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Limites d’espaces tangents en géométrie analytique

LE DUONG TRANG et BERNARD TEISSIER

Introduction

Le théme de ce travail est la structure de I’ensemble des directions limites en
un point singulier x d’'un espace analytique complexe X des espaces tangents a X
en des points non-singuliers. C’est un ensemble algé€brique projectif puisque c’est
la fibre ensembliste au dessus de x de la modification de Nash de X (voir 1.4).
Diverses caractérisations de cet ensemble ont été données dans des cas
particuliers, d’abord numériques dans ([36], Chap. 2), puis géométriques dans
[6], [18] et [23]; en fait nous étudions, pour un plongement local (X, x) < (CV, 0)
donné, la fibre du morphisme conormal k:C(X)— X, ot C(X)c X X PV~! est
I’ensemble des couples formés d’un point y de X et d’une direction limite en y
d’hyperplans de C" tangents a X, et k est induit par la premiére projection.

La structure géométrique de I'inclusion |k~ '(x)| < {x} x P¥~' détermine celle
de la fibre au-dessus de x de la modification de Nash (voir 1.4).

Un des principaux résultats de ce travail, annoncé dans [42], et dans [19] pour
le cas des hypersurfaces, est que I'on peut déterminer géométriquement la fibre
ensembliste |k~'(x)|] au moyen des cOnes tangents en x aux variétés polaires
locales de X en x que nous avons introduites et étudiées dans [22]. Cette
détermination fournit un moyen de calcul assez efficace de cette fibre, (voir
I’exemple donné en appendice) alors qu’a notre connaissance il n’en existait
aucun. Nous prouvons en fait un résultat bien plus général de dualité projective
locale (Théoréme 2.1.1) pour un espace réduit équidimensionnel X le long d’un
sous-espace non-singulier Y tel que (X, Y) satisfasse les conditions de Whitney
introduites dans [47], ou X" désigne la partie non-singuliere de X. Les
composantes irréductibles de |k~ '(Y)| sont Y-duales (au sens d’une dualité
projective relative au-dessus de Y) de certains sous Y-cones du cone normal
(Voir [11]) de Y dans X. La donnée de ces Y-cOnes équivaut a celle de la partie
fixe, i.e., indépendante de la projection, des cOnes normaux de Y dans les
variétés polaires locales de X le long de Y.

En fait, nous montrons que cette Y-dualité caractérise les conditions de
Whitney.

Nous mettons ainsi en évidence une famille de sous-cones du cOne normal de
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X le long d’un sous-espace réduit Y, que nous appelons I'auréole de X le long de
Y. Lorsque Y est non-singulier, cette auréole permet de décider si X satisfait les
conditions de Whitney le long de Y (Voir 2.1.5 ci-dessous), et si c’est le cas, cette
auréole permet de déterminer les limites aux points de Y d’hyperplans tangents a
X° (Voir 2.2.1). Nous pensons que cette auréole est un objet géométrique
important, ce qui est confirmé par le fait qu’elle a un bon comportement par
section hyperplane générique et projection. Le corollaire (2.3.2.2) montre
comment ce bon comportement par section hyperplane générique nous a permis
de comprendre les propriétés particuliéres du point de vue de I’équisingularité de
la famille des sections hyperplanes d’'un méme germe d’espace analytique
complexe (cf. [44], Appendice), restées jusqu’ici mystérieuses pour nous.

En chemin, nous étudions la géométrie de la spécialisation d’un germe
singulier sur le cone normal d’un sous-espace fermé dans le cas ou celui-ci est
non-singulier; cette construction, due dans un cadre général & Gerstenhaber ([3])
et ayant connu de nombreux avatars (voir 1.6) a une géométriec compliquée
intimement reliée a la structure des limites d’espaces tangents du germe aux
points du sous-espace. Cette géométrie, dans le cas particulier expérimental des
surfaces, était le principal objet d’étude de [23] et a été utilisée aussi pour étudier
les conditions de Whitney par V. Navarro Aznar dans [28].

Nous utilisons systématiquement ici le langage des sous-variétés Lagran-
giennes homogenes du cotangent, déja usuel en mécanique et en analyse. Dans la
premiere partie, nous essayons de donner une base solide a I'utilisation de ce
langage dans la théorie géométrique des singularités complexes, qui est relative-
ment récente (Voir cependant [13], [20] et [34]). En particulier, nous obtenons la
caractérisation suivante (cf. Proposition 1.3.8) des conditions a) et b) de Whitney
pour (X°, Y): dans O¢x, I'idéal qui définit I'intersection C(Y) N C(X) est entier
sur I'idéal qui définit k~'(Y).

Nous remercions C. Sabbah pour avoir décelé une erreur dans une premiére
version.

§1. Préliminaires

1.1 NOTATIONS. Dans ce texte, CV désigne I’espace affine complexe de
dimension N, PV~! I’espace projectif complexe des doites de C" passant par une
origine fixée qui sera un point x, PN I’espace projectif dual dont les points sont
les hyperplans de CN passant par x; pour tout Y-cone C = Y X C" de sommet Y,
on notera P(C) le sous-ensemble correspondant de Y x P¥~! et pour tout
sous-ensemble V de YXPY ! on notera Y(V) le cone de sommet Y
correspondant.
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Si X est un espace analytique complexe, Oy désignera son faisceau structural,
|X| 'espace réduit ou ensemble analytique sous-jacent, et X° ’'ouvert des points
non-singuliers de X. Pour un sous-espace Y de X, nous noterons Cy y le cOne
normal de X le long de Y, (Voir [11]), qui est le cone tangent de Zariski Cy , de
X quand Y est un point x € X et I’espace tangent T, de X en x, si x € X°.

