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You can not hear the mass of a homology class

Dennis DeTurck, Herman Gluck, Carolyn Gordon and David Webb

Two Riemannian metrics on a compact Riemannian manifold M are said to be

isospectral if their associated Laplacians hâve the same eigenvalues. During the
last quarter-century, since the discovery of the first pair of isospectral (but not
isometric) metrics by Milnor [Mi] on the 16-dimensional torus, the spectrum of
the Laplacian has been the object of intense study by analysts and geometers.
(See Berard&apos;s monograph [Be] for background and an extensive bibliography.)
On the one hand, numerous examples of isospectral manifolds hâve been
discovered. On the other, various géométrie and topological properties of
manifolds hâve been found to be determined by the Laplace spectrum. Following
the classic article of Mark Kac [Ka], and thinking of the eigenvalues as the

frequencies of the normal modes of vibration of an idealized elastic médium, the
&quot;drum&quot;, we say that a géométrie property can be &quot;heard&quot; if it is determined by
the Laplace spectrum. While a great deal is known about properties that are
determined by the Laplace spectrum, the proofs that the examples of isospectral
manifolds are in fact not isometric frequently rely on quite abstract arguments.

Our purpose hère is to exhibit spécifie géométrie invariants that can not be
&quot;heard&quot;. They in turn help to answer the question: &quot;How can a drum change

shape, while sounding the same?&quot;

We will focus entirely on a particular 6-dimensional manifold M and a

one-parameter isospectral family of metrics g, on it. This family was discovered by
C. S. Gordon and E. N. Wilson [Go-Wi] (see also [DeT-Go]), along with many
other examples of isospectral déformations of metrics.

By the mass of a homology class in a compact Riemannian manifold, let us

mean roughly the minimum volume of any cycle in that class. (The précise

définition is given in §5 in the language of currents.) By the shape of the

manifold, we mean the function which assigns to each homology class its mass.

589



590 D. DeTURCK, H. GLUCK, C. GORDON AND D. WEBB

We will apply the method of calibrated geometries in §7 to prove

THEOREM A. The shape of the manifold (M, gt) varies with t.

The manifold M is the compact quotient of a nilpotent Lie group G by a
discrète subgroup. The family of metrics g, on M is constructed with the aid of a

family of almost-inner automorphisms of G. The arithmetic character of M lends
an arithmetic character to the search for the appropriate calibrating forms.

Our ongoing research indicates that Theorem A is true for many, perhaps ail,
of the isospectral déformations constructed using the methods of [Go-Wi] and

[DeT-Go]. The results of thèse investigations will be reported in a subséquent

paper.

To prove Theorem A, it is natural to look first in dimension one at closed

geodesics on (M, gt). Many authors hâve explored relationships between the
Laplace spectrum and the length spectrum (i.e., the collection of lengths of closed

geodesics) of a Riemannian manifold. The metrics in our family can not be

distinguished by their length spectra [Go]; indeed, the mass of each 1-dimensional
homology class is independent of t.

Analogous to the length spectrum, we define an area spectrum of (M, g,) by
collecting the masses of ail the intégral 2-dimensional homology classes of M,
measured in the metric g,, together with multiplicities. In contrast to the length
spectrum, we prove in §7

THEOREM B. The area spectrum of (M, gt) varies with t.

The change in the area spectrum is suggested by the behavior of the closed

geodesics. Although the masses of the 1-dimensional homology classes are
independent of ty the location of their minimizing cycles dépends on t, as follows.
The shortest closed geodesics in a certain homology class foliate a 5-dimensional
closed submanifold P of M, independent of t. Those in a second homology class

foliate a 4-dimensional closed submanifold Qt of M, which does dépend on t. At
time O, we hâve Qo contained in P. But as t increases, Qt séparâtes from P.

Indeed, their distance apart paramétrées the isometry classes of metrics in the
déformation.

This change of location within the 1-dimensional classes causes a change of
mass for related 2-dimensional classes. Two of thèse classes are especially
interesting.
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In one of the classes, there is a moving family of ton Ttf located half way
between the submanifolds P and Qt mentioned above. Each torus Tt in the family
minimizes area in the given homology class for the metric g,, and this minimum
area changes with t. A similar phenomenon happens in the second class, but there
we are only able to exhibit a mass minimizing 2-dimensional current, and not an

ordinary area-minimizing surface.

Theorem B of course implies Theorem A.
The idea of looking at the volumes of higher-than-one-dimensional minimizing

cycles to show that isospectral metrics are not isometric has some précèdent in the
work done on isospectral flat tori. For J. Milnor&apos;s now classic example of
sixteen-dimensional tori, E. Witt [Wt] has already shown that there is a

correspondence between 2-dimensional homology classes of the two
isospectral tori which préserves the area of minimizing cycles, but that no such

correspondence is possible for 4-dimensional homology. Later, M. Kneser [Kn]
showed that there is also a volume-preserving correspondence between the
3-dimensional homology groups. We thank Professor Kneser for pointing this
out to us.

This paper is organized into the following sections:

1. AN ISOSPECTRAL FAMILY OF METRICS

2. REAL HOMOLOGY AND COHOMOLOGY VIA INVARIANT FORMS AND
CURRENTS

3. INTEGRAL HOMOLOGY VIA CLASSICAL CYCLES

4. INTEGRAL COHOMOLOGY VIA GYSIN SEQUENCES

5. HOW TO FIND THE SMALLEST CYCLES IN A HOMOLOGY CLASS

6. CLOSED GEODESICS

7. AREA-MINIMIZING SURFACES.

Sections 2 through 4 describe the topology of the underlying manifold M,
while §§5 through 7 describe the change in its geometry as t varies.

