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Limites d&apos;espaces tangents en géométrie analytique

Le Dûng Trâng et Bernard Teissier

Introduction

Le thème de ce travail est la structure de l&apos;ensemble des directions limites en
un point singulier x d&apos;un espace analytique complexe X des espaces tangents à X
en des points non-singuliers. C&apos;est un ensemble algébrique projectif puisque c&apos;est

la fibre ensembliste au dessus de x de la modification de Nash de X (voir 1.4).
Diverses caractérisations de cet ensemble ont été données dans des cas

particuliers, d&apos;abord numériques dans ([36], Chap. 2), puis géométriques dans

[6], [18] et [23]; en fait nous étudions, pour un plongement local (X, x)cz (CN, 0)
donné, la fibre du morphisme conormal k:C(X)-*X, où C(X)czXx PN~] est
l&apos;ensemble des couples formés d&apos;un point y de X et d&apos;une direction limite en y
d&apos;hyperplans de CN tangents à X, et k est induit par la première projection.

La structure géométrique de l&apos;inclusion |#c~ 1(jc)| c {x} x PN~~l détermine celle
de la fibre au-dessus de x de la modification de Nash (voir 1.4).

Un des principaux résultats de ce travail, annoncé dans [42], et dans [19] pour
le cas des hypersurfaces, est que l&apos;on peut déterminer géométriquement la fibre
ensembliste l*&quot;1^)! au moyen des cônes tangents en x aux variétés polaires
locales de X en x que nous avons introduites et étudiées dans [22]. Cette
détermination fournit un moyen de calcul assez efficace de cette fibre, (voir
l&apos;exemple donné en appendice) alors qu&apos;à notre connaissance il n&apos;en existait
aucun. Nous prouvons en fait un résultat bien plus général de dualité projective
locale (Théorème 2.1.1) pour un espace réduit équidimensionnel X le long d&apos;un

sous-espace non-singulier Y tel que (Xi\ Y) satisfasse les conditions de Whitney
introduites dans [47], où X{) désigne la partie non-singulière de X. Les

composantes irréductibles de l*:&quot;1^)! sont Y-duales (au sens d&apos;une dualité

projective relative au-dessus de Y) de certains sous Y-cônes du cône normal

(Voir [11]) de y dans X. La donnée de ces Y-cônes équivaut à celle de la partie
fixe, i.e., indépendante de la projection, des cônes normaux de Y dans les

variétés polaires locales de X le long de Y.

En fait, nous montrons que cette Y-dualité caractérise les conditions de

Whitney.
Nous mettons ainsi en évidence une famille de sous-cônes du cône normal de
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X le long d&apos;un sous-espace réduit Y, que nous appelons l&apos;auréole de X le long de
Y. Lorsque Y est non-singulier, cette auréole permet de décider si X satisfait les
conditions de Whitney le long de Y (Voir 2.1.5 ci-dessous), et si c&apos;est le cas, cette
auréole permet de déterminer les limites aux points de Y d&apos;hyperplans tangents à

X° (Voir 2.2.1). Nous pensons que cette auréole est un objet géométrique
important, ce qui est confirmé par le fait qu&apos;elle a un bon comportement par
section hyperplane générique et projection. Le corollaire (2.3.2.2) montre
comment ce bon comportement par section hyperplane générique nous a permis
de comprendre les propriétés particulières du point de vue de l&apos;équisingularité de
la famille des sections hyperplanes d&apos;un même germe d&apos;espace analytique
complexe (cf. [44], Appendice), restées jusqu&apos;ici mystérieuses pour nous.

En chemin, nous étudions la géométrie de la spécialisation d&apos;un germe
singulier sur le cône normal d&apos;un sous-espace fermé dans le cas où celui-ci est

non-singulier; cette construction, due dans un cadre général à Gerstenhaber ([3])
et ayant connu de nombreux avatars (voir 1.6) a une géométrie compliquée
intimement reliée à la structure des limites d&apos;espaces tangents du germe aux
points du sous-espace. Cette géométrie, dans le cas particulier expérimental des

surfaces, était le principal objet d&apos;étude de [23] et a été utilisée aussi pour étudier
les conditions de Whitney par V. Navarro Aznar dans [28].

Nous utilisons systématiquement ici le langage des sous-variétés Lagran-
giennes homogènes du cotangent, déjà usuel en mécanique et en analyse. Dans la
première partie, nous essayons de donner une base solide à l&apos;utilisation de ce
langage dans la théorie géométrique des singularités complexes, qui est relativement

récente (Voir cependant [13], [20] et [34]). En particulier, nous obtenons la
caractérisation suivante (cf. Proposition 1.3.8) des conditions a) et b) de Whitney
pour (X°, Y): dans ÛC{X) l&apos;idéal qui définit l&apos;intersection C(Y) H C(X) est entier
sur l&apos;idéal qui définit k-\Y).

Nous remercions C. Sabbah pour avoir décelé une erreur dans une première
version.

§1. Préliminaires

1.1 NOTATIONS. Dans ce texte, CN désigne l&apos;espace affine complexe de

dimension N, PN~l l&apos;espace projectif complexe des doites de CN passant par une
origine fixée qui sera un point x, PN~* l&apos;espace projectif dual dont les points sont
les hyperplans de CN passant par x\ pour tout Y-cône C c y x CN de sommet Y,
on notera P(C) le sous-ensemble correspondant de Y x P^&quot;1 et pour tout
sous-ensemble V de YxPN~l on notera Y(V) le cône de sommet Y
correspondant.
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Si X est un espace analytique complexe, €x désignera son faisceau structural,
\X\ l&apos;espace réduit ou ensemble analytique sous-jacent, et X° l&apos;ouvert des points
non-singuliers de X. Pour un sous-espace Y de X, nous noterons CXY le cône
normal de X le long de Y, (Voir [11]), qui est le cône tangent de Zariski CXtX de

X quand Y est un point x e X et l&apos;espace tangent TXx de X en x, si x e X°.

1.2. Espace conormal relatif (Cf. [41], [8], [15])

1.2.1. Etant donné un espace analytique complexe Z sans singularités et de
dimension pure, on notera fiz:T*(Z)-*Z le fibre cotangent de Z, et pour un

sous-espace analytique complexe non-singulier Y de Z, on notera TY(Z) c T*(Z)
le fibre conormal de Y dans Z; c&apos;est une sous-variété de T*(Z) invariante par les

homothéties des fibres des nz.
Dans le cas où Z CN, le fibre cotangent est trivial, et isomorphe à la

projection CN x CN—» CN, où CN est l&apos;espace des formes affines sur CN s&apos;annulant

à l&apos;origine. D&apos;autre part, TY(CN) est l&apos;ensemble des paires (y, À) où y e Y et
keÙN s&apos;annule sur l&apos;espace tangent Ty Y de Y en y.

1.2.2. Rappelons que T*(Z) est muni de la 1-forme de Liouville oc qui, à un
vecteur tangent v à T*(Z) au point (z, À), associe X{dnz(v)) où dnz est la
différentielle de nz en (z, À). Pour tout sous-espace analytique complexe
non-singulier Y de Z, la 1-forme a s&apos;annule sur tout vecteur tangent à TY(Z);
autrement dit, TY(Z) est une sous-variété conique Lagrangienne.

1.2.3. On appelle fibre projectif cotangent et l&apos;on note 7tz:PT*(Z)-»Z le
fibre obtenu en projectivisant les fibres du fibre cotangent, et espace conormal
projectivisé de Y dans Z le sous-espace PTY(Z) de PT*(Z) obtenu en

remplaçant les fibres coniques de TY(Z) par les variétés projectives correspondantes.

Nous dirons encore que ce sont des sous-variétés Lagrangiennes de

Pr*(Z);
Rappelons le très utile résultat suivant (Voir [30] §10, [13]):
Toute sous-variété Lagrangienne irréductible de PT*(Z) est l&apos;espace conormal

projectivisé de son image dans Z par nz.
1.2.4. Nous allons étendre ces notions simultanément au cas relatif et au cas

d&apos;espaces singuliers (Voir [41], Chap. 2, §4, et [8]):
1.2.4.1. Soit f:X-+S un morphisme d&apos;espaces analytiques réduits, dont

toutes les fibres sont purement de dimension d et tel qu&apos;il existe un ouvert
analytique Xo de X, dense dans X et sur lequel la restriction de / a toutes ses

fibres lisses. Supposons de plus que X soit un sous-espace analytique fermé d&apos;un

espace p :Z-&gt;5 lisse au-dessus de S et que / soit la restriction depàZ (cette
hypothèse est toujours vérifiée localement sur X). Notons Jip:T*(Z/S)~&gt;Z le
fibre cotangent de Z relatif à p, dual du fibre tangent relatif à p dont la fibre
au-dessus de z € Z est l&apos;espace vectoriel des vecteurs tangents en z à la fibre de p.
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D&apos;après un théorème de Remmert [32], la fermeture dans T*(Z/S) de
l&apos;espace conormal de Xo dans Z relatif à p est un sous-espace analytique
complexe fermé réduit Tx/s(Z/S) de T*(Z/S). L&apos;application np induit un
morphisme kf :T£/|S(Z/S)-»Z que Ton appelle morphisme conormal de X/S
dans Z/S.

Localement sur Z, on peut identifier p à la première projection S x (/-»S, où
U est un ouvert de CN; on peut alors identifier T%/S(Z/S) à l&apos;ensemble des

couples {x, (p), où x 6 X et (p est une limite de formes linéaires sur C* s&apos;annulant

sur des espaces tangents aux fibres de / en des point lisses de /.
Comme plus haut, on peut projectiviser les fibres et définir le morphisme

conormal relatif projectivisé Kf : Cf(X;p)-^&gt;X, où Cf(X;p) PT%/S(Z/S).
Le plus souvent, p sera fixé et l&apos;on notera T*(X) au lieu de T%/S(Z/S) et

Cf(X) au lieu de Cf(X;p). Enfin, quand le contexte sera clair, on omettra
souvent &quot;projectivisé&quot;.

1.2A2. Dans le cas où / est la restriction de la première projection p à un
sous-espace fermé X de 5 x U, où U est un ouvert de CN, on a T*(S x U/S)
SxUxfcN, et Cf(X) est la fermeture dans SxUx PN~l de l&apos;ensemble des

couples (x, H) où x e Xo et H est un hyperplan de C^ contenant l&apos;espace tangent
en x à la fibre de/. On notera dans ce cas kf : Cf(X)-+ PN~X la restriction à Cf(X)
de la projection S x U x PN~1-* PN~\

Un point de Cf(X) est un couple (x, H) où xeX et H est une limite
d&apos;hyperplans de C^ tangents aux fibres de /, c&apos;est-à-dire contenant l&apos;espace

tangent à la fibre de /, en des points lisses de / tendant vers x.
Dans la suite nous appellerons hyperplan tangent à la fibre de / en x un

hyperplan H de CN tel que (x, H) appartienne à Cf(X). Il est équivalent pour un
hyperplan d&apos;être tangent aux fibres ou de contenir une limite d&apos;espaces tangents
aux fibres.

1.2.4.3. Si de plus S est un point, on notera encore T^{U) l&apos;espace

Tx/s(Sx U/S), C(X) l&apos;espace Cf(X), et k:C(X)^X le morphisme conormal.
On notera A : C(X)-~* P^&apos;1 le morphisme Kf.

1.2.5. Rappelons (voir [30], §10) qu&apos;un sous-espace analytique réduit W de

T*(Z) est dit Lagrangien s&apos;il est purement de dimension dim Z et si la 2-forme
œ da, différentielle de la forme de Liouville, s&apos;annule en tout couple de

vecteurs tangents à la partie lisse W° de W. Si W est homogène, c&apos;est-à-dire

conique pour les homothéties des fibres de T*(Z), il est équivalent de dire que la
1-forme a s&apos;annule sur les vecteurs tangents à W°.

Soit p:Z-»5 un morphisme lisse; nous dirons de même qu&apos;un sous-espace
analytique réduit W de T*(Z/S) est p-Lagrangien (ou 5-Lagrangien lorsque
aucune confusion n&apos;est à craindre) si les fibres du morphisme q p ° np \ W sont
purement de dimension égale à la dimension dimp Z des fibres de p et si la
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différentielle cop de la 1-forme de Liouville relative ap de T*(Z/S) s&apos;annule sur
tout couple de vecteurs tangents en des points non-singuliers au sous-espace
réduit sous-jacent aux fibres de q.

Si W est p-homogène, c&apos;est-à-dire conique par rapport aux homothéties des

fibres de T*(Z/S), on voit, comme ci-dessus, qu&apos;il revient au même de demander

que &lt;xp s&apos;annule sur tout vecteur tangent aux fibres de la restriction de q à W en
des points non-singuliers des fibres réduites. Dans ce cas, on peut encore
projectiviser dans les fibres, et chaque sous-espace p-Lagrangien homogène
donne un sous-espace du fibre cotangent relatif projectivisé PPT*(Z/S), sous-

espace que nous appellerons encore p-Lagrangien ou 5-Lagrangien.
Remarquons que l&apos;image d&apos;un sous-espace analytique fermé réduit p-

homogène de T*(Z/S) est un sous-espace analytique fermé de Z d&apos;après un
Théorème de Remmert et Grauert puisque c&apos;est l&apos;image du sous-espace PP(W)
qui est projectif au-dessus de Z.