1.2. Espace conormal relatif (Cf. [41], [8], [15])

1.2.1. Etant donné un espace analytique complexe Z sans singularités et de
dimension pure, on notera f,:T*(Z)— Z le fibré cotangent de Z, et pour un
sous-espace analytique complexe non-singulier Y de Z, on notera T3(Z) = T*(Z)
le fibré conormal de Y dans Z; c’est une sous-variété de T*(Z) invariante par les
homothéties des fibres des 7.

Dans le cas od Z=C", le fibré cotangent est trivial, et isomorphe 2 la
projection C¥ x CV¥— CV, oit CV est 'espace des formes affines sur CV s’annulant
a lorigine. D’autre part, T3(C") est I'ensemble des paires (y, A) ot y €Y et
A € C" s’annule sur I’espace tangent 7,Y de Y en y.

1.2.2. Rappelons que T*(Z) est muni de la 1-forme de Liouville & qui, a un
vecteur tangent v & T*(Z) au point (z, A), associe A(d7z(v)) ou di, est la
différentielle de 7, en (z, A). Pour tout sous-espace analytique complexe
non-singulier Y de Z, la 1-forme « s’annule sur tout vecteur tangent a T3(Z);
autrement dit, Ty(Z) est une sous-variété conique Lagrangienne.

1.2.3. On appelle fibré projectif cotangent et I'on note n,:PT*(Z)— Z le
fibré obtenu en projectivisant les fibres du fibré cotangent, et espace conormal
projectivisé de Y dans Z le sous-espace PT3(Z) de PT*(Z) obtenu en
remplagant les fibres coniques de T3(Z) par les variétés projectives correspon-
dantes. Nous dirons encore que ce sont des sous-variétés Lagrangiennes de
PT*(Z);

Rappelons le tres utile résultat suivant (Voir [30] §10, [13]):

Toute sous-variété Lagrangienne irréductible de PT*(Z) est I’espace conor-
mal proiectivisé de son image dans Z par 7.

1.2.4. Nous allons étendre ces notions simultanément au cas relatif et au cas
d’espaces singuliers (Voir [41], Chap. 2, §4, et [8]):

1.2.4.1. Soit f:X—S un morphisme d’espaces analytiques réduits, dont
toutes les fibres sont purement de dimension d et tel qu’il existe un ouvert
analytique X, de X, dense dans X et sur lequel la restriction de f a toutes ses
fibres lisses. Supposons de plus que X soit un sous-espace analytique fermé d’un
espace p:Z— S lisse au-dessus de S et que f soit la restriction de p & X (cette
hypothese est toujours vérifiée localement sur X). Notons 7,:T*(Z/S)—Z le
fibré cotangent de Z relatif a p, dual du fibré tangent relatif 2 p dont la fibre
au-dessus de z € Z est ’espace vectoriel des vecteurs tangents en z a la fibre de p.
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D’aprés un théoréme de Remmert [32], la fermeture dans T*(Z/S) de
’espace conormal de X, dans Z relatif & p est un sous-espace analytique
complexe fermé réduit T,s(Z/S) de T*(Z/S). L’application 7, induit un
morphisme K;:T%;s(Z/S)— X que I'on appelle morphisme conormal de X/S
dans Z/S.

Localement sur Z, on peut identifier p a la premiére projection § X U— S, o
U est un ouvert de C"; on peut alors identifier T%,(Z/S) a I'’ensemble des
couples (x, @), oit x € X et @ est une limite de formes linéaires sur C" s’annulant
sur des espaces tangents aux fibres de f en des point lisses de f.

Comme plus haut, on peut projectiviser les fibres et définir le morphisme
conormal relatif projectivisé k;: C;(X; p)— X, ou C;(X; p) =PTx;s5(Z/S).

Le plus souvent, p sera fixé et 'on notera T7(X) au lieu de Tx/;(Z/S) et
C/(X) au lieu de C;(X;p). Enfin, quand le contexte sera clair, on omettra
souvent ‘“‘projectivisé”’.

1.2.4.2. Dans le cas ou f est la restriction de la premiére projection p a un
sous-espace fermé X de S X U, ou U est un ouvert de C¥, on a T*(S X U/S) =
SxUxCV, et Ci(X) est la fermeture dans S X UX PV¥~! de I'ensemble des
couples (x, H) ot x € X, et H est un hyperplan de C" contenant I’espace tangent
en x 2 la fibre de f. On notera dans ce cas A, : C;(X)— P"~! la restriction & C;(X)
de la projection § X U x PV~1— pN-1,

Un point de C;(X) est un couple (x, H) o xe X et H est une limite
d’hyperplans de C" tangents aux fibres de f, c’est-A-dire contenant I’espace
tangent a la fibre de f, en des points lisses de f tendant vers x.

Dans la suite nous appellerons hyperplan tangent a la fibre de f en x un
hyperplan H de C" tel que (x, H) appartienne a C;(X). Il est équivalent pour un
hyperplan d’étre tangent aux fibres ou de contenir une limite d’espaces tangents
aux fibres.