We thank Chris Croke for his help with §7. We also thank the National
Science Foundation, the North Atlantic Treaty Organization and the Alfred P.

Sloan Foundation for their support.
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1. An isospectral family of metrics

Let G be the matrix group consisting of ail real matrices of the form

1 xx x2 Z\ 0 0 0

0 1 0^00 0

0 0 1 y2 0 0 0

0 0 0 10 0 0

0 0 0 0 1 xx z2

0 0 0 0 0 1 y2

0 0 0 0 0 0 1

For simplicity, we dénote the above matrix by

h (xu x2, ylt y2, zlf z2).

The first four components of the product hh &apos;

are

*i + x&apos;l9 x2 + x2, yt + yi y2 + y2.

The fifth component of hh&apos; is

and the sixth is

Thèse last two components reflect the non-commutativity of the multiplication.
The inverse of h is

(-*!,..., -y2f -zx +x1y1+x2y2, -z2 + x1y2).

G is a two-step nilpotent Lie group.
Let Tbe the discrète subgroup of G consisting of matrices with integer entries.

The set M jA^ of right cosets Th of F is a compact smooth 6-dimensional
manifold.

We will define a family of left-invariant metrics gt on G, which will descend to
metrics of the same name on M.
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First look at the Lie algebra ^ of G. It has a basis

B ~ {^i&gt; X2, Ylf Y2, Zx, Z2},

with brackets

[XuYl] Z1 [X2fY2] and [XlfY2] Z2&gt;

and ail other brackets zéro.
A left-invariant metric on G can be specified by an inner product on % Define

gt to be the left-invariant metric for which

Bt {Xlf X2y Yu Y2(t) 72 - tZ2, Zlf Z2}

is an orthonormal basis. We will dénote g0 by g.

PROPOSITION. The metrics gt form an isospectral family of metrics on M.
Two such metrics gt and gr are isometric if and only if the distance from t to its
nearest integer equals the distance from r to its nearest integer.

The isospectrality of the metrics is a spécial case of a gênerai theorem of
[Go-Wi]. In fact, the particular family of manifolds (M, gt) appears as Example
2.4(i) of [Go-Wi], and is also discussed in [DeT-Go]. The isospectrality cornes
from the fact that the linear map of ®, which carries the ordered basis Bt back to
the ordered basis Bo, is the differential of an automorphism &amp;e of G given by

&lt;Pt(xu z2) (xu x2, yu y2, zlf z2 + ty2).

This automorphism of G is &quot;almost-inner&quot;, that is, for each heG,

but h&apos; dépends on A. When t is nonzero, &lt;Pt is not an inner automorphism.
As metrics on G, we hâve gt &lt;P?g. (In particular, gt and g are isometric

metrics on G, but the isometry does not descend to /A**-) The main theorem of
[Go-Wi] states that if a left-invariant metric on a compact nilmanifold M (Le., a

metric whose lift to the nilpotent Lie group covering M is left-invariant) is

deformed by a family of almost-inner automorphisms, then the déformation is

isospectral.
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To obtain the last statement of the proposition, let

K {a e Aut (G): o*g g}, and

D {Ô€Aut (G):
where Aut (G) dénotes the group of automorphisms of G. By Corollary 5.3 of
[Go-Wi], &lt;P?g 4&gt;*g as metrics on jA^ if and only if there exists a a eK such

that &lt;P~lo&lt;Pt e D Inn (G). By normality of the subgroup Inn (G) of inner
automorphisms of G, the product D Inn (G) Inn (G) D is itself a subgroup of
Aut (G). If t s r mod Z, then 4&gt;~x^te D&gt; and we can take a Id. If t + r e Z, we

may take

a(xlf. z2) (—^!, x2, yi, -y2, -Zu z2)

and check that €&gt;Jlo&lt;Pt e D. Finally, by explicitly Computing K, we see that no
other pairs are isometric.

In Figure 1, we display M as a bundle over a flat 4-torus T4 with fibre a flat
2-torus T2.

The 6-dimensional nilmanifold M is a non-commutative version of the
6-dimensional flat torus. We will see that the non-commutativity robs us of
homology: the 1-dimensional homology of M has rank 4, while for T6 it has rank
6; the 2-dimensional homology of M has rank 8, while for T6 it has rank 15.

Most, but not ail, of the homology of M in thèse dimensions is carried by one or
the other of the two 4-dimensional subtori shown in Figure 1.

In the next three sections, we will describe the topology of M.

FIBRE
FLAT TORUS T2

TOTAL SPACE M
X,X2

x,x2
BASE SPACE

FLAT TORUS T4

FIGURE 1
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2. Real homology and cohomology via invariant forms and currents

The arithmetic character of M makes this easy to compute.
We begin by setting notation.
In the previous section, we introduced, on the Lie group G, the left-invariant

vector fields Xly X2, Yly Y2, Zly Z2, with Lie bracket relations

[XUY1] Z1 [X2,Y2] and [XlyY2] Z2.

They agrée with the coordinate vector fields d/dxl}... d/dz2 at the identity of
G, but one quickly computes that in gênerai:

Y2 d/dy2 + x2 d/dzr + xx d/dz2

Z2=d/dz2.

Thèse left-invariant vector fields on G descend to well-defined vector fields of the

same name on the right coset space M jA^. By abuse of language, we refer to
thèse as left-invariant vector fields on M, even though G does not hâve a left
action on M.