PROPOSITION 1.2.6 (Principe de spécialisation Lagrangienne). Soient

p:Z-+S un morphisme lisse où S est réduit, et dont toutes les fibres sont purement
de dimension Ny et soit W un sous-espace analytique fermé réduit de Vespace total
du fibre cotangent relatif jcp:T*(Z/S)-+ Z. Supposons que les fibres de W
au-dessus des points généraux des composantes irréductibles de S soient purement
de dimension N dim^ Z. Posons q =p°jtp\W.

A) Si toutes les fibres de q sont purement de dimension N, étant donnée une

l-forme différentielle a sur T*(Z/S) relative au morphisme composé T*(Z/S)-^&gt;

Z-+S, s&apos;il existe un ouvert analytique dense V de S tel que ocs s&apos;annule sur
\q~l(s)f pour s e V&gt; as s&apos;annule sur \q~l(s)\° pour tout s eS.

B) Les conditions suivantes sont équivalentes:
1) Le sous-espace W de T*(Z/S) est p-Lagrangien
2) Toutes les fibres de q sont purement de dimension N et il existe un ouvert

analytique dense V de S tel que pour s e Vy la fibre q~l(s) soit réduite et soit une
sous-variété Lagrangienne de (p°iïp)~l(s) T*(Z(s)).

Si de plus W est p-homogène, ces conditions sont équivalentes à la suivante:
3) Toutes les fibres de q sont purement de dimension N et chaque composante

irréductible W, de W est égale à T%ls{ZIS)f où Xt fip(W,).

Prouvons d&apos;abord:

LEMME 1.2.6.1. Pour tout seS et toute composante irréductible Dt de

\q~l(s)\, il existe un ouvert analytique dense Ut c Dt tel que Ut soit contenu dans

D°t et que tout {couple de) vecteur{s) tangent(s) à Ut en w e Ut soit limite de
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(couples de) vecteurs tangents en des points non-singuliers à des fibres voisines de

Preuve du Lemma. L&apos;assertion est locale sur W, donc sur S et Z. Démontrons
d&apos;abord le Lemme dans le cas où S D, disque unité de C. Le sous espace
l^&quot;1^)! de W est de codimension 1 et d&apos;après ([38]), chaque composante
irréductible Dt de Ig&quot;1^)! contient un ouvert analytique Ut en tout point duquel la
normalisation est une résolution simultanée forte de W le long de Dt. Ceci

implique en particulier que le morphisme de normalisation n:W^&gt;W a la
propriété suivante: W est non-singulier au voisinage de n~l(Ut), le morphisme n
induit un isomorphisme au dessus du complémentaire de (/, dans un de ses

voisinages dans W et le morphisme n~l(Ul)-+Ul induit par n est étale. Il suffit
donc de prouver que tout (couple de) vecteur(s) tangent(s) à n&quot;1^) est limite de

(couples de) vecteurs tangents aux fibres de q °n. Dans une carte locale sur W au
voisinage d&apos;un point wf e n~l(Ut), le morphisme q °n est de la forme vk où v est
une coordonnée locale sur W, v 0 est une équation locale pour n&apos;^t/,) et k est

un entier &gt;0. Le résultat est alors évident.
Ramenos le cas général au cas où 5 D. On se place au voisinage d&apos;un point

w e W et l&apos;on choisit un chemin h : (D, 0)-* (W, w) tel que h(D — 0) soit contenu
dans l&apos;ouvert image réciproque par q de l&apos;ouvert Va S. Posons h q°h et
faisons le changement de base par /i:D—»S. Le morphisme qn&apos;.\W x D|—»D

satisfait encore l&apos;hypothèse 1) d&apos;après l&apos;hypothèse d&apos;équidimensionalité des fibres,
et \qô\s)\ ~\q~l(s)\ pour s eh(D). ¦

A) résulte immédiatement du Lemme par continuité. Prouvons B): 1)
implique évidemment 2). Prouvons que 2) implique 1): il résulte du Lemme par
continuité que si 2) est vérifiée, pour tout s e S, la différentielle œp de la forme de
Liouville relative ocp s&apos;annule sur tout couple de vecteurs tangents en tout point
d&apos;un ouvert analytique dense de chaque composante irréductible de l?&quot;1^)!,

donc sur tout couple de vecteurs tangents à l?&quot;1^)! en un point non-singulier,
c&apos;est-à-dire que W est p-Lagrangien.

Prouvons que 2) implique 3): pour s e V, considérons l&apos;ouvert dense Ut(s)cz
Wt(s) formé des points où le morphisme Jïp:Wl(s)-*Xl(s) est une submersion
d&apos;espaces lisses; la réunion pour s e S des U,(s) est un ouvert dense de Wt. Soient

x e ftp(Ut) et v un vecteur tangent à Xt(s) en x. Soit (x, À) un point de

n~l(x) H Ut; II existe un vecteur tangent t à Wt(s) en (jc, À) tel que dnp{t) v.
Puisque W est Lagrangienne, on a ap(t) k(v) 0, ce qui signifie que (x, À) €

T$(p)9 donc par adhérence W,(s) a T%i/s{Z/S)(s). Comme W,(s) et T%/s(Z/S)(s)
ont la même dimension, on a l&apos;égalité Wt(s) T%,/^Z/S)(s) pour s e V, donc par
adhérence Wt T%IS{ZIS).

Enfin 3) implique immédiatement 1) ¦
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Remarques, a) II y a évidemment un résultat analogue dans le fibre cotangent
relatif projectivisé, montrant que ses sous-espaces p-Lagrangiens irréductibles
PP(W) sont les Cf(X;p), où X est l&apos;image de W par np et / =p | X.

b) Dans le cas où Z est 5 x P* et p la première projection, nous dirons
qu&apos;une sous-variété p-Lagrangienne W du fibre cotangent relatif projectivisé
5 x P* x |j^ met en 5-dualité projectives ses images ZetZ dans S x P* et
SxP* respectivement. On prendra garde que pour des s e S spéciaux, cette
définition peut ne pas coïncider avec la définition de la dualité projective de X(s)
et X(s), si W(s) a des composantes irréductibles dont l&apos;image est immergée dans

X(s) ou Jt(s).
c) II résulte de la proposition que, si W est p-homogène et si la condition 2)

est satisfaite, pour tout se S, la fibre réduite Iç&quot;&quot;1^)! est une sous-variété

Lagrangienne homogène de T*(Z(s))f donc est réunion d&apos;espaces conormaux à

des sous-espaces analytiques réduits des fibres -Xi(s).
Le résultat sur la spécialisation des espaces conormaux est dû

indépendamment à Fulton-Kleiman-MacPherson dans [2] et à Sabbah dans [33]
(voir aussi Henry-Merle-Sabbah dans [8] (Cor. 4.2.1)), et S. Kleiman a dans [16]
donné une démonstration algébrique du principe de spécialisation dans le cas

/^-homogène, valable en toute caractéristique, et Fa utilisé pour démontrer une
formule sur l&apos;énumération des contacts (Voir aussi [15]).

La remarque selon laquelle la spécialisation équidimensionelle de variétés

Lagrangiennes reste Lagrangienne avait déjà été utilisée par Kashiwara dans [14];
comme le rapporteur nous l&apos;a signalé, la preuve de la Proposition 5.6 de [14] est

analogue à celle de 2)=&gt;1). Mais ce n&apos;est que récemment que l&apos;on a réalisé sa

grande utilité dans le cadre qui nous intéresse ici. Le second auteur avait suggéré
de l&apos;utiliser pour expliquer plus conceptuellement le cas particulier Y= {x} du
Théorème 2.1.1 ci-dessous, ainsi que le Corollaire 4.2.1 de [8].

d) Puisque Tx/s(Z/S) est une adhérence, le morphisme q est sans (^-torsion
et par conséquent, les conditions de la proposition sont automatiquement
satisfaites lorsque W T%/S(Z/S) et S est une courbe non-singulière.

COROLLAIRE 1.2.7. Soit X un sous-espace analytique fermé de Z
satisfaisant les conditions de 1.2.4A. Notons q:Cf(X)—*S le morphisme composé

f°Kf. Si f est propre ou si X est un voisinage assez petit de Vimage d&apos;une section a
de /, il existe un ouvert analytique dense U de S tel que pour s e Uy la fibre q~1(s)
coïncide avec l&apos;espace conormal de X(s) dans Z(s) ¦
1.1 Stratifications

DÉFINITIONS 1.3.1. Soit X un espace analytique complexe réduit. On

appelle partition analytique complexe de X une partition localement finie
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X UXa de X par des sous-espaces analytiques complexes Xa de dimension pure
de X dont la fermeture Xa et la frontière Xa — Xa sont analytiques fermés dans

X; les Xa sont appelés strates de la partition.
Une partition analytique complexe est une stratification analytique complexe

de X si chaque Xa est non-singulier.
Une partition analytique complexe est compatible avec une famille localement

finie {7^} de sous-espaces analytiques de X si chaque Tx est réunion de strates.
Une partition possède la propriété de frontière si elle est compatible avec la

frontière de chaque strate.
Etant donnée une partition analytique complexe Xa de X, il lui est

naturellement associée une filtration analytique complexe

de X, c&apos;est-à-dire une suite décroissante de sous-ensembles où chaque Ft est un
sous-espace analytique fermé de X rare dans /^_x; Ft est la réunion des adhérences
dans X des strates de dimension inférieure à celle de Ft-X. Inversement, à une
telle filtration on peut associer la partition de X composée des composantes
connexes des différences Ft - Fl+1. Une filtration F est plus fine qu&apos;une filtration
F&apos; si la partition correspondant à F est compatible avec les F&apos;r

1.3.1.1. Soit A une sous-variété Lagrangienne homogène de l&apos;espace cotan-

gent T*Z d&apos;un espace analytique non-singulier Z (ou une sous-variété Lagrangienne

du projectivisé PT*Z). A la décomposition en composantes irréductibles
A U A; de A correspond une filtration de Z telle que Ft soit la réunion des

images de dimension ^dt des An où les dt parcourent la suite des dimensions
effectivement atteintes, do&gt;dl&gt; • • -. Nous appellerons cette filtration la A-
filtration de l&apos;image de A dans Z.

1.3.2. Nous supposerons connues les conditions a) et b) de Whitney (mais
1.3.9 ci-dessous en donne une version) et le concept de stratification de Whitney
d&apos;un espace analytique complexe réduit X, introduit par H. Whitney dans [47] et
caractérisé de diverses manières dans [41] et [21] (voir aussi [7]). Rappelons
seulement que la condition a) de Whitney est le cas particulier, où 5 est un point,
de la condition af de Thom définie ci-dessous.

1.3.3. Le concept de stratification a été étendu aux morphismes par Thom
[45] (Voir aussi [25]). Nous fixons ci-dessous notre terminologie.

DÉFINITION 1.3.3.1. Etant donné un morphisme analytique complexe

f:X-*Y, nous appellerons/-partition analytique de X la donnée d&apos;une famille
localement finie {Xa} de sous-espaces analytiques de dimension pure de X tels

que pour chaque a, Xa et Xa - Xa soient des sous-espaces analytiques fermés de
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X, que la famille des composantes connexes des Xa soit une partition de X et
enfin que la restriction de / à chaque Xa soit de corang constant. Nous dirons
qu&apos;une /-partition est une /-stratification si les strates Xa sont des espaces non
singuliers et que, chaque fois qu&apos;une composante connexe d&apos;une partie Xa
rencontre l&apos;adhérence d&apos;une partie Xp, elle est entièrement contenue dans cette
adhérence.

Une partition de / est la donnée d&apos;une /-partition de X et d&apos;une stratification
{Yp} de Y à strates connexes telles que pour chaque a, il existe fi tel que
f(Xa) Yp. Une stratification de / est une partition de / qui est une /-
stratification de X.

Une stratification de / est plus fine qu&apos;une autre si les filtrations de X et Y
correspondant à la première sont plus fines que celles correspondant à la seconde.

1.3.4. Soient N un entier, X et 5 deux espaces analytiques complexes réduits,
tels que X soit un sous-espace analytique fermé de 5 x (/, où U est un ouvert non
vide de CN. Supposons que la restriction/:X~*S à X de la première projection p
satisfasse les conditions de 1.2.4. Soient T et F deux sous-espaces analytiques
non-singuliers de X à fermeture et frontière analytiques tels que F soit contenu
dans T et que les restrictions/ | Tet/ | F soient de corang constant. Considérons
les sous-espaces analytiques fermés Cf\j{F) et Cf^(T) de PT*(S x U/S) et le

morphisme jtp:PT*(S x U/S)-*Sx U (cf. 1.2.6).

DÉFINITION 1.3.4.1. On dit que le couple (T, F) satisfait la condition at de

Thom en un point t e F si l&apos;on a l&apos;inclusion:

Cf]f(T) n *;&apos;(&apos;)c C/\f(F) n VW
On dit que (T, F) satisfait la condition af de Thom si elle est satisfaite en tout

point t e F.

On dit qu&apos;une stratification (Xa) de X satisfait la condition af si elle satisfait la
condition de frontière et si tout couple de strates (Xa, Xp) tel que Ton ait
Xp c Xa satisfait la condition af.

Remarque. Cette définition est équivalente à celle de Thom dans [45] (Voir
[13]).

