1) is destabilizing, contributing one term
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For A — 3, L is destabilizing for the following intersection numbers:

• 10 of the 20 ê e *F3, giving dke 2,

• any ë € W4, giving dke 3,

• any ë e W5, giving dke — 4, and

• ë (l, 1,1,1,1), giving ^ 5.

Summarizing this in the table

A=-3

d

2

3

4
5

»-„
10

15

6
1

For A — 2, L is destabilizing for the following intersection numbers:

any ë e Wx, giving dke 2,

any ê e W2, giving rf^ 3,

any ë e W3, giving dke 4,

any ê e W4, giving d^ 5,

any ê e W5, giving dke 6, and
ê (l, 1, 1, 1, 1), giving dk,e=l.

Summarizing this in the table

A -2

d

2

3

4

5

6

7

6

15

20

15

6
1
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For any X ^ -1 we hâve the table

2X

2X

2X

2X

2X

2X

2X

d

+ 5

+ 6

+ 7

+ 8

+ 9

+ 10

+ 11

1

6

15

20

15

6
1

Computing md Y.x mKd, we find that

and conclude
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