We dénote the dual basis of left-invariant 1-forms on G by

*i&gt; oc2&gt; &amp;, j82, 7x and y2.

In local coordinates, we hâve:

ûtj dxx a2 dx2

Pi dyt p2 dy2

Yi dz1-x1dy1-x2dy2

Y2 dz2-x1dy2.

Thèse left-invariant 1-forms on G likewise descend to &quot;left-invariant&quot; 1-forms on M.

On either G or M, the exterior derivatives of thèse 1-forms can be read off
from the Lie brackets of the vector fields via the formula
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in which &lt;p is any left-invariant 1-form and X and Y are any left-invariant
vector fields. Alternatively, one differentiates directly in local coordinates. Either
way:

docx 0 doc2 0

dyx -dxx dyt - dx2 dy2 -
dy2 -dxx dy2 -

The left-invariant 1-forms may be combined via exterior multiplication to
yield the left-invariant A:-forms. The exterior derivative on A:-forais is already
determined, via the Leibniz rule, by its values on the 1-forms. So it will be easy to
calculate which of the fc-forms are closed.

We will use &quot;fc-current&quot; in the sensé of deRham to dénote a continuous linear
functional on smooth &amp;-forms. Exterior products of vector fields define currents
by évaluation:

a Xk(&lt;p) f &lt;p(Xt a • • • a Xk) d vol.
JM

We will call a current &quot;left-invariant&quot; if it is a linear combination of exterior
products of left-invariant vector fields. The boundary map d on the space of
fc-currents is the adjoint of the exterior derivative on k — 1 forms. In particular,
the boundary of a left-invariant fc-current is a left-invariant k - 1 current.

By a theorem of Nomizu [No], the cohomology of left-invariant forms on any
nilpotent Lie group G is isomorphic in the obvious way to the real cohomology of
the coset space M f\G. By duality, the homology of left-invariant currents on
G is isomorphic to the real homology of M. This provides an effective scheme,
which we now carry out, for calculating the real homology and cohomology
ofM.

We begin with cohomology, concentrating on dimensions 1 and 2. From the
above table of exterior derivatives of 1-forms, we see immediately that

H\M; R) s R4f generated by the classes of the closed 1-forms alf a2, f}x and j82.

Using the table together with the Leibniz rule, we compute the exterior
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derivatives of left-invariant 2-forms:

0 dfofr) 0 d(arp2) 0

ocxoc2p2

d(a1y2) 0 rf(ûf2J8i) 0 d(&lt;x2p2) 0

From this table, we find ten generators for the 2-dimensional cocycles, and
two generators for the 2-dimensional coboundaries: Hence //2(M;i?) /?8,

generated by the classes of the closed 2-forms:

P1Y2 + P2Y1 and p2y2.

We turn to homology, again looking just at dimensions 1 and 2.

The 1-dimensional left-invariant currents

XlfX2tYltY2&gt;Z1andZ2

are ail closed, hence represent homology classes in Hx{M\R)y which is isomor-

phic to JR4 by duality. Of course, thèse homology classes can not ail be

independent.
There are fifteen generators for the 2-dimensional left-invariant currents:

Twelve of thèse are closed, three are not:
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We see that the 1-cycles Zx and Z2 are boundaries, leaving XXi X2, Yx and Y2 to
provide a 1-dimensional homology base.

In addition, we get a thirteenth 2-cycle:

The boundaries of the 3-dimensional currents provide five independent
homologies among the thirteen 2-cycles:

[YXZ2],

0 and [Z1Z2] 0.

Thus H2(M; R) R8, with a basis provided by the following 2-cycles:

X\X2y Y\Y2f X2YX, XiYx — X2Y2i

XXZX (which is homologous to X2Z2), XXZ2,

YXZ2 (which is homologous to Y2ZX) and Y2Z2.

This basis turns out to be dual to the one given earlier for the 2-forms.

3. Intégral homology via dassical cycles

By a &quot;classical cycle&quot; we mean a singular Lipschitz chain, that is, a chain built
from finitely many Lipschitz maps of individual simplexes.

It is easy to find classical cycles in the homology classes of the, closed
1-dimensional currents Xx, X2, Y1 and Y2. For example, the one-parameter
subgroup {(*, 0, 0, 0, 0, 0)} of G descends to a circle in M which is homologous to
the current X\. And likewise for X2, Yx and Y2.

It is also easy to find classical cycles in most of the homology classes

represented by our chosen basis of 2-dimensional currents. Consider the
4-dimensional subtori {yi ^2 0} and {jc!=jc2 0} of M, included earlier in
Figure 1.

Each of the 2-cycles

XxX2t YXY2, XtZl9 XxZ2y YXZ2 and Y2Z2

is easily seen to be homologous to an appropriate 2-torus inside one or the other
of the above 4-dimensional subtori of M.
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The subgroup {(0,x2, y\, 0, 0, 0)} of G covers a 2-dimensional torus in M
which is homologous to the closed 2-dimensional current X2YX.

This leaves us yet to represent the closed 2-current XXYX -X2Y2&gt; which turns
out to be interesting for two reasons:

1) It is the only &quot;indécomposable&quot; 2-current in our basis, and hence the only
one which can not be visualized as a foliation, and then represented by a

compact toral leaf.

2) The homology class of this closed 2-current turns out not to be intégral,
though twice it is.