On dit que le morphisme/:^—&gt;S peut être stratifié avec la condition af s&apos;il

existe une stratification de / satisfaisant af.
La proposition suivante est une version conormale d&apos;un résultat de Hironaka

([10] §5, Theorem 2), et est exprimée dans le langage des variétés polaires
relatives par Sabbah dans [33], Th. 1.3.1.
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PROPOSITION 1.3.5. a) Dans la situation de la Proposition 1.2.6, si l&apos;espace

conormal relatif T*(X) d&apos;un sous-espace analytique X de Z muni de f=p\X
est p-Lagrangien, pour tout point s de S, toute stratification de la fibre X(s)
satisfaisant la condition a) de Whitney et compatible avec la q~1(s)-filtation (au
sens de 1.3.1.1) de la fibre X(s) a la propriété que la partie lisse de (X-X(s))
satisfait la condition af le long de chaque strate.

b) Inversementf si une telle stratification existe pour une fibre X(s), les

conditions équivalentes de la Proposition 1.2.6 sont satisfaites par l&apos;espace

conormal T*X au voisinage de q~l(s).

DÉMONSTRATION. Montrons que la ^&quot;1(5)-filtration (F,) a la propriété
annoncée. Nous allons travailler dans l&apos;espace conormal relatif projectivisé;
posons Kf Kp | Cf(X), q~p°Kf et soit {Xa} une stratification de X(s)
satisfaisant la condition a) de Whitney et compatible avec les Fr Soit Xaa
Ft - Ft+X une strate; nous devons montrer l&apos;inclusion Kf^X^) &lt;= C(Xa), où C(Xa)
est l&apos;espace conormal de Xa dans Z(s). Or, les composantes irréductibles A; de

q~l(s) que rencontre Kjl(Xa) ont la propriété que leur image, qui est

irréductible, contient une strate Xp dense satisfaisant la condition a) le long de

Xai ce qui donne Kj\Xa) HA, a C(Xa), d&apos;où finalement l&apos;inclusion Kf1(Xa) &lt;=

C(Xa) qu&apos;il fallait démontrer.
Prouvons b): S&apos;il existe une stratification de X(s) le long des strates de

laquelle X satisfait af&gt; les inclusions Kjl(Xa) c C(Xa) impliquent que q~x(s) est

contenu dans une réunion finie de variétés Lagrangiennes de dimension Nt donc
est de dimension N. ¦

COROLLAIRE 1.3.5.1 (Hironaka [10], voir aussi [8]). Dans la situation de la

Proposition 1.3.5, si S est une courbe non-singulière, il existe une stratification de

X par des strates sur lesquelles f est de rang constant et telle que pour tout couple de

strates (Xa, Xp) tel que Vimage de Xp soit un point, la condition af soit satisfaite.

OBSERVATION 1.3.5.2. Soient f:X^S un morphisme analytique
complexe comme en 1.3.4, où 5 est une courbe non-singulière, F et T deux

sous-espaces analytiques de Z à fermeture et frontière analytiques, tels que f(F)
soit un point, que l&apos;on ait l&apos;inclusion F cz T et que / | T satisfasse les conditions de

1.2.4.1, à savoir que / | T ait toutes ses fibres de dimension pure et qu&apos;il existe

dans T un ouvert analytique dense To sur lequel / j T soit lisse. Supposons que
l&apos;on ait l&apos;inclusion Cf]f(f) (1 jï~\F) cz Cf[j(F). Pour toute stratification (TT) de F
satisfaisant la condition a), tout couple de strates (r, TT) satisfait la condition af.

En effet, on a les inclusions: Cflj(T)_njt-\Tt)c:Cf]j(F)njï;\Tr) d&apos;après

l&apos;hypothèse, et Cflj(F) H n~\Tx) c Cf^{Jx) H n-\Tt) puisque l&apos;image de F est

un point et que la stratification (Tx) de F satisfait la condition a).
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DÉFINITION 1.3.6. Si un couple (T, F) vérifie les hypothèses de 1.3.5.2,
nous dirons encore qu&apos;il satisfait af.

Par analogie avec les conditions de Whitney strictes introduites par Hironaka
([11]), on peut introduire une version stricte de la condition af, qui est une
généralisation de la condition c) de ([43], 2.5 et [39] §2) comme il est expliqué
dans l&apos;appendice de [44] (voir aussi [8], 1.1):

DÉFINITION 1.3.7. Soient /:(Z, 0)-*(S, 0) un morphisme d&apos;espaces

analytiques complexes réduits, dont la restriction à un ouvert analytique dense Zq
de Z est lisse à fibres de dimension pure d, et soit Y un sous-espace analytique
fermé non singulier de Z tel que / | Y soit une submersion sur un sous-espace
analytique fermé non-singulier de S. Soit Z aS xCN un plongement local tel que

/ soit induit par la première projection. Nous dirons que le couple de strates
(Zq, Y) satisfait la condition wf en un point 0 de Y s&apos;il existe un voisinage U de 0

dans Z et une constante C tels que l&apos;on ait pour tout y e U H Y et tout z e U D Zq

l&apos;inégalité:

dist (TY(fiy))&gt;y, Tzifi2)U) ^ C dist (z, Y)

où la première distance est la distance angulaire dans la grassmanienne (voir [11],
§1, ou [41], Chap. 3, §2, ou [8], §1) et la seconde est la distance pour la métrique
induite sur S x CN par un plongement local S c C.

Cette condition ne dépend pas des plongements (voir [8]) et l&apos;on peut en

particulier supposer que Y est plongé linéairement dans Cr x CN.

Cette condition peut être traduite en une condition algébrique sur l&apos;espace

conormal relatif:

PROPOSITION 1.3.8. Reprenons la situation de 1.3.7 et notons Cf(Z)&lt;z
S xCN x p**1 l&apos;espace conormal relatif. Soient Zq un ouvert analytique dense de

Z sur lequel f est lisse et 0 un point de Y. Les conditions suivantes sont
équivalentes:

i) Le couple de strates (Zq, Y) satisfait la condition wf en 0.

ii) En tout point de Kf\0), Vidéal I définissant l&apos;intersection Cf(Y) fl Cf(Z) est

entier dans OCf(z) sur Vidéal J définissant Kf\Y).

Remarque. On a toujours l&apos;inclusion J al. Le couple (Zq, Y) satisfait af en 0

si et seulement si on a l&apos;égalité des racines V7 V/, et la proposition ci-dessus
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montre que (Zo, Y) satisfait wf si et seulement si on a l&apos;égalité des fermetures
intégrales / /.

DÉMONSTRATION: La question est locale sur Z et 5, et nous pouvons
supposer que S est un sous-espace fermé de C.

Choisissons des coordonnées locales wlf wr pour Cr telles que f(Y) soit
définie par wv w2 • • • ws 0, des coordonnées ylt. yt, ws+l, wr

pour F, des coordonnées ylf. yt, z,+1,... zN pour CN et enfin un système de
coordonnées homogènes (bx:-- •:bt:at+l:- • -:aN) de ll^&quot;1. L&apos;idéal définissant

Kf\Y) dans Cf(Z) est engendré par (wu h&gt;5, zf+1,. zN)OCf{Zy

Remarquons que l&apos;espace Cf(Y) n Cf(Z) est contenu dans Kfl(Y) et que dans
chacun des ouverts Uk de Cf{Z) définis par la condition ak¥^0y l&apos;idéal définissant

Cf(Y) H Cf(Z) dans Cf(Z) est engendré par (w^ ws, zt+l9 zN,

bjak, y bjak).
La distance de l&apos;espace T tangent en 0 à la fibre Y(0) à l&apos;espace tangent en z à

la fibre f~1(f(z)) est le supremum des distances de T aux hyperplans tangents en

dist (T, rZ(/(2)),2) Sup dist (T, H)

où H désigne un hyperplan de CN.

Si H e PN~* a pour coordonnées {bx : • • • : bt : a,+1 : • • • : aN), on a:

dist(r,//)= Sup f
ner-{0&gt; \ \l/2

Prouvons que i) entraîne ii): la condition i) est l&apos;existence d&apos;un voisinage W de
0 dans Z et d&apos;une constante positive C tels que, pour tout point (z, H) e Cf(Z) où
z appartient à W et H a pour coordonnées homogènes (bxi- —:bt:at+l : • • • :aN),
on ait l&apos;inégalité:

où r désigne l&apos;espace tangent en 0 à la fibre 7(0). Ceci implique que les bt sont
nuls sur Kf\Y), qui est donc contenu dans la réunion des ouverts Uk. Prenant
tous les dyt nuls sauf un, on en déduit aussitôt que tout point de KfX(W) n Uk
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possède un voisinage V dans Cf(Z) tel qu&apos;il existe une constante C telle que

pour (z, H) e Vy on ait, pour 1 ^ i ^ t:

ce qui équivaut, d&apos;après ([41], Chap. 1, 1.3) à la relation de dépendance intégrale
cherchée.

Prouvons que ii) entraine i): l&apos;hypothèse implique que les bt sont tous nuls sur

Cf(Y)nCf(Z), qui est donc contenu dans la réunion des Uk, et que sur Uk, les

fonctions bjak,. btlak définissent des éléments entiers sur l&apos;idéal

(wî9. ws, z,+1,. zN)€Cf{z) en tout point de Kj\Y) fï Uk9 donc aussi entiers
dans V D Ukf où V est un voisinage de kJx(Y) dans Cf(Z). Puisque Kyest propre,
l&apos;image de V par Kf contient un voisinage ouvert W de Y dans Z.

Si // € iP^&quot;1 a pour coordonnées (bx : • • -:b,:at+i : • • :ayv), on a:

Sup
(E IM2 + E KI2)1/2/ (E N2 + E KI2)1/2

D&apos;après ([41], Chap. 1.3), la dépendance intégrale implique que pour tout
point (z, H) de V, il existe un voisinage V(z, H) de (z, //) contenu dans un des

Uk et une constante C(z, H)^0 tels que, pour 1 ^ i ^ t:

C(z, H) Sup (K|, • • • \wa\,

Soit K un voisinage compact de 0 dans Z contenu dans W; d&apos;après la propreté
de Kf, le compact Kfl(K) est recouvert par un nombre fini Vu Vm de

voisinages de la forme V(z, H) auxquels sont attachés des constantes

Ci,..., Cm. On pose C t Sup C,. Si z est un point de Kf pour tout hyperplan H
tangent â la fibre f~l(f(z))&gt; on a donc dist (7, H)^C dist&apos; (z, Y), où la distance
dist&apos; (z, Y) Sup (K|,. K|, |z,+1|,.. |z/v|) est équivalente à la distance
induite par la métrique de Cr x CN. ¦

Remarque 1.3.9. Rappelons que dans le cas où 5 est un point, il est prouvé
dans ([41], Chap. 5) que le couple de strates (X0, Y) satisfait les conditions a) et

b) de Whitney en un point 0 € y si et seulement si il satisfait la condition w) en 0,

donc au voisinage de 0.
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1.4. Modification de Nash

Soit f:X^&gt;S un morphisme satisfaisant les hypothèses de 1.2.4.1. Il existe
donc un ouvert dense Xo de X sur lequel le module Q} des différentielles relatives
est localement libre. Supposons que son rang soit constant sur cet ouvert, donc
égal à d dinif X. Soit g : G -&gt; X la grassmanienne des quotients localement libres
de rang d de Q} (Voir [4]). Le ^-module localement libre Q} \ Xo détermine
une section o de g au-dessus de Xo. D&apos;après un théorème de Remmert ([32]),
l&apos;adhérence dans G de l&apos;image de o est un sous-espace analytique fermé de G.

DÉFINITION 1.4.1 (Voir [39], [10], [40]). On appelle modification de Nash
de X relative à / la restriction vf de g à l&apos;adhérence Nf(X) de l&apos;image de o
dans G.

L&apos;image de la section o est l&apos;ouvert dense vfl(X0) de Nf(X) et le morphisme

Vf induit un isomorphisme analytique de vJl{X^) sur Xo. Ce morphisme est

propre puisque g l&apos;est; c&apos;est donc une modification de X.
1.4.2. Supposons maintenant X plongé dans 5 x CN, ce qui est toujours

possible localement. Considérons le morphisme yf de Xo dans la Grassmanienne

G(N, d) des d-plans de CN qui à x e Xo associe la direction de l&apos;espace tangent en

x à la fibre de /passant par jc. L&apos;adhérence dans X x G(N, d) du graphe de yf est

un sous-espace analytique delx G(N, d) d&apos;après le théorème de Remmert déjà
invoqué. Muni de la projection sur X induite par la première projection du

produit X x G(N, d), il est Z-isomorphe à Nf (X). On peut donc identifier Nf(X)
à l&apos;espace analytique formé des couples (x, T) e X x G(N, d) où x est un point de

X et T une direction limite en x d&apos;espaces tangents aux fibres de / en des points
non-singuliers.

Dans ce cas, on notera encore yf le morphisme Nf(X)-^&gt; G(Nf d) induit par la
seconde projection, et on l&apos;appellera morphisme de Gauss relatif.