1.2.4.3. Si de plus S est un point, on notera encore Tx(U) I'espace
Txis(S x U/S), C(X) l'espace C;(X), et k:C(X)— X le morphisme conormal.
On notera A:C(X)— P"~! le morphisme ;.

1.2.5. Rappelons (voir [30], §10) qu’un sous-espace analytique réduit W de
T*(Z) est dit Lagrangien s’il est purement de dimension dim Z et si la 2-forme
w =da, différentielle de la forme de Liouville, s’annule en tout couple de
vecteurs tangents a la partie lisse W° de W. Si W est homogene, c’est-a-dire
conique pour les homothéties des fibres de T*(Z), il est équivalent de dire que la
1-forme « s’annule sur les vecteurs tangents 3 W°.

Soit p:Z— § un morphisme lisse; nous dirons de méme qu’un sous-espace
analytique réduit W de T*(Z/S) est p-Lagrangien (ou S-Lagrangien lorsque
aucune confusion n’est a craindre) si les fibres du morphisme g =pe° 7, | W sont
purement de dimension égale a la dimension dim, Z des fibres de p et si la
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différentielle w, de la 1-forme de Liouville relative a, de T*(Z/S) s’annule sur
tout couple de vecteurs tangents en des points non-singuliers au sous-espace
réduit sous-jacent aux fibres de q.

Si W est p-homogene, c’est-a-dire conique par rapport aux homothéties des
fibres de T*(Z/S), on voit, comme ci-dessus, qu’il revient au méme de demander
que a, s’annule sur tout vecteur tangent aux fibres de la restriction de g a W en
des points non-singuliers des fibres réduites. Dans ce cas, on peut encore
projectiviser dans les fibres, et chaque sous-espace p-Lagrangien homogeéne
donne un sous-espace du fibré cotangent relatif projectivisé P,7*(Z/S), sous-
espace que nous appellerons encore p-Lagrangien ou S-Lagrangien.

Remarquons que l'image d’un sous-espace analytique fermé réduit p-
homogene de T*(Z/S) est un sous-espace analytique fermé de Z d’aprés un
Théoréme de Remmert et Grauert puisque c’est I'image du sous-espace P,(W)
qui est projectif au-dessus de Z.

PROPOSITION 1.2.6 (Principe de spécialisation Lagrangienne). Soient
p:Z— S un morphisme lisse ou S est réduit, et dont toutes les fibres sont purement
de dimension N, et soit W un sous-espace analytique fermé réduit de I’espace total
du fibré cotangent relatif 7,:T*(Z/S)— Z. Supposons que les fibres de W
au-dessus des points généraux des composantes irréductibles de S soient purement
de dimension N =dim, Z. Posons q =pe°,|W.

A) Si toutes les fibres de q sont purement de dimension N, étant donnée une
1-forme différentielle o sur T*(Z/S) relative au morphisme composé T*(Z|S)—
Z— S, s’il existe un ouvert analytique dense V de S tel que ag s’annule sur
lg~"'(s)I° pour s € V, as s’annule sur |q~'(s)|" pour tout s € S.

B) Les conditions suivantes sont équivalentes:

1) Le sous-espace W de T*(Z/S) est p-Lagrangien

2) Toutes les fibres de q sont purement de dimension N et il existe un ouvert
analytique dense V de S tel que pour s € V, la fibre q~'(s) soit réduite et soit une
sous-variété Lagrangienne de (p°#,)”'(s) = T*(Z(s)).

Si de plus W est p-homogeéne, ces conditions sont équivalentes a la suivante:

3) Toutes les fibres de q sont purement de dimension N et chaque composante
irréductible W, de W est égale a Tx,s(Z/S), ou X; = 7,(W)).

Prouvons d’abord:

LEMME 1.2.6.1. Pour tout s €S et toute composante irréductible D; de
|g~(s)|, il existe un ouvert analytique dense U; = D, tel que U; soit contenu dans
D? et que tout (couple de) vecteur(s) tangent(s) a U; en w e U; soit limite de
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(couples de) vecteurs tangents en des points non-singuliers a des fibres voisines de
-1
q- ().

Preuve du Lemma. 1’assertion est locale sur W, donc sur S et Z. Démontrons
d’abord le Lemme dans le cas ou S =D, disque unité de C. Le sous espace
lg”'(s)| de W est de codimension 1 et d’aprés ([38]), chaque composante
irréductible D; de |q~'(s)| contient un ouvert analytique U; en tout point duquel la
normalisation est une résolution simultanée forte de W le long de D,. Ceci
implique en particulier que le morphisme de normalisation n:W—W a la
propriété suivante: W est non-singulier au voisinage de n~'(U;), le morphisme n
induit un isomorphisme au dessus du complémentaire de U; dans un de ses
voisinages dans W et le morphisme n~'(U;)— U; induit par n est étale. Il suffit
donc de prouver que tout (couple de) vecteur(s) tangent(s) a n~'(U;) est limite de
(couples de) vecteurs tangents aux fibres de g °on. Dans une carte locale sur W au
voisinage d’un point w' € n~'(U;), le morphisme g °n est de la forme v* ol v est
une coordonnée locale sur W, v =0 est une équation locale pour n~'(U)) et k est
un entier >0. Le résultat est alors évident.