To help understand the homology class of XiYi — X2Y2, we construct an
orientable surface of genus 2 (a double torus) in M as follows. The subgroup
G\ i(xi&gt; 0, yi&gt; 0, zx, 0)} of G covers a 3-dimensional Heisenberg submanifold
Hy of M. Hx is a quotient of the unit cube in x^Zx-space: the front face yx 0 is

identified with the back face yx 1 by translation in the yx direction, and the
bottom face zx - 0 is identified with the top face zx 1 by translation in the zx

direction. However, the left face xx 0 is identified with the right face xx 1 by
the &quot;shear&quot;

(0, 0, yu 0, zu 0)-&gt; (1, 0, yu 0, yx + zu 0),

as shown in Figure 2.

FIGURE 2
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Consider the surface 5 shaded in Figure 3; it is a disk whose boundary is the
loop

The image S of 5 in M is obtained by performing the indicated identifications, so
is a punctured torus whose boundary is the Zx-circle. S can be parametrized by
the charts

(s, t)-*(s, 0, t, 0, 1 -s +st, 0), for 0&lt;5, t&lt; 1, and

(u, t/)-* (m, 0, 0, 0, v, 0), for 0 &lt; m, v, u + v &lt; 1.

Similarly, the subgroup G2 {(0, jc2, 0, y2, zlf 0)} of G covers a 3-dimensional
Heisenberg submanifold H2 of M, and inside it is a punctured torus parametrized
by

(5, 0~*(0&gt; s&gt; °» ^ 1 - J +5r, 0), for 0&lt;s, r &lt; 1, and

(w, v)-+ (0, w, 0, 0, v, 0), for 0 &lt; m, u, w + u &lt; 1.

Both punctured tori hâve the same boundary circle, parametrized by

t/-&gt; (0, 0, 0, 0, vy 0), for 0 &lt; v &lt; 1,

so they join up to form a double torus DT2 in M.
We can compute the homology class of this double torus by integrating over it

FIGURE 3
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each of the eight basis two-forms, and find:

[Dr2] [XXYX - X2Y2] + (l/2)[XlZl) + (1/2)[Y1Z2].

In summary, we hâve seen that the closed left-invariant 2-currents

X\X2y YXY2&gt; XXZ2) YXZ2, Y2Z2y X2YX

and X1Y1-X2Y2

represent intégral homology classes which constitute a basis for the real homology
H2(M; R). That they are also a basis for the intégral homology will be seen in the
next section.

4. Intégral cohomology via Gysin séquences

Earlier, we described M as a bundle over a flat 4-torus with fibre a flat 2-torus.
In this section we will view M as an iterated circle bundle, and then calculate its
intégral cohomology by two applications of the Gysin séquence. It will turn out
that this intégral cohomology has no torsion, and hence injects into the real
cohomology. In particular, intégral cohomology classes can be represented by
differential forms.

To this end, let G for the moment be the 5-dimensional Heisenberg group,
that is, the matrix group consisting of ail real matrices of the form

Let r be the discrète subgroup of G consisting of matrices with integer
entries. The set L jA^ of right cosets is a compact smooth 5-dimensional

Heisenberg manifold.
We view M as a circle bundle over L by dropping the z2 coordinate, and L as

a circle bundle over the 4-torus T4 by dropping the zx coordinate:

1

L5

l
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If we use real coefficients, we can quickly compute the cohomology of L just
as we did for M in §2.

To get the intégral cohomology of L, we consider the Gysin séquence of the
circle bundle with total space E — L and base space B T4:

where eeH2B is the Euler class, jt:£—&gt;£ is the projection map, and A the
&quot;boundary map&quot; given by intégration along the fibre. We may read this séquence
with either intégral or real coefficients.

Welet

XUX2, YlfY2 and Zx

dénote the obvious &quot;left-invariant&quot; vector fields on L, and

&lt;*u &lt;*i&gt; Pu P2 and Yi

the dual &quot;left-invariant&quot; 1-forms.
We hâve the relation in E L:

which reveals the bundle&apos;s Euler class

in B T4. We underline Greek letters to indicate forms on the base. To pull back
to the total space, simply delete the underline.

Because the Euler class is nonzero, the map H°B -^-» H2B is injective. Hence
from the Gysin séquence,

generated by the classes of the closed 1-forms

au a2, Px and /S2.
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Next, one quickly checks that the map HXB-^^H2B is an isomorphism.
Hence

H2L H2E a //2£/(image of H°B under U e) Z5,

generated by the classes of the closed 2-forms

ata2, a^t, a^2f a2Pi and jS^.

To compute the 1- and 2-dimensional intégral cohomology of M in terms of
that of L, we view M as the total space of a circle bundle over the base space L,
and appeal to the corresponding Gysin séquence.

Notationally, forms which live on L will be underlined, since L is now our
base space.

The relation in the total space E — M:

reveals the bundle&apos;s Euler class

in the base space B L.
Because this Euler class is nonzero, the map H°B-^+ H2B is injective.

Hence from the Gysin séquence,

generated by the classes of the closed 1-forms

&lt;*\&gt; oc2, px and j32-

By contrast, the map HlB -^ H3B is zéro. Visibly,
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But also,

i), and

So we extract from the Gysin séquence the fairly short exact séquence

0

We&apos;ve already calculated the intégral cohomology of the base space B-L.
We hâve:

H°B^Z, with generator 1.

HlB Z4, with generators alf a2, Pi, /?2.

H2B Z5, with generators oçxoç2i ocx§ly axfi2, a2f}u pxp2.

Cupping with the Euler class e — qcx$2 takes the generator 1 of H°B to the
négative of one of the listed generators of H2B. So from the portion of the Gysin
séquence highlighted above, we conclude that

and that half of a basis is represented by the closed 2-forms

ocxoc2y axpu a2pt and pxp2.