OBSERVATION. On sait (voir [7]) que la bonne position par rapport aux

sous-espaces linéaires de PN~i de la famille des fibres du morphisme conormal
relatif au-dessus d&apos;un sous-espace Y de X n&apos;implique pas celle de la famille des

fibres de la modification de Nash relative par rapport aux variétés de Schubert de

la Grassmanienne, mais la variété l**/1^)! des limites en x d&apos;hyperplans tangent
aux fibres de / détermine la variété jv/^jc)! des limites en x d&apos;espaces tangents
aux fibres de /, et inversement; en effet, l&apos;isomorphisme analytique naturel de la

grassmanienne ô des (N - d - l)-plans de iî^&quot;1 sur la grassmanienne G des

(d-l)-plans de PN~l identifie l&apos;espace des espaces projectifs pN~d~l contenus
dans Kfl(x) avec la fibre Iv/^x)! de la modification de Nash.
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1.5. Variétés polaires

Dans [22], on a introduit les variétés polaires locales et dans [40] et [41] les
variétés polaires locales relatives. Pour la commodité du lecteur, nous rappelons
les principaux faits les concernant, et renvoyons à loc. cit. pour les

démonstrations.
1.5.1. Soit f:X-+S un morphisme satisfaisant les hypothèses de 1.2.4.1 et

1.3.2. Soient 3) {0 DN a DN^ c • • • c Do C*} un drapeau de sous-espaces
vectoriels de C* et B (a1&gt; ad) une suite d&apos;entiers. Considérons le sous-
ensemble a,(®) {Fe G(N, d)/dim(Tn/)«,+,,_,)s*î}. C&apos;est la variété de Schubert

associée à a et 2. Par un argument de transversalité (cf. [41], Chap. 4, Prop.
2), on prouve que pour tout a, il existe un ouvert de Zariski dense Um de l&apos;espace

des drapeaux de C^ tel que pour 2) e l/a, l&apos;espace yT\°JL®)) n vf1(XQ) soit un
ouvert dense de \yf\am(2))\ et que ce dernier soit vide ou purement de

codimension S at dans Nf(X).
Dans l&apos;étude des espaces conormaux n&apos;intervient que le cas où a a*

(1,1,..., 1, 0,..., 0) avec k fois 1.

DÉFINITION 1.5.2. On appelle variété polaire locale relative associée à a et
3) le sous-ensemble analytique complexe de X image réduite par vf de

Yfl(au(3))). Dans le cas où a a*, on note cet ensemble analytique Pk(f; 3)) et

comme il ne dépend que de Dd-k+lf on le note aussi Pk(f; Dd^k+1).

1.5.3. Dans ([41], Chap. 4, §3, th. 3.1), il est prouvé qu&apos;il existe un ouvert de

Zariski dense Uk c Umk de la grassmanienne des sous-espaces de codimension

d-fc + 1 tel la multiplicité en x de Pk(f;Dd^k+i) soit indépendante de

£)&lt;*_*+! e Uk, et ne dépende que du type analytique en x du morphisme /.
Par abus de langage, nous parlerons souvent de &quot;la&quot; variété polaire relative

pour signifier une variété polaire relative assez générale, i.e., associée à un
Dd-.k+1 assez général.

Si l&apos;on considère la projectionp:CN-+ Crf~~*+1 de noyau Dd.k+X assez général,
et la projection n:Sx CN-*S x C*~*+1 qui s&apos;en déduit, l&apos;adhérence dans X de
l&apos;ensemble des points critiques de la restriction de n à Xo coïncide avec la variété

polaire relative associée à Dd-.k+x.
1.5.4. Dans le cas où S est un point, les variétés polaires relatives sont

appelées variétés polaires locales (absolues), et notées Pk(X, x;Dd^k+1) ou
Pk(X; Dd^k+i). Pour désigner une variété polaire assez générale, on écrira

Pk{X, x) ou même seulement Pk.

On peut penser à Pk comme adhérence dans X de l&apos;espace critique de la
restriction à X° d&apos;une projection linéaire assez générale p:CN-+Cd~k*1; on
écrira donc aussi la variété polaire correspondante Pk(X;p).
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D&apos;après ([22], 4.1.8), le morphisme du cône tangent CPkt0 dans Cd~k+l est fini,
donc, par spécialisation sur le cône tangent et le théorème de préparation de

Weierstrass, le morphisme de Pk dans Cd~k+l est fini. Si la variété polaire Pk n&apos;est

pas vide, son image dans Cd~k+1 par la projection p qui sert à la définir est une
hypersurface réduite que nous appellerons image polaire de dimension d — k de

X. Si la variété polaire est vide, nous dirons que l&apos;image polaire correspondante
est vide.

L&apos;image polaire est appelée dirimant dans [8].

1.5.5. Variétés polaires et espace conormal

Replaçons nous dans la situation de 1.5.1, et soit Dd-k+l un sous-espace
vectoriel de CN de codimension d - k + 1. Notons Ld~k c PN~l le sous-espace
projectif des hyperplans de CN qui contiennent Dd_k+1. On peut caractériser les

variétés polaires de la façon suivante (cf. [41]) Chap. 4, 4.1.1 ou [8] 3.2.l(c)):
1.5.5.1. Si Dd_k+X est assez général, l&apos;image réduite par le morphisme

conormal relatif Kf de l&apos;image inverse de Ld~k par le morphisme kf (défini au iV°

1.2.4.2) est égale à la variété polaire Pk(f; Dd^k+1):

Pour cette raison, nous noterons parfois la variété polaire de X associé à p
sous la forme Pl(Î)&gt; °u même simplement PL, pour indiquer sa dépendance par
rapport au sous-espace L Ld~k c p&gt;N~l des hyperplans contenant Kerp.

PROPOSITION 1.5.5.2. Pour tout k,0^k^d, le morphisme

est une modification pourvu que Dd-k+x soit assez général.

Preuve. Posons PL Pk(f; ZV-*+i), et notons kL:Cf(PL)-^PN-{ le

morphisme associé à la construction de l&apos;espace conormal de PL\ l&apos;ensemble des

points z de P°LDX° où TPdf{z))&gt;z + Dd-k+1 n&apos;est pas un hyperplan est contenu
dans une variété polaire relative qui est l&apos;image par la modification de Nash

relative vf de l&apos;image inverse par yf d&apos;une variété de Schubert de la Grassmani-

enne qui est rare dans celle qui définit PL. Comme dans Loc. cit., on utilise le

théorème de transversalité de Kleiman pour montrer que pour une projection
assez générale, cette variété polaire est rare dans PL. En tout point z de cet

ouvert de P°LnX° dense dans PL (voir [41], Chap. 4, 1.3.2) où 7V/(/(2))&gt;2 +
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£&gt;rf_*+i est un hyperplan de CN, cet hyperplan coïncide avec

et est l&apos;unique hyperplan tangent à X(f(z)) en z contenant Dd^k+l\ cela définit
en ce point la section cherchée de Kf \ Xfl(Ld~k), dont l&apos;image est contenue dans

XZl(Ld~k), ce qui achève la démonstration. ¦
1.6. Spécialisation sur le cône normal

Etant donnés un espace analytique X et un sous-espace analytique fermé Y de

X défini par l&apos;idéal cohérent / de 6X, le cône normal de X le long de Y est par
définition l&apos;espace CXY Specan (grj€x) où gTj€x désigne la Cy-algèbre graduée
de présentation finit ®k^oJkttk*i (Voir [11]). Le cône normal CXY est donc

naturellement muni d&apos;une projection analytique sur Y, dont les fibres sont des

cônes, et contient 7 comme &quot;section nulle&quot;.

Si Y est non-singulier en y, on peut choisir au voisinage de y un plongement
de X dans un ouvert U de CN et une rétraction analytique complexe r\U-*Y.
Ensemblistement, \CXtY\ peut être identifié au voisinage de y avec le cône des

limites de sécantes xr(x) quand x tend vers un point de Y voisin de y (Voir [11]).
La construction de la spécialisation sur le cône normal est essentiellement due

à Gerstenhaber ([3]) dans le cas local. Elle a été redécouverte plusieurs fois (voir
[37], [1]). Nous suivons ici la présentation de [37], auquel nous renvoyons pour
des démonstrations détaillées.

Soient 0 un anneau et:

une filtration décroissante telle que $f, # ^,. Posons $?, 6 pour i ^ 0.

1.6.1. Considérons l&apos;anneau gradué (Algèbre de Rees généralisée) R^
©&lt;ez %ttV~l &lt;= G[vy v~1]. Dans d&apos;assez nombreux cas, et en particulier quand Û est

une algèbre analytique et 3if, Jl pour un idéal / de €, la 0-algèbre R^ est de

présentation finie. Si nous nous restreignons au cas où Û est une algèbre
analytique et donc contient C, le morphisme composé C[t&gt;]—»R^ déduit des

inclusions C[v] c Û[v] c R^ est plat. Lorsque R^ est une (9-algèbre de

présentation finie, on peut construire l&apos;espace analytique X Specan (R#) et un

morphisme plat/:X-*C, qui est de plus muni d&apos;une section a:C-*X qui pique
le point marqué dans chaque fibre. On vérifie facilement que pour tout v =£0, le

germe en a(v) de la fibre f~l(v) est isomorphe au germe {X, x) correspondant à

C, tandis que/&quot;&apos;(()) est isomorphe à l&apos;analytisé du cône correspondant au gradué

gr^O associé à la filtration M. Dans le cas où 5if est une filtration /-adique, ce

morphisme réalise donc une spécialisation de {X, x) sur le germe en x du cône

normal dans X du sous-espace défini par /. Dans ce cas, nous noterons O3
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l&apos;anneau associé à 0 et à la filtration /-adique J. Cette construction naturelle se

globalise pour donner une spécialisation du couple (X, Y) d&apos;un espace analytique
X et d&apos;un sous-espace analytique fermé Y sur le couple (CXY, Y) formé du cône
normal CXY de Y dans X et de son sommet Y.

1.6.2. Dans le cas d&apos;une filtration /-adique, on peut donner une interprétation
géométrique (Voir [23], 1.4.3) de cette construction comme ceci: notons
Z-+XxC l&apos;éclatement dans XxCdu sous-espace Y x {0} défini dans XxC par
l&apos;idéal (/, v) de 6Z engendré par / et une coordonnée v sur C s&apos;annulant en 0. On
vérifie que le faisceau de C^-algèbres R^ obtenu en faisceautisant la construction
ci-dessus s&apos;identifie au faisceau des fonctions analytiques, algébriques en v, sur
l&apos;ouvert X de Z où l&apos;idéal (/, v).€z du diviseur exceptionnel est engendré par v.
Le morphisme / s&apos;identifie alors au morphisme composé XcZ—» Jf x C—» C.

1.6.3. Dans le cas local et lorsque $f est la filtration par les puissances d&apos;un

idéal J de 0 définissant un germe de sous-espace non-singulier Y de X en x, l&apos;on

peut aussi construire X comme ceci:

Choisissons un plongement local (X, x) c (CN, 0), et soit I l&apos;image réciproque
de / par la surjection correspondante CCNt0—&gt; 6. Pour chaque élément g e 6N

0cn&gt;0 posons v(g) sup {nig eln} et notons in7(g) la forme initiale de g dans

gr7 0N ©ia.0/7/l+1, c&apos;est-à dire l&apos;image de g dans Ivte)/r(g)+\
Choisissons des équations locales (gi, g*) pour Xdans CN telles que leurs

formes initiales in7 g, engendrent l&apos;idéal in7 / de gr7 ON engendré par les formes
initiales des éléments de /, c&apos;est-à-dire l&apos;idéal définissant le cône normal Ce», y de
C&quot; le long de Y.

Posons mt v(g,), choisissons des coordonnées locales zlf.. zt,

z,+1,. zN de CN telles que Y soit défini par l&apos;idéal / (z,+i,. zn)6cn0, et
soit X le sous-espace de CN x C défini au voisinage de {0} x C par les équations
v~migi(z\&gt; - • • &gt; zt, vzt+i,. vzN) 0, l^i^k. On notera / la restriction à X
de la projection sur C. Pour vJ=Q, les fibres sont toutes isomorphes à X par
l&apos;homothétie de rapport u, et pour v 0, on retrouve bien les équations du cône

normal de X le long de Y.

Vérifions l&apos;assertion de 1.6.2 dans ce cadre local; d&apos;après le Lemme 6 du

Chapitre 3, §2 de [9], qui est valide sans supposer la non-singularité du centre
d&apos;éclatement, les équations v~mtgt{zly..., zt, vzt+ï,..., vzN) 0, 1 ^ i ^ k sont

précisément les équations définissant, dans l&apos;ouvert de l&apos;éclaté de C^ x C le long
de Y x {0} où v engendre l&apos;idéal engendré par (/, u), le transformé strict de

XxC.

DÉFINITION 1.6.4. On appellera / : X-» C la spécialisation de X sur le cône

normal Cx,y en x. Dans le cas où Y {x}, et donc / m, idéal maximal de Ox,x&gt;

on appellera/la spécialisation de X sur son cône tangent CXx en x.
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La Proposition (1.3.8) a comme corollaire un avatar du Th. 3.1 de [28]:

PROPOSITION 1.6.5. Soient X un espace analytique complexe purement de

dimension d, Y un sous-espace non-singulier de X, et 0 un point de Y. Soit

f : X—» C la déformation de X sur le cône normal Cx,y et X° la partie deX—f~l(0)
lisse au-dessus de C. Les conditions suivantes sont équivalentes:

i) Le couple de strates (X°y Y) satisfait les conditions a) et b) de Whitney (ou,
ce qui est équivalent, la condition w)) en 0.

ii) Le couple de strates (X°, Y x C) satisfait la condition wf en (0, 0).

Prouvons i)=&gt;ii): Notons h l&apos;isomorphisme X°-*X°xC* qui au point de

coordonnées (yl9..., yt, z,+1,... zNf v) associe le point de coordonnées

(yu---,y» vzt+1,...,vzN, v). Si (&amp;!:•••:&amp;,:«,+!:•••:&lt;!*) est un hyperplan
tangent à la fibre de / en z, l&apos;hyperplan (vbx : • • • : vbt : at+1 : • • • : aN) est tangent à

X° x {v} en h(z), et la distance de h(z) à Y x {u} est égale à \v\ dist (z, Y x C)
\v\ dist (z, Y x {v}). Il suffit maintenant de regarder l&apos;expression de la distance

angulaire donnée dans la preuve de 1.3.8.