Ramenos le cas général au cas ou S =D. On se place au voisinage d’un point
w € W et I’on choisit un chemin 4 : (D, 0)— (W, w) tel que h(D — 0) soit contenu
dans I'ouvert image réciproque par q de Pouvert V < S. Posons h=g°h et
faisons le changement de base par h:D—S. Le morphisme gp:|W X D|—D

satisfait encore ’hypothése 1) d’apres I’hypothése d’équidimensionalité des fibres,
et [gp'(s)| =1q'(s)| pour s e h(D). W

A) résulte immédiatement du Lemme par continuit€. Prouvons B): 1)
implique évidemment 2). Prouvons que 2) implique 1): il résulte du Lemme par
continuité que si 2) est vérifi€e, pour tout s € S, la différentielle w, de la forme de
Liouville relative a, s’annule sur tout couple de vecteurs tangents en tout point
d’un ouvert analytique dense de chaque composante irréductible de |g~'(s)],
donc sur tout couple de vecteurs tangents a |g~'(s)| en un point non-singulier,
c’est-a-dire que W est p-Lagrangien.

Prouvons que 2) implique 3): pour s € V, considérons 'ouvert dense U(s)
W(s) formé des points ou le morphisme 7,:W(s)— X;(s) est une submersion
d’espaces lisses; la réunion pour s € S des U;(s) est un ouvert dense de W,. Soient
x € fi,(U;) et v un vecteur tangent a X;(s) en x. Soit (x, A) un point de
7, '(x) N U; 11 existe un vecteur tangent ¢ 2 Wi(s) en (x, ) tel que d7,(t) = .
Puisque W est Lagrangienne, on a a,(t) =A(v) =0, ce qui signifie que (x, A) €
T;(p), donc par adhérence W,(s) = Tk, s(Z/S)(s). Comme W,(s) et Tx ,s(Z/S)(s)
ont la méme dimension, on a I’égalité W,(s) = T ,s(Z/S)(s) pour s € V, donc par
adhérence W, = T ,5(Z/S).

Enfin 3) implique immédiatement 1) W
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Remarques. a) 1l y a évidemment un résultat analogue dans le fibré cotangent
relatif projectivisé, montrant que ses sous-espaces p-Lagrangiens irréductibles
P,(W) sont les C;(X; p), ou X est 'image de W par m, et f =p | X.

b) Dans le cas ou Z est S xP" et p la premiere projection, nous dirons
qu’une sous-variété p-Lagrangienne W du fibré cotangent relatif projectivisé
S X PY x PV met en S-dualité projectives ses images X et X dans S x PV et
S X PV respectivement. On prendra garde que pour des s €S spéciaux, cette
définition peut ne pas coincider avec la définition de la dualité projective de X(s)
et X(s), si W(s) a des composantes irréductibles dont I'image est immergée dans
X(s) ou X(s).

c) 1l résulte de la proposition que, si W est p-homogene et si la condition 2)
est satisfaite, pour tout se€ S, la fibre réduite |g~'(s)| est une sous-variété
Lagrangienne homogéne de T*(Z(s)), donc est réunion d’espaces conormaux a
des sous-espaces analytiques réduits des fibres X;(s).

Le résultat sur la spécialisation des espaces conormaux est di
indépendamment a Fulton-Kleiman-MacPherson dans [2] et & Sabbah dans [33]
(voir aussi Henry-Merle-Sabbah dans [8] (Cor. 4.2.1)), et S. Kleiman a dans [16]
donné une démonstration algébrique du principe de spécialisation dans le cas
p-homogene, valable en toute caractéristique, et I’a utilis€é pour démontrer une
formule sur I’énumération des contacts (Voir aussi [15]).

La remarque selon laquelle la spécialisation équidimensionelle de variétés
Lagrangiennes reste Lagrangienne avait déja été utilisée par Kashiwara dans [14];
comme le rapporteur nous I’a signalé, la preuve de la Proposition 5.6 de [14] est
analogue a celle de 2)=>1). Mais ce n’est que récemment que I’on a réalisé sa
grande utilité€ dans le cadre qui nous intéresse ici. Le second auteur avait suggéré
de P'utiliser pour expliquer plus conceptuellement le cas particulier Y = {x} du
Théoréme 2.1.1 ci-dessous, ainsi que le Corollaire 4.2.1 de [8].

d) Puisque T%,s(Z/S) est une adhérence, le morphisme g est sans Os-torsion
et par conséquent, les conditions de la proposition sont automatiquement
satisfaites lorsque W = T%,5(Z/S) et S est une courbe non-singuliere.

COROLLAIRE 1.2.7. Soit X un sous-espace analytique fermé de Z satis-
faisant les conditions de 1.2.4.1. Notons q:Cy(X)— S le morphisme composé
f ok Sifest propre ou si X est un voisinage assez petit de I’image d’une section o
de f, il existe un ouvert analytique dense U de S tel que pour s € U, la fibre q~'(s)
coincide avec I’espace conormal de X(s) dans Z(s) B

1.3. Stratifications

DEFINITIONS 1.3.1. Soit X un espace analytique complexe réduit. On
appelle partition analytique complexe de X une partition localement finie
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X =UX, de X par des sous-espaces analytiques complexes X, de dimension pure
de X dont la fermeture 3(: et la frontiere X, — X, sont analytiques fermés dans
X; les X, sont appelés strates de la partition.

Une partition analytique complexe est une stratification analytique complexe
de X si chaque X, est non-singulier.