The other half is represented by closed 2-forms which map by A to the basis

éléments for HlB listed above.
We make a provisional choice of thèse remaining basis éléments as follows.

Since ocxy2 is closed and A sends it to the basis élément ax of HlBy we tentatively
add ocxy2 to our basis for H2E. Likewise, we include f}2y2. By contrast, a2y2 is

not closed, but a^i + a2y2 is closed, and A sends it to &amp;2. So we include
&amp;1Y1 + #272 in our provisional basis. Likewise, we include pty2 + /?27i-

Thèse eight closed 2-forms on the total space E M certainly form a basis for
the 2-dimensional cohomology over the reals. Indeed, we hâve already seen this
in §2. The first four of thèse closed 2-forms represent intégral classes, since they
corne from intégral classes on the base. But the last four may not represent
intégral classes, and may hâve to be adjusted by adding combinations of the first
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four in order to produce intégral classes. As we will see, this is precisely what
happens.

We switch for a moment to homology.
We saw in the previous section that the closed left-invariant 2-currents

*! Y, - X2Y2

XiZ\y X1Z2, Y\Z&gt;2 and Y2Z2

represent intégral homology classes, and constitute a basis for the real homology
H2(M;R).

We will see now that thèse classes are a basis for the intégral homology
H2(M;Z).

To that end, consider the closed 2-forms on M which represent our provisional
basis for H2M:

oci&lt;x2, PiP2&gt; «2P1, *i0i&gt; (XiYi + ûr2y2, ocxy2y pxy2 + P2Y1 and p2y2.

The first four are part of an integer basis for H2M. The second four will hâve to
be altered by linear combinations of the first four in order to complète this integer
basis. Note that this passage from provisional to final basis for H2M will be
unimodular.

If we had this final integer basis for H2M, we could evaluate it on each of the
intégral homology classes above and take the déterminant of the resulting 8 by 8

matrix. If this déterminant were ±1, then the homology classes would form an
intégral basis for H2M.

Since the change from provisional to final basis for H2M is unimodular, we
can use the provisional basis (which we know) instead of the final basis (which we
don&apos;t) in carrying out the above integrality test.

A quick calculation reveals that the eight left-invariant closed 2-forms on M
which represent the provisional basis for H2M are almost perfectly dual to the

eight left-invariant closed 2-currents given above. Indeed, the corresponding 8 by
8 matrix of évaluations has l&apos;s down the diagonal, and only two nonzero
off-diagonal terms: the 2-forms

and

both take the value 1/2 on the &quot;double torus&quot; 2-cycle

XtYx -X2Y2
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The déterminant is clearly 1. Hence thèse eight closed left-invariant 2-currents
(concretely represented by seven tori and a double torus) represent an integer
basis for H2M, as claimed.

We now return to cohomology.
We simply take the eight closed left-invariant 2-forms listed above. We

subtract (Il2)aifii from both #iyi + oc2y2 and )81y2 -4- ^82yi, and leave the other
six 2-forms alone. What results is a basis for cohomology dual to the integer
homology basis given above. Hence we hâve our integer cohomology basis.

With this topological description of M in hand, we now aim to see how the

geometry changes as the metric gt varies.

5. How to find the smallest cycles in a homology class

We define the &quot;comass&quot; of a form and the &quot;mass&quot; of a current, following
Fédérer [Fel], and begin in a linear algebra setting.

Let Vbea finite dimensional real vector space with an inner product. The
inner product extends in a natural way to the space a* V of A&gt;vectors, and to the

space a* V* of fc-forms. In particular, it provides norms on thèse spaces.
Given a fc-form &lt;p, its comass is

||&lt;p||* sup {&lt;p(U) : U a simple A&gt;vector of norm 1},

&quot;simple&quot; meaning &quot;decomposable as an exterior product of vectors&quot;. For
example, let V i?4, with orthonormal basis elt... e4, and dual orthonormal
basis e*,..., et for F*. Then the 2-form e\e2 +e*e* has comass 1, and takes
this maximum value on the 2-vector exe2i as well as on any other 2-vector
corresponding to a complex Une in C2. More generally, the comass of the 2-form

ae*e* + be*e%

is max{|a|, \b\}.
Given a ifc-vector U, its mass is

\\U\\ sup {&lt;p(U):q) a À&gt;form of comass 1}.

For example, the mass of the 2-vector exe2^re^eA is 2, and this maximum is

achieved when the 2-vector is evaluated against the 2-form e*e* + e*e* of comass
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1. More generally, the mass of the 2-vector

aexe2 + be3eA

Thèse ideas carry over from the linear algebra setting to that of forms and
currents on a compact Riemannian manifold M.

Given a smooth fc-form &lt;p on M, its comass is

Given a A:-current U on M, its mass is

\\U\\ sup {U{(p): &lt;p a smooth A&gt;form of comass 1}.

One checks that if the A:-current U corresponds to intégration over a classical
fc-chain, then its mass is the &amp;-dimensional area of the chain.

If we restrict ourselves to currents on M of finite mass whose boundaries
also hâve finite mass (the so-called normal currents), then their homology
coïncides, by a theorem of Fédérer and Fleming [Fe-Fl], with the real homology
H*(M;R).