Prouvons ii)=^&gt;i): D&apos;après 1.3.8, la condition ii) implique que les idéaux
définissant Cf(Y x C) H C&gt;(X) et Kj\Y x C) dans Cf(X) ont la même fermeture
intégrale en tout point de Kf\0, 0), donc en tout point de l&apos;image inverse par *y
d&apos;un voisinage de (0,0) dans X. Par restriction au-dessus de (0, v), pour v
assez petit, et application en sens inverse de 1.3.8, on obtient la condition /).

§2. Cônes exceptionnels

2. L Soient X un espace analytique complexe réduit purement de dimension
d, Y un sous-espace analytique fermé de X, x un point non-singulier de Y, et
X^&gt;W cUcz CN un plongement local en jc, où W est un voisinage ouvert de x
dans X plongé comme fermé dans un ouvert U de CN. Choisissons une rétraction
(que nous supposerons analytique ici et dans la suite) locale r:U-+Y au

voisinage de x et des coordonnées locales dans r-1(0); nous avons le diagramme
normal/conormal de X le long de Y et les plongements naturels que voici, où t est

la dimension de Y et où W est abusivement noté X:

XxPN-x-&apos;xPN-1z&gt;EYC(X) -£-*

r| 1&quot; (*)

où k est le morphisme conormal projectivisé défini en 1.2.4.3, e eY l&apos;éclatement
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de Y dans X, ê êY l&apos;éclatement dans C(X) du sous-espace k~\Y), et te&apos; le
morphisme analytique dû à la propriété universelle de l&apos;éclatement. Posons
Ç K°ê e°Kf, et soit {Da} la famille finie des espaces réduits sous-jacents aux
composantes irréductibles de dimension N — 2 du diviseur Ç~l(Y), que nous
considérons comme sous-espace de yxP^^&apos;xP&quot;1, Pour chaque oc, posons
Va \K&apos;(Da)\ s Y x F&quot;&quot;1&quot;&apos; et W* \ê(Da)\ &lt;= Y x P»~l.

Remarquons que d&apos;après le Hauptidealsatz, les composantes de £~\Y) qui
sont de dimension &lt;N — 2 sont immergées et donc on a les égalités ensemblistes
\rl(Y)\ U A,, k^CY)! U v* et i*-1^)! u wa.

Observations que e 1(Y) P(CX,Y)&gt; et que |ic~1(l^)| est, par définition (cf.
1.2.4.2), l&apos;ensemble des limites en des points de Y d&apos;hyperplans tangents à X°.

Remarque. Le fait que (X°, Y) satisfasse la condition a) de Whitney au
voisinage de y e Y est équivalent à l&apos;inclusion U W^(3;)c= {y} x P&quot;&apos;1&apos;*, où
pN-i-t^pN-i désigne, ici et dans la suite, l&apos;ensemble des hyperplans de CN

passant par y et contenant TY,y. En fait lorsque Y est non-singulier au voisinage
du point considéré, nous supposerons souvent Y plongé linéairement dans CN, ce
qui permet d&apos;identifier tous les pN~1~tt

Le résultat principal de ce travail relie les Va aux conditions de Whitney pour
X° le long de Y et à la structure de l&apos;ensemble des hyperplans tangents à X aux
points de Y:

THÉORÈME 2.1.1. Soient XczCN un espace analytique réduit, YaX un
sous-espace non-singulier et x e Y. Les conditions suivantes sont équivalentes:

i) Le couple de strates (X°, Y) satisfait les conditions de Whitney en x.
ii) On a l&apos;égalité dim t,~\x) N - 2 -1, où t dim Y.

iii) Pour chaque a, la composante Da est égale à l&apos;espace conormal relatif de

son image Va cz Y x p^-1-&apos;, et toutes les fibres du morphisme Ç:Da-*Y ont la
même dimension au voisinage de x.

DÉMONSTRATION. Nous allons montrer ii)=&gt;i)=&gt;iii)=&gt;ii); L&apos;équivalence

de i) et ii) est démontré dans ([41], Chap. 5, Th. 1.2 et dans [7], Théorème 1, p.
579, voir aussi [8], Théorème 6.1), et iii)=&gt;ii) est évident. Prouvons donc

Pour cela nous montrons d&apos;abord:

LEMME. Etant donnés une décomposition locale en produit CN Y x CN~* et
un choix de coordonnées (yif..., yt, zt+l}..., zN; bt : • • • : bt:at+1 : • • • :aN) pour
C^xP»-1 adapté à cette décomposition, notons /Kp^XProj (Y)-*^&quot;1&quot;&apos; la
projection linéaire associée à ce choix. Soit L une sous-variété de CN x iP^&quot;1
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conique par rapport aux homothéties de CN&quot;f et telle que la l-forme a-
S bÊ dyt + Sfljt dzk s*annule sur tout vecteur tangent à L° et que la projection
ld(CN)Xp induise un morphisme fini L—» Lx de L sur son image Lxcz
FxC^&apos;xP&quot;1&quot;&apos;. Alors L, est conique par rapport aux homothéties de CN~&apos;

et l&apos;espace projectivisé de L, par rapport à ces homothéties, noté P(Lx)cz
Y x P&quot;&quot;1-&apos; x p&gt;N~1-&apos; est une sous-variété Y-Lagrangienne.

Preuve du lemme: D&apos;après l&apos;hypothèse il existe un ouvert dense U de Lx

au-dessus duquel le morphisme L—» Lx est étale. Soient uv (x, %t+i- * * *&apos;£/v)

un point de U et v1 un vecteur tangent à Lx en ul9 ayant pour
coordonnées (dylt. dyt, dzt+u dzN, ô,+ u ÔN). Soient w

(*, §1 : • • • : &amp; : &amp;+r. • • • : £/v) un point de L au-dessus de m, et v (dy,, dyt,

dzt+i,... dzN, ôi, ôn &lt;5,+i, ô/v) un vecteur tangent à L en w, qui se

projette sur v^ II suffit de prouver que l&apos;on a:

2

ce qui résulte de la conicité de L; en effet si v (dyu dyn dzt+u dzN&gt;

ôlt. ôt, ôt+i,. ôN) est tangent à L au point de coordonnées (ylf yt,

zt+u zN; bii* • &quot;.btiai+xi&apos; • -:aN), pour AeC*, le vecteur vA

(dyu ,dyt, Adfzl+1,..., A dz^, ô,,... ôt, ôf+1,..., ôN) est tangent au

point (yu ...,yt, Àz,+1,.. Az^; &amp;,:••• :bt:at+l : • • • .a^) de L et l&apos;on a

t+i

d&apos;où le résultat.
D&apos;après les résultats 4.4.2 à 4.4.5 de [17], et de l&apos;appendice 4 de [34], le cône

normal de C(Y) D C(X) dans C(X) est la fibre au-dessus de 0 du morphisme
composé &lt;7:C/(X)-»X-*C dont la fibre au-dessus du point veC est une
sous-variété qui est isomorphe à C(X)czCN xPN&quot;1 et Lagrangienne pour la

structure donnée par la forme différentielle a E bt dyl + £ ak dzk. Le
morphisme q satisfait l&apos;hypothèse du principe de spécialisation lagrangienne 1.2.6,

B). La forme a s&apos;annule donc sur la partie non-singulière de L |ç~1(0)|. De

plus, (loc.cit.), étant donnée une décomposition CN YxCN~f, cette fibre
réduite L est conique par rapport aux homothéties de C*&quot;&apos; puisqu&apos;elle est

contenue comme sous-cône du cône normal de YxCN~l x PN~* le long de
P

Par ailleurs on suppose que (X°, Y) satisfait les conditions de Whitney, donc
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la condition w) d&apos;après ([41], Chap. 5). D&apos;après la Proposition 1.3.8, le

morphisme de cônes normaux Ccm,c(Y)nc(x)—* Ccw^-hio est fifli d&apos;après les

propriétés de la dépendance intégrale des idéaux (voir [41], Chap. 1, §1, et [24]).
Comme (X°, Y) satisfait la condition (a) de Whitney, il en résulte que le diviseur
exceptionnel D c EYC(X) est une sous-variété de Y x p&quot;-&apos;-1 x £&gt;&quot;-&lt;-* et son
cône CC{x),k-\y) est une sous-variété de Y x CN~* x p*-&apos;-1 qui est conique par
rapport aux homothéties de CN~* et est l&apos;image de L par la projection
Y x C&quot;-&apos; x l^&quot;1-* Y x CN~&apos; x p*-&lt;-\ Le lemme ci-dessus montre alors que le
diviseur exceptionnel D c EYC(X) est une sous-variété y-Lagrangienne de

y x p&quot;-&apos;&quot;1 x p&quot;-&apos;-1. Chacune de ses composantes irréductibles met en dualité
ses images dans Y x p&quot;-&apos;&quot;1 et dans Y x pN~&lt;-\ m

Remarque. Le Théorème ci-dessus contient la version correcte de la
malheureuse Proposition 1 de la note [40].

L&apos;équivalence de i) et iii) peut être reformulée comme ceci:

COROLLAIRE 2.1.2. Le couple de strates (X°, Y) satisfait les conditions de

Whitney si, et seulement siy pour tout a les images Va et Wa de Da sont en Y-dualité

projective. Dans ce cas, \k~x(Y)\ est réunion des Y-duaux des Va. ¦
Remarque 11.2Bn. La condition a) de Whitney pour (A**, Y) équivaut

clairement au fait que le diviseur exceptionnel ensembliste |£-!(Y)|c
y x p&quot;-1-&apos; x PN~l soit en fait contenu dans YxPN-l~&apos;x p&gt;N-l-&apos;f où j»&quot;-1&quot;&apos;

est

l&apos;espace des hyperplans contenant (l&apos;espace tangent à) Y. D&apos;après ce qui précède,
si a) est vérifiée, la condition b) de Whitney équivaut à ce que ce diviseur

exceptionnel soit de plus Y-Lagrangien dans Y x p&quot;-*-&apos; x p&gt;N-l~&apos;.

Nous verrons plus bas comment l&apos;on peut calculer les Va.

Lorsque Y est un point, les conditions de Whitney sont toujours satisfaites

(Lemme de Whitney, [47], corollaire immédiat de 1.3.8). Le théorème 2.1.1

fournit donc, pour chaque xeX, une collection de sous-cônes O{Va) du cône

tangent Cx,x&gt; contenant en particulier les composantes irréductibles de \CX,X\ et
telle que:

COROLLAIRE 2.1.3. L&apos;ensemble \k~1(x)\ c PN~l des limites d&apos;hyperplans

tangents à X en un point x est la réunion des variétés projectives duales des

vaapN-\ m

Remarque. Il était connu de Zariski et Hironaka (Communications privées, et
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voir [18], th. 1.2.1) que le dual du projectivisé réduit du cône tangent est contenu
dans l&apos;ensemble des limites d&apos;hyperplans tangents. Dans le cas où X est une
surface dans C3, on retrouve la structure de ([6]) puisque les cônes O(Va) qui ne
sont pas des composantes irréductibles du cône tangent sont des droites qui
définissent les tangentes exceptionnelles de X en x.

Il est naturel d&apos;introduire la définition suivante:

DÉFINITION 2.1.4. Soient JSfczC&quot; un espace analytique réduit et Y un
sous-espace analytique fermé de X. Notons Da les composantes irréductibles de

dimension N — 2 du diviseur image inverse de Y par le morphisme EYC(X)—» Xy

et Va leurs images dans eyl{Y). Les cônes Y(Va) qui ne sont pas des composantes
irréductibles du cône normal de X de long de Y sont appelés cônes exceptionnels
de X le long de Y.

La collection des Y-variétés projectives Va contenues dans le projectivisé du
cône normal de X le long de Y (ou, par abus de langage, celle des cônes Y(Va)
contenus dans le cône normal de X le long de Y) sera appelée auréole de X le

long de F. Lorsque Y est un point je, on dira auréole de X en jc.

Remarques, 1) Parmi les Va, il y a les composantes irréductibles du

projectivisé réduit du cône normal de X le long de Y. Tous les Va étant contenus
dans ce projectivisé, ils héritent d&apos;une projection dans Y.

2) Bien que les Va puissent être définis pour tout Y, c&apos;est seulement dans le

cas où (X°, Y) satisfait les conditions de Whitney que l&apos;on sait les relier aux
limites d&apos;hyperplans tangents.

L&apos;auréole apparait aussi naturellement dans la déformation sur le cône
normal:

PROPOSITION 2.1.4.1. Gardons les notations de 2.1, supposons que (X°, Y)
satisfait les conditions de Whitney et posons q =/°Ky :C/(X)—»X—»C. Les cônes

Y(Va) sont les images ensemblistes par *y dans f~1(0) Cx,Y des composantes
irréductibles de la fibre #~*(()).

D&apos;après la proposition 4.2.2 de [17] ou l&apos;appendice 4 de [34], le cône normal
de C(Y) H C(X) dans C(X) est la fibre au-dessus de 0 du morphisme composé
&lt;?:C/(X)--»X-»C. D&apos;après la Proposition 1.3.8, puisque (X°, Y) satisfait les

conditions de Whitney par hypothèse, l&apos;idéal définissant k~~1(Y) dans C(X) a

même clôture intégrale que l&apos;idéal définissant C(Y) n C(X). Par conséquent le

morphisme naturel CC(jr),c(i^nc(;o&apos;&quot;&apos;*£c(;o.*~l(*r) des cônes normaux dû à

l&apos;inclusion des idéaux est un morphisme fini et les composantes irréductibles de

ces deux cônes ont donc les mêmes images dans Cx,y&gt; Par construction, le
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projectivisé de CC(x),k-\y) est la réunion des composants Da de 2.1, d&apos;où le
résultat. ¦

Par ailleurs, l&apos;auréole de X le long de y a la propriété de minimalité suivante:

PROPOSITION 2.1.4.2. Si (X°, Y) satisfait les conditions de Whitney, une
stratification Y-conique (Tx) de \Cx,y\ qui satisfait la condition a) de Whitney a la
propriété que (X°, 7^) satisfait af pour tout x si et seulement si elle est compatible
avec les Y(Va).