Une partition analytique complexe est compatible avec une famille localement
finie {7,} de sous-espaces analytiques de X si chaque T, est réunion de strates.

Une partition posséde la propriété de frontiere si elle est compatible avec la
frontiere de chaque strate.

Etant donnée une partition analytique complexe X, de X, il lui est
naturellement associée une filtration analytique complexe

X=F>F>---oE>F,;>o...

de X, c’est-a-dire une suite décroissante de sous-ensembles ou chaque F; est un
sous-espace analytique fermé de X rare dans F;_;; F, est la réunion des adhérences
dans X des strates de dimension inférieure a celle de F,_,. Inversement, a une
telle filtration on peut associer la partition de X composée des composantes
connexes des différences F; — F,,,. Une filtration F est plus fine qu’une filtration
F' si la partition correspondant a F est compatible avec les F;.

1.3.1.1. Soit A une sous-variété Lagrangienne homogeéne de I’espace cotan-
gent T*Z d’un espace analytique non-singulier Z (ou une sous-variété Lagran-
gienne du projectivis€é PT*Z). A la décomposition en composantes irréductibles
A=|JA; de A correspond une filtration de Z telle que F; soit la réunion des
images de dimension <d; des A;, ou les d; parcourent la suite des dimensions
effectivement atteintes, d,>d,>---. Nous appellerons cette filtration la A-
filtration de I'image de A dans Z.

1.3.2. Nous supposerons connues les conditions a) et b) de Whitney (mais
1.3.9 ci-dessous en donne une version) et le concept de stratification de Whitney
d’un espace analytique complexe réduit X, introduit par H. Whitney dans [47] et
caractérisé de diverses maniéres dans [41] et [21] (voir aussi [7]). Rappelons
seulement que la condition a) de Whitney est le cas particulier, ou § est un point,
de la condition a; de Thom définie ci-dessous.

1.3.3. Le concept de stratification a été étendu aux morphismes par Thom
[45] (Voir aussi [25]). Nous fixons ci-dessous notre terminologie.

DEFINITION 1.3.3.1. Etant donné un morphisme analytique complexe
f:X—Y, nous appellerons f-partition analytique de X la donnée d’une famille
localement finie {X,} de sous-espaces analytiques de dimension pure de X tels
que pour chaque «, X, et X, — X, soient des sous-espaces analytiques fermés de
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X, que la famille des composantes connexes des X, soit une partition de X et
enfin que la restriction de f & chaque X, soit de corang constant. Nous dirons
qu’une f-partition est une f-stratification si les strates X, sont des espaces non
singuliers et que, chaque fois qu’une composante connexe d’une partie X,
rencontre ’adhérence d’une partie Xg, elle est entierement contenue dans cette
adhérence.

Une partition de f est la donnée d’une f-partition de X et d’une stratification
{Ys} de Y a strates connexes telles que pour chaque a, il existe 8 tel que
f(X.)=Ys. Une stratification de f est une partition de f qui est une f-
stratification de X.

Une stratification de f est plus fine qu’une autre si les filtrations de X et Y
correspondant a la premiere sont plus fines que celles correspondant a la seconde.

1.3.4. Soient N un entier, X et S deux espaces analytiques complexes réduits,
tels que X soit un sous-espace analytique fermé de S X U, ou U est un ouvert non
vide de C". Supposons que la restriction f : X — S 3 X de la premiére projection p
satisfasse les conditions de 1.2.4. Soient T et F deux sous-espaces analytiques
non-singuliers de X a fermeture et frontiére analytiques tels que F soit contenu
dans T et que les restrictions f | T et f | F soient de corang constant. Considérons
les sous-espaces analytiques fermés Cn;(f) et Cfl;(f) de PT*(S x U/S) et le
morphisme 7z, :PT*(S X U/S)— § X U (cf. 1.2.6).

DEFINITION 1.3.4.1. On dit que le couple (7, F) satisfait la condition a, de
Thom en un point ¢ € F si ’on a I'inclusion:

C,if(T) N 7w, '(8) = Cp(F) N :, ' (8)

On dit que (7, F) satisfait la condition a, de Thom si elle est satisfaite en tout
point ¢ € F.

On dit qu’une stratification (X, ) de X satisfait la condition a; si elle satisfait la
condition de frontiere et si tout couple de strates (X,, Xg) tel que l'on ait
Xp c X, satisfait la condition a;.

Remarque. Cette définition est équivalente a celle de Thom dans [45] (Voir

(13]).

On dit que le morphisme f: X — S peut étre stratifié avec la condition a; s’il
existe une stratification de f satisfaisant a.

‘La proposition suivante est une version conormale d’un résultat de Hironaka
([10] §5, Theorem 2), et est exprimée dans le langage des variétés polaires
relatives par Sabbah dans [33], Th. 1.3.1.
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PROPOSITION 1.3.5. a) Dans la situation de la Proposition 1.2.6, si I’espace
conormal relatif T}(X) d’un sous-espace analytique X de Z muni de f=p | X
est p-Lagrangien, pour tout point s de S, toute stratification de la fibre X(s)
satisfaisant la condition a) de Whitney et compatible avec la q~'(s)-filtation (au
sens de 1.3.1.1) de la fibre X(s) a la propriété que la partie lisse de (X — X(s))
satisfait la condition a; le long de chaque strate.

b) Inversement, si une telle stratification existe pour une fibre X(s), les
conditions équivalentes de la Proposition 1.2.6 sont satisfaites par [!’espace
conormal T} X au voisinage de q~'(s).