By the mass of a real homology class (informally defined in the introduction),
we mean the minimum mass of any closed current in that class. Note that &quot;mass&quot;

is a norm on homology: it is subadditive and is linear on rays.
We will still use this définition when the homology class happens to be

intégral, though one might also consider the minimum mass of just the classical

cycles therein. This minimum may be larger. For example, take a flat rectangle of
length 1 and paste its left and right sides together to form a Môbius band B. The
distance around the center of the band is 1; the distance around the boundary dB
is 2. Now introduce a little bit of positive curvature, so that the distance around
the center remains 1, but the distance around the boundary decreases to 1.9.

Consider the intégral 1-dimensional homology class corresponding to once around
the Môbius band. If we restrict to classical cycles, the minimum mass is 1. If we
allow the more gênerai currents, then &quot;half the boundary&quot; (that is, the current
defined by &lt;p »-» (1/2) j3B &lt;p, for any 1-form q&gt;) is admissible, and has mass 0.95.
The mass of this homology class, by our définition, is 0.95.

Thèse two competing measurements of an intégral homology class are related
by a theorem of Fédérer [Fe2, §5.8]. The mass of the intégral class [U], that is,
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the minimum mass of any closed current in it, is equal to the limit, as m—»&lt;», of
(1/m) times the minimum mass of any classical cycle in the class m[£/].

Frequently, the mass of a homology class and the corresponding minimizing
currents therein can be found with the aid of a &quot;calibrating&quot; form.

A closed A&gt;form q&gt; of comass 1 on a Riemannian manifold M is called a

calibration. A closed fc-current U on M, for which U(q)) coincides with the mass
of U, is said to be calibrated by &lt;p. The simplest example of such a U is a smooth
oriented fc-dimensional submanifold of M, on which q&gt; restricts to the volume
forai.

The principal observation is:

A closed k-current U which is calibrated by some form q&gt; must be mass

minimizing in its homology class.

For if V is another closed A&gt;current in the same class, then

Mass (U) U(q&gt;) U&apos;(&lt;p) &lt; Mass (£/&apos;)•

The first equality is because &lt;p calibrâtes £/. The second is because q&gt; is closed,
and hence Stokes&apos; Theorem may be applied. The final inequality is because cp has

comass one. Note that equality holds if and only if U&apos; is also calibrated by &lt;p.

The standard examples of calibrations are provided by the normalized powers
of the Kâhler form on a Kàhler manifold. The classical cycles so calibrated are

just the complex subvarieties, which are thereby seen to be mass minimizing in
their homology classes. Many more examples are given in [Ha-La].

6. Closed geodesics

In this and the following section, we return to our 6-dimensional nilmanifold
M, together with the metric gt on it at time t, and use calibrations by invariant
differential forms to identify mass minimizing cycles, and to calculate the masses

of homology classes.

The classical cycles of minimum length in the 1-dimensional integer homology
classes are, of course, closed geodesics. It is well known (see, for example,
[Du-Gu] and [CdV]) that under certain generic conditions, the Laplace spectrum
of a Riemannian manifold détermines the length spectrum, that is, the collection
of lengths of closed geodesics. While the nilmanifolds studied hère do not satisfy
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that generic condition, the length spectrum of (M, g,) is nonetheless independent
of t. In fact, it is shown in [Go] that for each free homotopy class oc of closed
curves in M, there exists a bijection T:A(a)-+At(a), from the set A{a) of
closed geodesics in the metric g which lie in the class a, to the corresponding set
At{oc) in the metric g,. This bijection carnes closed geodesics of a given length to
ones of the same length. In particular, the manifolds (M, g,) hâve the same length
spectrum, and so can not be distinguished this way.

We will see below that the manifolds (M,gt) can be distinguished by the
relative positions of the closed geodesics in certain homology classes. This
phenomenon was exhibited by a pair of isospectral surfaces constructed by
Brooks and Tse [Br-Ts]; see also [Br].

THEOREM C. There is a 5-dimensional submanifold P {xt 0} of (M, g,)
foliated by circles of length 1 which are intégral curves of Yt. They are ail
calibrated by the closed l-form fix&gt; and hence are length minimizing in the Yx

homology class. There are no other classical cycles which minimize length in this
class.

Likewise, there is a 4-dimensional submanifold Qt {xi tf x2 0} of (M, gt),
foliated by circles of length 1 which are intégral curves of Y2. They are ail
calibrated by the closed l-form f}2, and hence are length minimizing in the Y2

homology class. No other classical cycles minimize length in this class.

REMARK. The distance in (M, g,) from P to Qt is the distance from t to the

nearest integer. By the Proposition of §1, this distance parametrizes the isometry
classes of the manifolds (M, g,).

The two parts of the above theorem hâve similar proofs. We do only the

second part, which is more interesting.

Recall that in the metric g, on G, we hâve an orthonormal basis of
left-invariant vector fields:

Xu X2f Yu Y2(t) Y2 - tZ2&gt; Zj and Z2.

The dual left-invariant 1-forms are:

&lt;*u «2&gt; Pu Pi&gt; Yi and y2(0 Yi + &apos;Pi-

Thèse cover &quot;left-invariant&quot; vector fields and 1-forms down on M.
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In (M, gt), the closed 1-form /î2 calibrâtes the closed current

9/dy2 + x2 dldzt + (JC! -1) Sldz2&gt;

whose mass of 1 is therefore the minimum possible in its homology class. This
homology class is independent of t,

since Z2 bounds.
We now seek the geodesics of length 1 in this class. The intégral curve of Y2(t)

passing through the identity of G is given by s *-» (0, 0, 0, s, 0, -te), as one sees

from the local coordinate expression for Y2(t). Hence the intégral curve of Y2(i)
passing through the point (xlf x2, ylf y2&gt; zlf z2) of G is given by

ht(s) (xu x2, yu y2, zlf z2)(0, 0, 0, s, 0, -te)

(*i&gt; x2, yi,y2 + s, zt + x2s, z2 + (xt - t)s).