Montrons que si la stratification est compatible avec les Y(Va), les hypothèses
de la proposition 1.3.5 sont satisfaites, avec la déformation /:X—»C de X sur le

cône normal Cx,y&gt; On plonge X dans C x CN et on notep la projection de C x G*7

sur C. Le morphisme / est la restriction de p à X. On reprend les notations de
1.3.4 avec np:PT*(Cx CN/C)-&gt;C x C&quot;. D&apos;après la remarque d) suivant la

proposition 1.2.6 le sous-espace Cf(X) de PT*(CxCN/C) est p-Lagrangien.
Donc, avec q=f°Kf, la fibre Itf&quot;1^)! est Lagrangienne. D&apos;après la Proposition
2.1.4.1. Si la stratification (Tx) de X(0) satisfait la propriété (a) de Whitney et est

compatible avec les Y-cones Y(V^), la proposition 1.3.5 a) montre que (X°, 7^)
satisfait af pour tout x.

Réciproquement, soit {Tx} une stratification de \Cx,y\ satisfaisant a) et telle

que (X°, Tx) satisfasse af pour tout r. Fixons oc. Il existe un x pour lequel
Tx n Y(V^) soit ouvert et dense dans Y(Va). Soit z un point de l&apos;intersection qui
est un point non-singulier de Y(V^) et done de l&apos;espace réduit |7i n Y(V^)|.
Supposons que Tx af Y(Va). Dans ce cas la dimension de Tx est strictement plus
grande que celle de Y(Va). Comme (X°, Y) satisfait les conditions de Whitney,
d&apos;après la proposition 2.1.4.1 et le théorème 2.1.1, tout hyperplan tangent à

Y(V^) en z est limite d&apos;hyperplans tangents aux fibres de / et contient donc une
direction limite T en z d&apos;espaces tangents aux fibres de /. Comme le plan tangent
à TT en z est supposé strictement plus grand que celui de Y(Ya) en z, il existe un
hyperplan tangent à Y(V^) qui n&apos;est pas tangent à Tx, c&apos;est-à-dire ne contient
aucune direction limite T d&apos;espaces tangents aux fibres de / contenue dans
l&apos;espace tangent à Tx. Ceci contredit la condition af, donc nécessairement Tx est

contenu dans Y(Vrar). Ainsi chaque Y(Va) contient une strate dense, notée Ta. Si

on a Tx H % Tx H Y(Va) *0, d&apos;après la condition de frontière TxaTa= Y(Va)y
ce qui montre que {Tx} est compatible avec l&apos;auréole de X le long de Y. ¦

Montrons maintenant comment le comportement de l&apos;auréole de X le long de

Y décide des conditions de Whitney:
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PROPOSITION 2.1.5. Soient X un sous-espace analytique fermé réduit d&apos;un

ouvert de CN et Y un sous-espace non-singulier connexe de X. Le couple {X°, Y)
satisfait les conditions de Whitney si et seulement si, pour chaque oc, toutes les

fibres de la la projection Va-*Y ont la même dimension.

Démonstration. Supposons les conditions de Whitney satisfaites. On se place
en un point y de Y; on peut choisir des coordonnées locales en y de telle façon

que Y soit plongé linéairement dans CN et que l&apos;on ait une rétraction locale
linéaire de CN sur Y en y, c&apos;est à dire localement en y une structure de produit
C&quot; C&quot;-&apos;xC, où f dimY, et Y={0}xCr. Soit H un hyperplan de CN

général parmi ceux qui contiennent Y. Utilisant la rétraction, écrivons le

ff i/oxy, où Ho est un hyperplan de CN~&apos;. D&apos;après ([41], Chap. 5, 1.3),
(\X n H|°, y) satisfait encore les conditions de Whitney et par ailleurs d&apos;après

(Loc. cit., Chap. 5, preuve de 1.2, p. 458)) nous avons un morphisme fini du
transformé strict \Xr\H\&apos;~ par Ç de XH H sur EYC(\XnH\) qui a la propriété
que l&apos;image de Dan\XnH\&apos;~ dans EYC(\XDH\) a pour image dans

EY(\XnH\) l&apos;intersection Va H (Y x P(/f&lt;&gt;)). Si toutes les fibres de Va-+Y ne

sont pas de la même dimension, on se ramène par sections successives au cas où
la fibre générale est vide, ce qui est contredit par le fait que le morphisme de

chaque Da sur Y est surjectif d&apos;après la condition ii) du théorème 2.1.1.
Inversement, supposons que pour chaque oc, toutes les fibres du morphisme

Va—*Y aient la même dimension; ceci implique que pour chaque a, le

morphisme Da-*Y est surjectif. Comme Da est irréductible, l&apos;image réciproque
d&apos;un ouvert analytique dense de Y (par exemple celui où (X{\ Y) satisfait les

conditions de Whitney) est dense dans Da. Comme dans ([41], Chap. 3, 2.3.1) on

remarque que les fonctions &quot;sinus de l&apos;angle d&apos;un hyperplan tangent à A&quot; en

x e X° et de TYy&quot; et &quot;sinus de l&apos;angle d&apos;un hyperplan tangent à X en x e X{) et de

la sécante xr(x)&quot; s&apos;étendent en des fonctions continues sur EYC(X). Les

conditions de Whitney étant satisfaites en tout point d&apos;un ouvert analytique dense

de Y (voir [46], [10], ou [41]), ces fonctions s&apos;annulent en tout point d&apos;un ouvert
dense de chaque Da, donc sur Da tout entier, ce qui implique que les conditions
de Whitney sont satisfaites sur tout Y. ¦

2.2. Lorsque (X{\ Y) satisfait les conditions de Whitney, la Proposition
suivante permet de ramener le calcul de l&apos;auréole, donc celui des limites
d&apos;espaces tangents à Xi} le long de Y, au calcul des cônes normaux le long de Y
des variétés polaires de X, pour lequel on dispose de méthodes algébriques
effectives.

Rappelons d&apos;abord qu&apos;il a été prouvé dans ([41], Chap. 5, §2), que si (X{\ Y)
satisfait les conditions de Whitney et si l&apos;on se donne une rétraction locale
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r\X-*Y, les variétés polaires de X relatives à r coincident avec les variétés
polaires absolues de X.

PROPOSITION 2.2.1. Soient X un espace analytique réduit, Y un sous-espace
non-singulier de X tel que (X°, Y) satisfasse les conditions de Whitney en xeY.
Choisissons un plongement local de (X, x) dans (CN, 0), une rétraction locale

r : CN-&gt; Y, et identifions CN avec Y x CN~* et avec son cône normal le long de Y.
Pour chaque entier, k, O^k^d — l, considérons les projections linéaires

p:YxCN~&apos;-*YxCd~k~t&apos;¥l qui induisent Videntité sur Y et s&apos;écrivent donc

p Idy x p0.
a) Si p0 est assez générale, pour tout y e Y, le noyau Kerp0 est transverse dans

CN&quot;f à la fibre en y du cône normal le long de Y de la variété polaire Pk(X\p).
b) Le cône normal le long de Y de la variété polaire Pk(X\p) associée à une

projection linéaire p:CN—»C*~*+1 comme ci-dessus est la réunion des Y(Va) de
dimension d — k et des variétés polaires relatives de codimension j (pour la
projection sur Y) des cônes Y(VP) de dimension d — k-\-j définies par la même

projection p, pour j 2* 1. (Ces variétés polaires sont bien définies à cause du a)).

DÉMONSTRATION. Puisque d&apos;après ([41], Chap. 5, Th. 1.2, voir aussi

[7]), les variétés polaires Pk(X;p) sont équimultiples le long de Y, d&apos;après

([25], §5), l&apos;assertion a) équivaut à la transversalité de Kerp et du cône tangent en

y à la variété polaire Pk(X\p)\ cette dernière assertion est prouvée dans [22].
Prouvons b): Le Y-Projectivisé P(Ck) du cône normal de Pk(X;p) le long de

Y, est l&apos;intersection avec eyl(Y) du transformé strict de Pk par ey. D&apos;après les

résultats généraux de transversalité ([41], 4.2.5, 4.3.1 et 5.2), c&apos;est aussi l&apos;image

par k&apos; de l&apos;intersection de la réunion des Da avec l&apos;image réciproque par êY de

X~l(Ld~~k), où Ld~k est l&apos;espace projectif des hyperplans de CN contenant Kerp.
Nous avonc donc l&apos;égalité:

|P(Q)| Ua \k&apos;(D« H (Y x P&quot;-1&quot;&apos; x L£-*-&lt;))|,

où

Lg-*-&apos; Ld~k n pN-i-t&lt;-pN-i-tm

Remarquons que cette dernière intersection est transversale parce que Kerp
est transverse à Y.

La transversalité de Kerp0 et des Va(y) implique la transversalité des
intersections LoH Wa(y) et de cela résulte que si dim Va^d — k — l, l&apos;image de

A* H (y x p&quot;-1&quot;&apos; x Lo&quot;*&quot;&apos;) est bien une variété polaire relative de Va, égale à Va
si dim Va-d-k-l. D&apos;après la Proposition 2.1.5, il suffit de raisonner en un
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point général de Y, et par une section transversale ([41], Chap. 3, 4.2.2) on se

ramène au cas où Y est un point.
Puisque Ld~k est supposé assez général, l&apos;intersection de Da avec P^&quot;1 x Ld~k

est transversale, et est donc vide ou de dimension d — k — 1. Considérons les oc

pour lesquels Kf(Dan(PN~1x Ld&quot;k)) est vide ou de dimension d~k-l. Si
l&apos;image n&apos;est pas vide, elle est contenue dans Va et l&apos;on a donc dim Va ^
d - k - 1. Si elle est vide, Da D (PN~l x Ld~~k) est vide donc la fibre de Da au
dessus d&apos;un point de Va est de dimension &lt;N-1 — d + Jt N — 2-(d-fc-l)
d&apos;après le Théorème de Bézout, ce qui implique dim Va ^ d - k -1.
Inversement, supposons avoir dim Va ^ d - k - 1; comme le morphisme k&apos; \ Da
fait de Da le conormal de Va dans P&quot;~\ l&apos;image Kr(Da H (PN-1 x Ld~k)) est par
définition une variété polaire de dimension d-k~l de Va, donc est vide ou de

dimension d-k-l (Voir [22]).

Remarques 2.2.1.1. 1) Après la Proposition 2.2.1, on peut retrouver une
partie de la Proposition 2.1.5, en utilisant le fait que d&apos;après ([41], Chap. 5, Th.
1.2), si (X°, Y) satisfait les conditions de Whitney, les variétés polaires de X sont

équimultiples le long de 7, et que ceci implique d&apos;après [11] ou ([24], §2)

l&apos;équidimensionalité des fibres du cône normal de Y dans les Pu(X), dont les

Y(V^) sont des composantes irréductibles.
2) De ce que nous venons de voir et des résultats de ([41], Chap. 5), il résulte

que les morphismes V*-» Y et Da-* Y sont à fibres de dimension constante dès

lors qu&apos;ils sont surjectifs: il semble que quelque chose s&apos;oppose à ce qu&apos;ils

présentent de l&apos;éclatement.

3) Par contre, les morphismes Da-*Va peuvent présenter de l&apos;éclatement.

Néanmoins, la dimension des fibres générales du morphisme induit Da(y)-^
V«(y) ne dépend pas de y quand (X°, Y) satisfait la condition a) de Whitney.

DEFINITION 2.2.2. Soient Y(Va) un cône exceptionnel pour X le long de Y
et H un hyperplan de CN tangent à Y(V^). Nous dirons que H est un hyperplan
exceptionnel associé à Va s&apos;il n&apos;est tangent à aucun des Y(V^) tels que Va soit
contenu dans Vp.

En un point assez général d&apos;un cône exceptionnel, presque tous les

hyperplans tangents sont exceptionnels. Cette terminologie diffère légèrement de
celle de [6] et [23] où n&apos;était considéré que le cas où X est une surface et Y un
point.

La Proposition 2.2.1 montre que les cônes normaux le long de Y des variétés

polaires interviennent de façon essentielle dans la structure de l&apos;ensemble des

limites d&apos;hyperplans tangents à X aux points de Y, et que ces cônes ont des
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composantes dépendant de la projection servant à les définir, et d&apos;autres qui en
sont indépendantes, ce qui motive la définition suivante:

DÉFINITION 2.2.3. Soient YczX tels que (X°, Y) satisfasse les conditions
de Whitney. Les composantes de dimension d - k du cône normal le long de Y de
la variété polaire de dimension d - k qui sont des Y(Va) ne dépendent pas de la
projection p et sont appelées composantes fixes de ce cône normal. Les autres
varient effectivement avec la projection, comme les variétés polaires projectives
le font toujours, et sont appelées composantes mobiles.

Remarque. Il est immédiat de voir que si X est le cône O(V) sur une variété

projective V, les variétés polaires de X sont les cônes sur les variétés polaires de

V au sens projectif (Cf. [31]) et n&apos;ont aucune composante fixe à part X lui-même.