DEMONSTRATION. Montrons que la g~ '(s)-filtration (F) a la propriété
annoncée. Nous allons travailler dans ’espace conormal relatif projectivisé;
posons k; =1, | C;(X), q=peok; et soit {X,} une stratification de X(s)
satisfaisant la condition a) de Whitney et compatible avec les F. Soit X, c
F,— F,, une strate; nous devons montrer l'inclusion x; '(X,) = C(X,), ot C(X,)
est I’espace conormal de X, dans Z(s). Or, les composantes irréductibles A; de
q~'(s) que rencontre k;'(X,) ont la propriété que leur image, qui est
irréductible, contient une strate Xz dense satisfaisant la condition a) le long de
X,, ce qui donne k7 '(X,) N A; = C(X,), d’ou finalement linclusion k7 '(X,)
C(X,) qu’il fallait démontrer.

Prouvons b): S’il existe une stratification de X(s) le long des strates de
laquelle X satisfait a;, les inclusions k;'(X,) = C(X,) impliquent que g~ '(s) est
contenu dans une réunion finie de variétés Lagrangiennes de dimension N, donc
est de dimension N. B

COROLLAIRE 1.3.5.1 (Hironaka [10], voir aussi [8]). Dans la situation de la
Proposition 1.3.5, si S est une courbe non-singuliere, il existe une stratification de
X par des strates sur lesquelles f est de rang constant et telle que pour tout couple de
strates (X,, Xg) tel que I'image de Xz soit un point, la condition a; soit satisfaite.

OBSERVATION 1.3.5.2. Soient f:X— S un morphisme analytique com-
plexe comme en 1.3.4, ol S est une courbe non-singuliere, F et T deux
sous-espaces analytiques de X a fermeture et frontiére analytiques, tels que f(F)
soit un point, que I’on ait I'inclusion F < T et que f | T satisfasse les conditions de
1.2.4.1, a savoir que f | T ait toutes ses fibres de dimension pure et qu’il existe
dans T un ouvert analytique dense T, sur lequel f | T soit lisse. Supposons que
I'on ait 'inclusion Cft;(_f) Nz, '(F) c C;7(F). Pour toute stratification (T;) de F
satisfaisant la condition a), tout couple de strates (T, T;) satisfait la condition a.

En effet, on a les inclusions: Cf‘;(Tl_ﬂ w, ‘(T,)c:Cfl;(F)ﬂn;‘(T,) d’apres
’hypothése, et Cf‘;(F) Nz, (T,)c Cfﬁt(T,) Nz, '(T;) puisque I'image de F est
un point et que la stratification (T;) de F satisfait la condition a).
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DEFINITION 1.3.6. Si un couple (T, F) vérifie les hypotheses de 1.3.5.2,
nous dirons encore qu’il satisfait ay.

Par analogie avec les conditions de Whitney strictes introduites par Hironaka
([11]), on peut introduire une version stricte de la condition 4, qui est une
généralisation de la condition c) de ([43], 2.5 et [39] §2) comme il est expliqué
dans I’appendice de [44] (voir aussi [8], 1.1):

DEFINITION 1.3.7. Soient f:(Z,0)—(S,0) un morphisme d’espaces
analytiques complexes réduits, dont la restriction a un ouvert analytique dense Z,
de Z est lisse a fibres de dimension pure d, et soit Y un sous-espace analytique
fermé non singulier de Z tel que f | Y soit une submersion sur un sous-espace
analytique fermé non-singulier de S. Soit Z = § X C" un plongement local tel que
[ soit induit par la premiere projection. Nous dirons que le couple de strates
(Zo, Y) satisfait la condition w, en un point 0 de Y s’il existe un voisinage U de 0
dans Z et une constante C tels que 'on ait pourtoutye UNY ettout ze UN Z,
I'inégalité:

dist (Ty(f(y))’y, TZ(f(z)),z) = C dist (Z, Y)

ot la premiére distance est la distance angulaire dans la grassmanienne (voir [11],
§1, ou [41], Chap. 3, §2, ou [8], §1) et la seconde est la distance pour la métrique
induite sur § X C" par un plongement local S = C".

Cette condition ne dépend pas des plongements (voir [8]) et 'on peut en
particulier supposer que Y est plongé linéairement dans C” x C".

Cette condition peut étre traduite en une condition algébrique sur I’espace
conormal relatif:

PROPOSITION 1.3.8. Reprenons la situation de 1.3.7 et notons C;(Z)c
S X CN x PV~ Pespace conormal relatif. Soient Z, un ouvert analytique dense de
Z sur lequel f est lisse et 0 un point de Y. Les conditions suivantes sont
équivalentes:

i) Le couple de strates (Z,, Y) satisfait la condition w; en 0.

ii) En tout point de x;'(0), l'idéal I définissant lintersection C;(Y) N C(Z) est
entier dans Oc,z, sur idéal J définissant k7 (Y).

Remarque. On a toujours l'inclusion J = I. Le couple (Z,, Y) satisfait a; en 0
si et seulement si on a I’égalité des racines VJ = V1, et la proposition ci-dessus
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montre que (Zy, Y) satisfait w, si et seulement si on a 'égalité des fermetures

intégrales J = .

DEMONSTRATION: La question est locale sur Z et S, et nous pouvons
supposer que S est un sous-espace fermé de C'.