This will descend to a circle of length 1 in M p\G if and only if there is an
élément (alt a2, bl9 b2, clf c2) in Tsuch that

(au û2&gt; bu b2, cu c2)ht(s) ht(s + 1).

This vector équation is équivalent to the six scalar équations

ai a2 bi 0, b2 l, ct=x2, c2=^xl-t.

Since F is the integer lattice of G, this can be satisfied if and only if both xt — t
and x2 are integers.

Left translating by an appropriate élément of the lattice F, we can
assume that xx — f Q and jc2 O. Thus we get a 4-dimensional submanifold
Qt {x\ t, x2~0} of M, foliated by circles of length 1 in the metric gt, which
are of minimum length in their homology class [YJ. They are the only classical

cycles which minimize length in this homology class.

This complètes the proof of Theorem C.
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7. Area-minimizing surfaces

In the previous section, we saw that the manifolds (M, gt) can be distinguished
by the distance between the closed geodesics in the Yl and Y2 homology classes.

We now expect, for reasons sketched below, that thèse manifolds can also be
distinguished by the area of the smallest cycle in the 2-dimensional YXY2

homology class.

At time 0, the flat 2-torus

To= {x1=x2 zl z2 0}

is easily seen to be area minimizing in the YXY2 class. At time t, suppose that Tt is

a surface in this homology class. Visualize this surface as a torus (this is only a

heuristic argument). Intersecting Tt with the 5-cycle {y2 0}, we must get curves
in the Yx homology class. Think of thèse as &quot;meridians&quot; on Tt. Likewise we get
&quot;longitudes&quot; on Tt by intersecting with the 5-cycle {yt 0}, and thèse lie in the Y2

homology class. In similar fashion, we get curves on Tt in each homology class

[miYx + m2Y2], where ml and m2 are integers. Thèse 1-dimensional cycles must
hâve length at least (m2 + m|)1/2, measured in the metric gt, since the calibrating
1-form

shows this to be the minimum length of any 1-cycle in this class. In other words,
ail of the homologically non-trivial curves on the torus Tt are at least as long as

their minimizing counterparts on To. It follows (with thanks to Chris Croke) that
the area of Tt is at least as large as that of the flat torus To.

At time 0, the minimum length meridians and longitudes intersect. But as t
increases, a unit-length Yx géodésie no longer intersects a unit-length Y2 géodésie,
and so Tt can no longer hâve both meridians and longitudes of length 1. As a

conséquence, the area of Tt must be larger than that of To.

The actual proof will use calibrations.

THEOREM D. When \t\&lt;2, there is a 4-dimensional submanifold
{xx t/2, x2 0} of (M, gt), foliated by flat 2-dimensional tori of area 1 +12/4

running in the YXY2 direction. They are ail calibrated by the closed 2-form

(1 + t2/4)ptp2 + (i/2)(ptY2 + hYÙ,

and are hence area-minimizing in the YXY2 homology class. There are no other

classical cycles which minimize area in this homology class.
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Thus the manifolds (M, g,) can be distinguished by the mass 1 + ^/4 of the
Y{Y2 homology class. There is no contradiction hère with the fact that (M, gt) and
(M, gr) are isometric whenever t and r hâve the same distance to their nearest
integers. The isometry simply does not préserve the YXY2 homology class.

THEOREM E. On (M, gt), the left-invariant closed 2-current

{X1Y1 - X2Y2) - (t/2)(X1Zl - X2Z2)

has mass V4 +t2. It is calibrated by the closed 2-form

l/VÏ+PWtoft - a2p2) - (t/2)(alYl + a2y2) - (t2/2)a2f}2},

and therefore has minimum mass in its homology class, which is the same as the

homology class of XXYX — X2Y2f since XXZX — X2Z2 is a boundary.

REMARK. The XtYt -X2Y2 homology class is not intégral, but twice it is.

QUESTION. Is there a classical cycle in the homology class 2[Ar1Yi - X2Y2]
with the minimum possible area 2V4 + t2l

We prove Theorem D.
We will show that the closed left-invariant 2-form

&lt;p (1 + ï2/4)/3x/S2 + (f/2)(j8iy2 + p2Yl)

1) has comass 1 in the metric gt, and

2) calibrâtes the closed 2-current

Multiplying out, we get

U YXY2 - (r/2)(y1Z2 - Y2Zt) + (r2/4)Z1Z2.

We saw in §2 that the 2-currents YxZ2-~ Y2ZX and ZXZ2 are both boundaries.
Hence U lies in the same homology class as Yx Y2.
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To evaluate the comass of &lt;p in the metric g,, we first express it in ternis of
orthonormal coordinates with respect to that metric. That is, we replace y2 by
72(0 - tp2, getting

q&gt; (1 - tVWtfa + (t/2)(f}lY2(t)

For the time being, we write

and will détermine the coefficients a and 6 so as to satisfy conditions 1) and 2)
above.

First, notice that &lt;p a &lt;p a (p 0. Hence there are orthonormal left-invariant
1-forms eu e2, £3 and e4, such that

&lt;p je iE2 + ^^3^4&gt; 7 — fc — 0.

In thèse coordinates, we hâve

comass of &lt;p |&lt;p|* =/
norm of ç? |(p| y/pr+J?

norm of (p a &lt;p |(p a &lt;p| 2jk.