Le résultat suivant précise dans le cas absolu le Corollaire 5.6 de [8] et, joint à

la Proposition 2.2.1, nous donne la structure de l&apos;ensemble des hyperplans
tangents aux images polaires d&apos;un espace analytique X:

THÉORÈME 2.2.4. Au voisinage de xeYaXczC&quot;, si (X°fY) satisfait
les conditions de Whitney en x&gt; pour tout k&gt; O^k^d — 1, l&apos;image polaire
AkczCd~k+1 de la variété polaire Pk(X;p) correspondant à une projection
p:CN-*Cd~k+1 assez générale satisfait les conditions de Whitney le long de

Vimage Yi=p(F) et a pour auréole le long de Yx la collection des images par
l&apos;application P |Cxy|-*PCc&lt;/-*+i Yl induite par p des Va de dimension &lt;d — k—l
et des composantes irréductibles du cône normal de Pk(X, p) le long de Y.

DÉMONSTRATION. Soit L c PN~l l&apos;espace projectif de dimension d - k
formé des hyperplans contenant le noyau de p. Notons PL la variété polaire
correspondante et AL son image dans Cd~k+1. On a pour AL le diagramme
normal/conormal le long de Yx:

&gt; C{AL)cz&lt;L XF
1&quot;

L&apos;auréole de AL est par définition la collection des images par *:&apos; des

composantes irréductibles de (eL° k&apos;l)~\Yi). Nous allons obtenir ces composantes
à partir de la géométrie du diagramme normal/conormal delcC&quot;:

û C(X)œXxP&quot;-&lt;
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Tout d&apos;abord, l&apos;application H&gt;-+p(H) de L dans J5^&quot;* induit évidemment un
isomorphisme de C(AL; CN) D (CN x L) sur C(AL), où C(AL\ CN) est le conor-
mal de AL dans CN.

D&apos;autre part, la même application H*-*p(H) induit un morphisme fini et
biméromorphe r : |A~1(iL)| —&gt; C(AL).

En effet, le morphisme Cp/&gt;0—?Ce&apos;~*+»,o induit par p est fini d&apos;après ([22],
4.1.8), donc le morphisme PL-&gt; AL induit par/? est fini d&apos;après ([41], Chap. 1, 5.2

ou [22], §1). Il est biméromorphe puisque sinon, en prenant l&apos;image réciproque
d&apos;un 2-plan général de C*&quot;&quot;rf+1, on obtiendrait une projection non biméromorphe
d&apos;une courbe polaire générale sur son image (voir [20], 4.1.6), en contradiction
avec ([41], Chap. 5, Lemme-clé). (Pour une autre démonstration du fait que cette

projection est finie et biméromorphe, voir [8], 4.3.6). On a donc un ouvert
analytique dense U de PLt isomorphe par p à un ouvert analytique dense Ux de

AL. Comme d&apos;après 1.5.5.2, le morphisme \X~~l(L)\-^&gt; PL induit par k est une

modification, l&apos;image inverse V de U par ce morphisme est dense dans k~l(L).
L&apos;application (jc, //)H-» (/?(*)&gt; p(H)) est un isomorphisme de V sur l&apos;ouvert Vx

image réciproque de Ux dans C(AL) par kl. Par continuité, on obtient le

morphisme biméromorphe t, qui est fini puisque la restriction de p à PL l&apos;est (voir
aussi [8] 4.3.11).

On construit un diagramme commutatif:

\ê-\k~\L))\ — |A

I&apos;
I&apos;

EY]C(AL) » C(AL)

où les morphismes horizontaux sont induits par les morphismes ê et êL

respectivement, t est le morphisme que nous venons de construire, et t le

morphisme induir par (x, l, H)*-*(p(x), p(t),p(H)). Ce dernier morphisme est
bien défini: en effet, la projection étant générale, le morphisme CPltY—*CCj-k+\Yl
induit par p est fini, d&apos;après ([22], 4.1.8) qui donne la finitude pour les cônes

tangents, les conditions de Whitney qui d&apos;après ([41], Chap. 5, Th. 1.2), donnent

réquimultiplicité de PL le long de F, et ([24], §5) qui permet de passer grâce à

l&apos;équimultiplicité du cône tangent au cône normal. L&apos;application l*-+p(l) est

donc bien définie. L&apos;isomorphisme ci-dessus entre U et Ux induit par p montre

que l&apos;image de \CpLtY\ dans CCd-^tYl est |C^/Kl|, et donc que î est bien défini, fini
et biméromorphe.

Nous retrouvons ainsi le fait prouvé dans ([22], 5.1.3.2) que t est le

morphisme transformé strict de r par e, c&apos;est-à-dire que |ê~1(Â&quot;&quot;1(iL))| est le

transformé strict de A~*(L) par ê.

Notons DL le diviseur image réciproque de Yx dans EYlC(AL) par £L eL°tc&apos;L&apos;,

c&apos;est l&apos;image par î de D&apos;L U(Da n(Yx p*-&apos;-1 x L)) où les Da sont ceux de
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2.1.1. Comme L est assez général, FxPN&quot;M x L est transverse à chaque Da.
On en déduit que les composantes de D&apos;L sont les Da (1 (Y x p*-&apos;-1 x L) non
vides; en effet, les morphismes Da-*Y sont surjectifs, et il résulte du Théorème
de Bertini que leur fibre générale Da(g) est irréductible. Les points singuliers de

D«(g)n (P&quot;-&apos;&quot;1 x L) sont les points d&apos;intersection avec P&quot;&apos;&apos;&quot;1 x L du lieu
singulier I de Da(g)f et d&apos;après le Théorème de Lefschetz quasi-projectif, ([5],
Theorem 2.1.2), si L est assez général, l&apos;intersection (Da(g) -I)n (p&quot;-&apos;&quot;1 x L)
est connexe, donc A*(g) H (p*-&apos;-1 x L) est irréductible, ce qui donne
l&apos;irréductibilité de Dan(Yx p&quot;-&apos;&quot;1 x L). Puisque L est assez général, et que
toutes les fibres de £)a—&gt; Y ont la même dimension, les composantes de D&apos;L, qui
sont les Da C\ (Y x p^&quot;&apos;-1 x L) non vides sont aussi équidimensionelles au-dessus
de Ylt ce qui prouve ([41], Chap. 5, Th. 1.2) que AL satisfait les conditions de

Whitney le long de Yx (Pour une autre démonstration de ce fait, voir [8], Th.
6.1).

L&apos;application (x, l, H)&gt;-*(p(x), p(H)) définit un morphisme analytique
\ê~1(k~1(L))\-^EyX^l) égal à la composition de t et k&apos;l. L&apos;auréole de AL le long
de Yi est donc formée des images par ce morphisme des DaC\(Y x p^-&apos;-1 x L)
non vides. Montrons que les images par p des Va de dimension ^d-k-1 sont
des composantes de cette auréole. Pour cela, il suffit de remarquer que le

morphisme Da (1 (Y x p^-&apos;&quot;1 x L)-&gt; Va est surjectif si et seulement si la dimension

de Va est ^d — k — 1, et que cette surjectivité entraîne que l&apos;image que
l&apos;élément correspondant de l&apos;auréole de AL est l&apos;image de Va. Les images des

Dafl(yx p^-&apos;-i x L) correspondant aux autres Va sont les images par p des

composantes irréductibles de P(CPltY) d&apos;après la Proposition 2.2.1. ¦
Dans la situation de 2.2.4, nous dirons par abus de langage que l&apos;auréole de

AL le long de Yx est l&apos;image par p de l&apos;auréole de X le long de Y.

Nous sommes maintenant en mesure de prouver l&apos;énoncé &quot;dual&quot; de 2.1.5.

COROLLAIRE 2.2.4.1. Soient X un sous-espace analytique fermé réduit d&apos;un

ouvert de CN et Y un sous-espace non-singulier connexe de X. Le couple (X°, Y)
satisfait les conditions de Whitney si et seulement si, pour chaque a, toutes les

fibres de la la projection Wa -&gt; Y ont la même dimension.

DÉMONSTRATION. Si toutes les fibres ont la même dimension, les

morphismes Wa-*Y sont surjectifs, donc aussi les morphismes Da~* Y ce qui
implique les conditions de Whitney d&apos;après la remarque 2.2.1.1, 2).

Supposons avoir les conditions de Whitney le long de F, et qu&apos;un morphisme
Wa-+Y n&apos;ait pas toutes ses fibres de même dimension. Soient ô la dimension de

la fibre générale et ô0 &gt; ô la dimension de la fibre spéciale au-dessus de x e Y.
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Choisissons une projection générale p:CN-+ Cd~*+\ où ôo**N ~l-d + k&gt;ô.

Soient A l&apos;image polaire correspondante et Yx l&apos;image de Y par p. Comme dans la

preuve de 2.2.4, on a le diagramme commutatif:

\ê~\k-\L))\ —* \k

EY,C(A) &gt; C(A)

où t et î sont des morphismes finis et biméromorphes; les composantes de

WaHL sont des composantes irréductibles de k~1(Y) H k~l(L). Le morphisme ê

envoie les composantes irréductibles de DaHê~ (L) sur celles de WaHL. Le
morphisme î envoie les composantes irréductibles de Danê~l(L) sur des

composantes du diviseur image inverse de Yx dans EYiC(A) et, comme Wa HL,
celles-ci ne s&apos;envoient pas surjectivement sur Yt, ce qui contredit le Théorème
2.2.4 et ([41], Chap. 5, Th. 1.2). ¦

Nous pouvons résumer les résultats du théorème 2.1.1, la proposition 2.1.5, la

remarque 2.2.1.1, 2) et le corollaire 2.2AA, avec les mêmes notations, par:

PROPOSITION 2.2.4.2. Soient X un sous-espace analytique fermé réduit d&apos;un

ouvert de CN et Y un sous-espace non-singulier connexe de X. Les conditions
suivantes sont équivalentes:

1) Le couple (X°, Y) satisfait les conditions de Whitney;
2) Pour tout ay la protection Va-*Y est surjective (resp. toutes les fibres de la

projection Va-+Y ont la même dimension)&apos;,

3) Pour tout or, la projection Wa —&gt; Y est surjective (resp. toutes les fibres de la

projection Wa~*Y ont la même dimension);
4) Pour tout oc, la projection Da-*Y est surjective (resp. toutes les fibres de la

projection Da-*Y ont la même dimension). ¦
Rappelons la Proposition suivante (Voir [8], 4.3.12):

PROPOSITION 2.2.5. Soient X c CN un espace analytique réduit purement de

dimension d, x un point de X, k et k&apos; deux entiers tels que O^k^k&apos; ^d-l,
p:CN~*Cd~k+1 une projection linéaire générale et pl\Cd~k+i-+Cd~k&apos;+l une autre

projection linéaire générale. Posons p&apos; ~P\°p et notons Ak et Ak&gt; les images

polaires associées à p et p&apos; respectivement. Au voisinage de Vimage de x par p&apos;,

Vimage polaire de dimension d — k&apos; associée par px à Vimage polaire Ak est égale à

Vimage polaire Ak&gt;.
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DEMONSTRATION. Soient L et U les sous-espaces de P&quot;&quot;1 formés des

hyperplans contenant les noyaux de p et de p&apos; respectivement. Nous avons vu
dans la preuve de la proposition précédente que le morphisme H*-&gt;p(H) induit
un morphisme fini et biméromorphe tt : |Â~1(Z^)|—&gt; C(AL). L&apos;image par x de
lÂ-^L&apos;)! est égale à \C(AL)nkZl(L[)\, où kL est le morphisme naturel

C(AL)-» Pd~k et L[ est l&apos;espace des hyperplans de Cd~k+l contenant le noyau de

px. Soit Ax l&apos;image polaire de Ak dans Cd~k&apos;+l associée hpù toujours d&apos;après ce

qui précède, le morphisme L[-+Pd~k&apos; défini par Hi^pt(Hi) induit un
morphisme fini et biméromorphe \C(AL)nkZ1(L[)\-+C(Ai). D&apos;autre part, on a

évidemment une inclusion Av czAlt comme on le vérifie en un point non-
singulier de AL&gt;. Enfin, le diagramme suivant, où les flèches verticales sont des

morphismes propres et biméromorphes, commute:

k-\L&apos;) &gt; \C(AL)nkZl(L&apos;)\

i i
C{AL) C(At)

I I
AL.&quot;

&gt; Ax

l&apos;inclusion est donc une égalité. ¦
On retouve ainsi le fait que pour k^k&apos;&apos;, l&apos;auréole de AL&gt; le long de l&apos;image de

Y par p&apos; est l&apos;image par px de l&apos;auréole de AL le long de Yx.

Z3. Pour étudier le comportement de l&apos;auréole par section hyperplane, nous

avons besoin de préciser des conditions géométriques sur une projection p non

nécessairement générique suffisantes pour que l&apos;on puisse obtenir une description

analogue à celle de 2.2.1 du cône normal de la variété polaire associée à la

projection p :

PROPOSITION 2.3.1. Soient XczCN un espace analytique réduit

équidimensionely Y un sous-espace non-singulier de X tel que X° satisfasse les

conditions de Whitney le long de Y en un point xeY. Soit H un hyperplan de CN

passant par x et non tangent à X.
Pour tout entier k entre 0 et d -1, il existe un ouvert de Zariski dense U de

Vespace des projections linéaires p : CN-&gt; C*&quot;~*+1 dont le noyau est contenu dans H
tel que pour p eU, la variété polaire associée à p soit vide ou de dimension d- k,

et que le réduit de son cône normal le long de Y soit constitué des Y(Va) qui sont
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de dimension d~k et des Pj(Y(Vfi);p) Y(Pf(Vfi;/?)), où les Pj(Vp;p) sont les

variétés polaires au sens projectif de dimension d-k relatives à la projection p des

Vp de dimension &gt;d - k.