Choisissons des coordonnées locales wy, . .., w, pour C’ telles que f(Y) soit
définie par wy=w,=---=w, =0, des coordonnées y,,..., ¥, Wii1,..., W,
pour Y, des coordonnées yi, . .., ¥, Z41, . . ., 2y pour C" et enfin un systéme de
coordonnées homogenes (b;:---:b,:a,,.,:---:ay) de P¥~'. L’idéal définissant
k7 '(Y) dans C;(Z) est engendré par (w1, ..., W, Zrs1, - - -, Z28)Oc,(2)-

Remarquons que I’espace C;(Y) N C;(Z) est contenu dans k7 '(Y) et que dans
chacun des ouverts Uy, de C,;(Z) définis par la condition a, # 0, 'idéal définissant
C(Y)NC(Z) dans Cp(Z) est engendré par (Wy, ..., W, Zyg, ..., 2N,
bi/ay, ..., b/ay).

La distance de I’espace T tangent en 0 a la fibre Y(0) a ’espace tangent en z a
la fibre f~'(f(z)) est le supremum des distances de T aux hyperplans tangents en

za fT(f(2)):

dist (T, TZ(f(z)),z) = o Sup dist (T, H)

2Tz 2.z

ol H désigne un hyperplan de C".
Si H € PY~! a pour coordonnées (by:- - -:b,:a,,.1:" " :ay), on a:

dist (T, H)= Sup (

neT—{0}

|X binil )
Il (T 16:% + X |ae|)?

Prouvons que i) entraine ii): la condition i) est I'existence d’un voisinage W de
0 dans Z et d’une constante positive C tels que, pour tout point (z, H) € C;(Z) ot
z appartient 3 W et H a pour coordonnées homogenes (by:- - :b,:a,.1:- - -:ay),
on ait I'inégalité:

Sup ( |2 b; dyi|
dyeT-{0} \||dy|| (T |b:* + I |axl?)"?

) <Cdist (z, Y)

ou T désigne I'espace tangent en 0 a la fibre Y(0). Ceci implique que les b; sont
nuls sur x;'(Y), qui est donc contenu dans la réunion des ouverts U,. Prenant
tous les dy; nuls sauf un, on en déduit aussitdt que tout point de k7 (W) N U,
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posséde un voisinage V dans C;(Z) tel qu’il existe une constante C’' telle que
pour (z, H)e V, on ait, pour 1 si=<¢:

i

ay

< C, ' Sup (leI’ sy 'ws') 'zt+ll) ce ey lle)

ce qui équivaut, d’apres ([41], Chap. 1, 1.3) a la relation de dépendance intégrale
cherchée.

Prouvons que ii) entraine i): ’hypothése implique que les b; sont tous nuls sur
C;(Y)NCs(Z), qui est donc contenu dans la réunion des Uy, et que sur U, les
fonctions b,/a, ..., b,/a, définissent des éléments entiers sur [’idéal
(Wi, -« » W, Zis1s - -+ 2v)0c,(2) €0 tout point de & '(Y) N Uy, donc aussi entiers
dans V N U;, ou V est un voisinage de k; '(Y) dans C;(Z). Puisque k; est propre,
'image de V par x; contient un voisinage ouvert W de Y dans Z.

SiHePV-!a pour coordonnées (b,:---:b,:a,,,:-+-:ay), on a:

|X bimil - t Sup |b;|
rer oy (Hnll X6+ X Iaklz)l/z) (T b+ Elad)”

D’apres ([41], Chap. 1.3), la dépendance intégrale implique que pour tout
point (z, H) de V, il existe un voisinage V(z, H) de (z, H) contenu dans un des
U, et une constante C(z, H) =0 tels que, pour 1 <i<¢:

i

a = C(Zy H) Sup ('wllx v ey lwsly IZH-]I’ T ey IZNl)
k

Soit K un voisinage compact de 0 dans Z contenu dans W; d’apres la propreté
de ks le compact k;'(K) est recouvert par un nombre fini V,,...,V,, de
voisinages de la forme V(z, H) auxquels sont attachés des constantes
Ci, ..., Cp. Onpose C =t Sup C,. Si z est un point de K, pour tout hyperplan H
tangent 4 la fibre f'(f(z)), on a donc dist (T, H) < C dist’ (z, Y), ot la distance
dist’ (z, Y)=Sup(Imil, . . ., IWl, |ze41ls - - -, |2n]) est équivalente a la distance
induite par la métrique de C" xC . W

Remarque 1.3.9. Rappelons que dans le cas ou S est un point, il est prouvé
dans ([41], Chap. 5) que le couple de strates (X°, Y) satisfait les conditions a) et
b) de Whitney en un point 0 € Y si et seulement si il satisfait la condition w) en 0,
donc au voisinage de 0.
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1.4. Modification de Nash

Soit f: X— S un morphisme satisfaisant les hypothéses de 1.2.4.1. Il existe
donc un ouvert dense X, de X sur lequel le module 2} des différentielles relatives
est localement libre. Supposons que son rang soit constant sur cet ouvert, donc
égal a d = dim; X. Soit g: G — X la grassmanienne des quotients localement libres
de rang d de & (Voir [4]). Le Ox,-module localement libre 2} | X, détermine
une section o de g au-dessus de X,. D’apreés un théoréme de Remmert ([32]),
’adhérence dans G de I'image de o est un sous-espace analytique fermé de G.