From the earlier coordinates, we hâve

To make ç? hâve comass 1, we must therefore satisfy the équations

Thus

k b2 and l + è4 a2

In other words, we guarantee that q&gt; has comass 1 if we choose a and b so that
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Now we want to arrange that cp calibrâtes the 2-current U in the metric gt. We
begin by expressing U in terms of orthonormal coordinates with respect to that
metric. That is, we replace Y2 by Y2(t) + tZ2y getting

U (Y1- (tl2)Zx){Y2(t) + (t/2)Z2).

Multiplying out, we get

U YtY2(t) + (t/2)YxZ2 + (t/2)Y2(t)Z1 - {t2l4)ZxZ2.

Hence the norm of U in the metric gt is

\U\ Vl + (t/2)2 + {tl2f + {t2l4f

For q) to calibrate Uy we must hâve (p(U) \U\. Now

(p([/) a 4- 6(f/2)

Setting this equal to the norm of U, as calculated above, we get

So a and è must satisfy this équation, in addition to

H l-&amp;2.

Solving, we get

2 and b t/2

for the coefficients of q). Note that \t\&lt;2 implies |è|&lt;l. Hence this 2-form q&gt;

calibrâtes the 2-current U, as claimed. It follows that, in (M, gt), U has minimum
mass in its homology class, which as we observed above is the same as the

homology class of YtY2.

We now seek the classical cycles which minimize area in this homology class.

Recall the orthonormal left invariant 1-forms elf e2, e3 and e4 such that
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In determining cp, we arranged that j 1. The restriction \t\ &lt; 2 guarantees that
0&lt; k &lt; 1. It follows that, at each point, &lt;p calibrâtes the 2-plane corresponding to
exe2&gt; and nothing else. Hence the minimizing classical cycles which we seek, since

they must also be calibrated by &lt;p, must be tangent to this field of 2-planes.
Note that the Lie bracket

[Yl-(t/2)ZuY2-(t/2)Z2] 0,

so that this field of 2-planes provides a 2-dimensional foliation of M. Since we
know that cp calibrâtes Uy thèse 2-planes must be the ones corresponding to exe2.
Therefore the minimizing classical cycles will appear as compact leaves of this
foliation.

Lift this foliation to a foliation on the Lie group G. The leaf through the

identity of G is given by

(su s2)-*(0, 0, sl9 s2f -tsJ2, -tt2/2).

Hence the leaf through the point (xx&gt; x2f yXf y2&gt; zXf z2) of G is given by

h(sly s2) (xu x2, ylf y2, zu z2)(0, 0, su s2, -tsJ2, -tsJ2)
(*i&gt; x2, yi + suy2 + s2, zx + (xx - tll)sx + x2s2, z2 + (xt - t/2)s2).

This leaf projects to a closed surface in M in the homology class [YiY2] if and

only if there exist yx and y2 in the lattice F such that h(sx + 1, s2) Yih(slf s2)

and h(su s2 + l) y2h(sly s2) for ail real sx and s2. Now

h(st + 1, s2) (0, 0, 1, 0, xt -1/2, 0) h(su s2) and

h(slf s2 + 1) (0, 0, 0, 1, x2t xx -1/2) h{sly s2).

Thus the leaf descends to a compact surface in [YXY2] if and only if xx -1/2 and x2

are integers. When this condition holds, we may left translate the leaf in G by an

appropriate élément of F so as to arrange that xx -t/2 0 and x2 0. Hence the

leaf in G is given by

u s2) (f/2, 0, yt + su

Dividing this leaf by the lattice
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we obtain a torus leaf in M. Indeed this is just one of the flat tori running in the
YXY2 direction, which fill the 4-dimensional submanifold {xx t/2, x2 0}.

Thèse are the only classical cycles in M which lie in the homology class [YXY2]
and hâve minimum area 1 +t2/4 in the metric gt.

This complètes the proof of Theorem D.

Now we prove Theorem E.

We must show that the closed left invariant 2-form

&lt;p 1/V1 + t2/4{(axpx - a2p2) - (t/2)(axYx + a2y2) - (t2/2)a2p2}

1) has comass 1 in the metric gt, and

2) calibrâtes the closed 2-current

U (XXYX - X2Y2) - (t/2)(XxZx - X2Z2).

Writing

U XX(YX - (t/2)Zt) - X2{Y2(t) + (r/2)Z2),

we see that U has mass 2Vl + (t/2)2 y/4 + t2 in the metric gt. We also compute
that U(q)) \/4 +12. Thus we need only show that q) has comass one.

To evaluate the comass of q&gt; in the metric gty we first express q) in terms of
orthonormal coordinates with respect to that metric. That is, we replace y2 by
yi{t)-tfi29 getting

q&gt; l/y/T+?/4{(&lt;*1p1 - a2p2) - (t/2){&lt;*iYi

atifit - (t/2)y1)/VÎTt274 - a2(fi2 + (r/2)y2(0)/VT+?74.

This has the form ejej — e*e4, where the et are orthonormal in the metric gt, and
therefore has comass 1.

It follows that the current U has minimum mass in its homology class, which
coincides with the homology class of XXYX-X2Y2 because XXZX-X2Z2 is a

boundary.

This complètes the proof of Theorem E.

Of course, either Theorem D or Theorem E implies Theorem A.

To prove Theorem B, simply note that the area spectrum is countable, while
the mass of the intégral homology class [YXY2\ in (M, gt) is VT+7. It follows
that the area spectrum must vary with t.
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