DÉMONSTRATION. Fixons au voisinage de x une stratification de Whitney
de C(X) compatible avec chaque Wa ainsi que k&quot;\x) et une rétraction analytique
riC*-» Y. Comme H n&apos;est pas tangent à X en x, il n&apos;est tangent à aucun Y(Va)
d&apos;après 2.1.1, et en particulier, H H Y(Va) est de dimension dim Y(Va) - 1.

Constatons l&apos;existence d&apos;un ouvert dense U de l&apos;espace des projections dont le

noyau est contenu dans H tel que pour p e U, le dual projectif L c pN~l de Kerp,
espace des hyperplans contenant Kerp, soit transverse dans fi^&quot;1 aux strates
contenues dans k~x(x)&gt; que Kerp H Y(Va) {0} pour tous les Y(Va) de dimension

*£d-kf et que KerpC\Y(Pj(Vfi;/?)) {0} pour tous les Pj(Vp\p) de
dimension d — k.

Remarquons que l&apos;hypothèse que p est dans U suffit pour pouvoir appliquer
l&apos;argument démontrant la Proposition 2.2.1, b), car L sera alors transverse
au-dessus d&apos;un voisinage de x aux strates contenues dans k~x(Y), et l&apos;on pourra
appliquer le Lemme de transversalité de ([41], Chap. 3, 5.2) à L et au morphisme
êY:EYC{X)-^&gt; C(X), et achever la démonstration comme en 2.2.1. ¦

L&apos;auréole se comporte bien par section hyperplane générale:

Rappelons que si la forme initiale dans le gradué gry CY d&apos;une équation de H
dans CN n&apos;y est pas diviseur de 0, on a identification canonique du cône normal

CxnH,rnH avec le sous-espace de Cx,y défini par la forme initiale le long de Y
d&apos;une équation de H, sous-espace que nous noterons Ç^yH YH. C&apos;est le cas en

particulier si H n&apos;est pas tangent à Cx,y&gt; Nous noterons t:P(QiK)nP(vW)^
P(CWn/fi,yn//) l&apos;identification correspondante après projectivisation.

THÉORÈME 2.3.2. Soient XaCN un espace analytique réduit purement de

dimension d, et Y un sous-espace non-singulier tel que (Xi\ Y) satisfasse les

conditions de Whitney en un point y e Y. Soit H un hyperplan de CN passant par y
et qui n&apos;est pas tangent à Y^wv; alors on a:

i) Uhyperplan H n&apos;est tangent à aucun des Y(V^) constituant l&apos;auréole de X le

long de Y.

ii) L&apos;intersection Xi)C\H est, au voisinage de y, la partie non-singulière de

XDH et satisfait les conditions de Whitney le long de YHH en y.
iii) L&apos;identification t identifie la famille des \Va f) P(YH)| non vides à l&apos;auréole

de \XHH\ le long de Y H H.
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DÉMONSTRATION, i) est une conséquence immédiate du Théorème 2.1.1.
On a l&apos;inclusion évidente (X D H)° c X° H H. L&apos;ouverture de la transversalité

implique que H est transverse àZ°en tout point assez voisin de y, et que cette
inclusion est une égalité (Voir [36], §1). Ceci prouve la première partie de ii) et
l&apos;égalité \Pk(X\p) fl H\ Pk(\XHH\;p) pour tout k et toute projection p dont le

noyau est contenu dans H et au demeurant assez générale.
La seconde partie résulte de ([41], Chap. 4, 5.1, 5.3.1, et Chap 5, Th. 1.2) ou

de l&apos;argument suivant, qui prouve aussi iii) d&apos;après 2.1.5: d&apos;après 2.3.1, les

variétés polaires de X associées à des projections assez générales parmi celles
dont le noyau est contenu dans H ont pour composantes fixes de leur cône
normal les Y(Va) de la bonne dimension. Comme H n&apos;est pas tangent au cône
normal le long de Y de ces variétés polaires, on a pour chaque k égalité entre
l&apos;intersection avec YH du cône normal de Pk(X;p) le long de Y et le cône normal
le long de Y H H de l&apos;intersection avec H de Pk(X;p). D&apos;après 2.2.1, l&apos;auréole de

\X H H\ le long de Y D H est la famille formée des \Va H P(YH)\ non vides. ¦
Remarque. Puisque (X°, Y) satisfait les conditions de Whitney, d&apos;après ([41],

Chap. 5, 1.2.1), la condition que H ne soit pas tangent à X en x est en particulier
vérifiée pour tout hyperplan appartenant à un ouvert dense de l&apos;espace des

hyperplans contenant Y (que nous pouvons supposer plongé linéairement).

COROLLAIRE 2.3.2.1. Soient c un entier et E un sous-espace vectoriel de CN

de codimension c qui est intersection de c hyperplans Hly Hc tels que Ht ne soit

pas tangent à \XDHx 0H2H • • • H//f_i| pour l^i^c. Alors la multiplicité en x
des variétés polaires Pk(\XC\E\) est égale à celle des variétés polaires Pk(X) pour

Cela résulte aussitôt du Théorème 2.3.2 et de la Proposition 2.2.1, b). ¦
Le théorème 2.3.2 nous permet maintenant d&apos;obtenir ce qui est d&apos;après [36] et

[44] une généralisation de l&apos;énoncé &quot;ju constant entraîne /i* constant pour les

sections hyperplanes d&apos;une même hypersurface&quot; de ([44], Appendice):

COROLLAIRE 2.3.2.2. Supposons Y plongé linéairement dans CN. Soit U
l&apos;ouvert de Zariski dense de PN~l formé des hyperplans non tangents à X en x, et

soit EczUxCN la restriction à U du fibre tautologique de l!^&quot;1, dont la fibre
au-dessus d&apos;un point est Vhyperplan correspondant. Posons X ED(U xX) et

Y £ n (£/ x y) c:X, et notons Jt:X-+ U la projection. Soient Uo l&apos;ouvert dense

de U formé des hyperplans transverses à Y et t/*, le fermé analytique de U formé
des hyperplans contenant Y. Notons o la section £/-&gt; Y qui pique le point x dans

chaque fibre. Pour &lt;5 0, », le couple de strates (|^r~1(f/ô)I°, Jï~1(Uô)r\Y)
satisfait les conditions de Whitney au voisinage de o(Uô).
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DÉMONSTRATION. Rappelons d&apos;abord que d&apos;après ([41], Chap. 5), pour
tout H e U, le couple (\X C\H\, Y H H) satisfait les conditions de Whitney en x.

D&apos;après (loc. cit., Chap. 2, §3), si nous choisissons des coordonnées pour CN

telles que H soit défini par zx 0, et des équations / 0(l^i^m) pour X, le

fait que H soit dans U est équivalent à l&apos;énoncé suivant:
Dans €XtXt l&apos;idéal engendré par les mineurs jacobiens de rang c-N-d, où

d^dimX, des fonctions/, au dénominateur desquels z, apparaît, est entier sur
l&apos;idéal engendré par les autres mineurs.

Si l&apos;on se restreint à l&apos;intersection V de U et de l&apos;ouvert affine de PN~l où les

hyperplans ont pour équations zx E a,z, et si l&apos;on écrit Ft{a2y aNy

z2,... zN) pour ft(Ti atzn z2,. zN), les Ft 0 sont les équations de jï~1(V)
dans V x C*. D&apos;après (loc. cit.), pour chaque A le fait qu&apos;un hyperplan E A,**, 0

de V xCN ne soit pas limite d&apos;hyperplans tangents à n~\V) est également une
condition de dépendance intégrale sur les mineurs jacobiens des Fn et l&apos;on vérifie
facilement que c&apos;est une conséquence de la condition précédente. On peut itérer
ce résultat à l&apos;intersection de plusieurs hyperplans de la même forme.

Puisque d&apos;après (loc. cit., Chap. 5), les conditions de Whitney se ramènent à

une question d&apos;équimultiplicité des variétés polaires, et puisque pour chaque

HeU, les variétés polaires de \XC\H\ sont équimultiples le long de Y OH et

puisque enfin, d&apos;après la transversalité que nous venons de voir, cette multiplicité
est bien celle des variétés polaires de X, l&apos;ensemble des points de Jï~l(Uô)nY où
elles ne sont pas satisfaites est, au voisinage de o(Uô), un fermé analytique de la

forme n~l(A)(1Yoù4c(/ô, pour ô 0, oo.

Pour montrer que A est vide, on peut supposer le contraire et restreindre tout
la situation au-dessus d&apos;une droite D de Uô qui ne rencontre A qu&apos;en un point 0 et

qui est la trace sur U6 de l&apos;intersection d&apos;hyperplans de S**&quot;1 dont les images

réciproques dans VxPN~l satisfont, toujours parce que V est dans U, les

conditions de transversalité itérée de 2.3.2.1: pour montrer que A est vide il suffit
de montrer que |^r~~1(Z&gt;)| satisfait les conditions de Whitney le long de n~x(D) H Y).
Soit t une coordonnée locale sur D en 0; le même argument de dépendance
intégrale que plus haut montre que l&apos;hyperplan t 0 de D x CN n&apos;est pas limite
d&apos;hyperplans tangents à \n~\D)\ au voisinage de o(D).

Le Théorème 2.3.2 montre alors que d&apos;une part, pour tout point Hte D
l&apos;auréole de n~l({Ht}) le long de Jt~l({Ht}) H Y est l&apos;intersection avec {//,} x CN

de l&apos;auréole de Jt^1(D) le long de jr&quot;&quot;1(D)fl Y, qui est non-singulier puisque D
est dans Uô, et que d&apos;autre part l&apos;auréole de jt&apos;l({Ht}) le long de Jt~l({Ht}) H Y
est la collection des \Va HHt\ non vides. Le corollaire résulte alors de 2.1.5. ¦

COROLLAIRE 2.3.2.3. Si Hc£,N n&apos;est pas tangent à X en x, pour tout k
entre 0 et d~\, il existe un ouvert dense V de Vespace des projections
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p:CN-+Cd~k+1 dont le noyau est contenu dans H tel que pour peV, la
multiplicité de Pk(X;p) soit la multiplicité d&apos;une variété polaire Pk générique.

Cela résulte aussitôt de 2.3.2.1. ¦
Remarques. 1) Récemment, Smith et Varley ([35]) ont utilisé le cas Y {x}

du Théorème 2.1.1 de façon très ingénieuse pour déterminer la structure du cône

tangent du discriminant de la famille des hypersurfaces projectives de degré d de
PN ou du diviseur thêta universel.

2) II ressort du travail de Mostowski [27] sur les stratifications Lipschitziennes
que certaines des composantes fixes des variétés polaires sont fixes à un ordre
élevé qui contient de l&apos;information géométrique importante.

Appendice: Calcul d&apos;un exemple

Soient a, b, c, d quatre entiers tels que 2^a&lt;b &lt;c&lt;d, et considérons

Thypersurface (X, 0) c C4 d&apos;équation:

xa + yb + zc + wd 0.

Appliquons notre méthode pour calculer l&apos;ensemble des limites en 0 d&apos;espaces

tangents à X.
Il faut d&apos;abord calculer les équations des variétés polaires P2 et Px de

dimensions respectives 1 et 2.

Soient ay /?, y, ô et a&apos;, fi&apos;, y&apos;, ô&apos; deux suites de nombres complexes assez

générales. La variété polaire Px est la surface d&apos;équations:

JcflH-/ + zc + ^ 0 et axa~l + pyb-l + Yzc-l + ôwd-l 0

et P2 est la courbe intersection de Px avec l&apos;hypersurface d&apos;équation

&lt;x&apos;xa~l + P&apos;yh~l + y&apos;zc&apos;1 + à&apos;wd-x 0

L&apos;idéal des formes initiales pour la filtration m-adique de l&apos;idéal définissant Px

contient xa~l et yb~l(f}x - ay). Comme nous savons d&apos;après [36] et [44] que la

multiplicité de Pv en 0 est ju(2) + ju(1) (a - 1)6, ces deux éléments engendrent
l&apos;idéal initial. La composante fixe du cône tangent de Px est donc ensemblistement
le plan x -y 0. De façon analogue, puisque nous savons que la multiplicité de

P2 en 0 est /i(3) + ju(2) (a - \){b - l)c, nous vérifions que l&apos;idéal initial de l&apos;idéal

définissant P2 est engendré par (xa~lf yb~\ zc~\Ux + Wy + Tz))y où (/, W, T
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sont des fonctions non constantes de oc, P, y, ô, a&apos;, fi&apos;, y&apos;, à\ La composante
fixe est donc la droite x y z 0.

Ainsi, l&apos;espace des limites en 0 d&apos;espaces tangents à X est le plan projectif de
P* dual du point x=y z 0deP3 (alors que le dual du cône tangent est un
point de ce plan). Ceci signifie qu&apos;un hyperplan £r + Ky + Xz + Jtw 0 de C4 est
limite d&apos;espaces tangents si et seulement si n est nul, ce qui confirme les résultats
de [44]. Nous encourageons le lecteur à étendre les calculs au cas a ^ b ^ c ^ d.

L&apos;effectivité du calcul repose sur la relative facilité avec laquelle on trouve les

équations du cône tangent des variétés polaires, et donc leurs composantes fixes,
grâce aux calculs de bases standard. Dans l&apos;exemple ci-dessus, nous avons pu
simplifier ces calculs grâce à des informations spéciales, mais ils sont en principe
effectifs en général.
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