DEFINITION 1.4.1 (Voir [39], [10], [40]). On appelle modification de Nash

de X relative a f la restriction v, de g a I'adhérence N;(X) de 'image de o
dans G.

L’image de la section o est 'ouvert dense v;'(X,) de N;(X) et le morphisme
v; induit un isomorphisme analytique de v;'(X,) sur X,. Ce morphisme est
propre puisque g ’est; c’est donc une modification de X.

1.4.2. Supposons maintenant X plongé dans S X CV, ce qui est toujours
possible localement. Considérons le morphisme y; de X, dans la Grassmanienne
G(N, d) des d-plans de C" qui a x € X, associe la direction de ’espace tangent en
x a la fibre de f passant par x. L’adhérence dans X X G(N, d) du graphe de y; est
un sous-espace analytique de X X G(N, d) d’apres le théoreme de Remmert déja
invoqué. Muni de la projection sur X induite par la premi€re projection du
produit X X G(N, d), il est X-isomorphe & N;(X). On peut donc identifier Ny(X)
a I’espace analytique formé des couples (x, T') € X X G(N, d) ou x est un point de
X et T une direction limite en x d’espaces tangents aux fibres de f en des points
non-singuliers.

Dans ce cas, on notera encore ¥, le morphisme N;(X)— G(N, d) induit par la
seconde projection, et on I’appellera morphisme de Gauss relatif.

OBSERVATION. On sait (voir [7]) que la bonne position par rapport aux
sous-espaces linéaires de PV~! de la famille des fibres du morphisme conormal
relatif au-dessus d’un sous-espace Y de X n’implique pas celle de la famille des
fibres de la modification de Nash relative par rapport aux variétés de Schubert de
la Grassmanienne, mais la variété |x; '(x)| des limites en x d’hyperplans tangent
aux fibres de f détermine la variété |v; '(x)| des limites en x d’espaces tangents
aux fibres de f, et inversement; en effet, I'isomorphisme analytique naturel de la
grassmanienne G des (N —d —1)-plans de P"~! sur la grassmanienne G des
(d —1)-plans de PV~! identifie I'’espace des espaces projectifs PV~ contenus
dans x;!(x) avec la fibre |v; '(x)| de la modification de Nash.
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1.5. Variétés polaires

Dans [22], on a introduit les variétés polaires locales et dans [40] et [41] les
variétés polaires locales relatives. Pour la commodité du lecteur, nous rappelons
les principaux faits les concernant, et renvoyons a loc. cit. pour les
démonstrations.

1.5.1. Soit f:X— S un morphisme satisfaisant les hypothéses de 1.2.4.1 et
1.3.2. Soient 9 = {0=DycDy_ -+ c Dy=C"} un drapeau de sous-espaces
vectoriels de C" et a=(ay, ..., a;) une suite d’entiers. Considérons le sous-
ensemble 0,(2)={T € G(N, d)/dim (T N D4,,_;)=i}. Cest la variété de Schu-
bert associée a a et 9. Par un argument de transversalité (cf. [41], Chap. 4, Prop.
2), on prouve que pour tout a, il existe un ouvert de Zariski dense U, de I’espace
des drapeaux de C" tel que pour @ € U,, I'espace y; (04(2)) N v;(X,) soit un
ouvert dense de|y;'(0.(2))| et que ce dernier soit vide ou purement de
codimension ¥, a; dans N,(X).

Dans I’étude des espaces conormaux n’intervient que le cas ol a=a, =
(1,1,...,1,0,...,0) avec k fois 1.

DEFINITION 1.5.2. On appelle variété polaire locale relative associée a a et
% le sous-ensemble analytique complexe de X image réduite par v, de
Y7 (04(2)). Dans le cas ol a=a,, on note cet ensemble analytique P.(f; D) et
comme il ne dépend que de D,_;,,, on le note aussi P.(f; Dy_y+1)

1.5.3. Dans ([41], Chap. 4, §3, th. 3.1), il est prouvé qu’il existe un ouvert de
Zariski dense U, c U,, de la grassmanienne des sous-espaces de codimension
d—k+1 tel la multiplicit€ en x de P(f;Dy-x+1) soit indépendante de
D,_i4+1€ Uy, et ne dépende que du type analytique en x du morphisme f.

Par abus de langage, nous parlerons souvent de “la” variété polaire relative
pour signifier une variété polaire relative assez générale, i.e., associée a un
D, _., assez général.

Si ’on considere la projection p : CVY — C?~**! de noyau D,_,., assez général,
et la projection x:8 X C¥N— 8§ x C!"**! qui s’en déduit, I’adhérence dans X de
I’ensemble des points critiques de la restriction de & a X, coincide avec la variété
polaire relative associée a D _j 4.

1.5.4. Dans le cas ou S est un point, les variétés polaires relatives sont
appelées vari€tés polaires locales (absolues), et notées P (X, x;D;_x+1) OU
P(X;D;_i+1). Pour désigner une variété polaire assez générale, on écrira
Pi(X, x) ou méme seulement P,.

On peut penser a P, comme adhérence dans X de l'espace critique de la
restriction 3 X° d’une projection linéaire assez générale p:C"— C?**!; on
écrira donc aussi la variété polaire correspondante P(X; p).
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D’apres ([22], 4.1.8), le morphisme du cone tangent Cp, o dans C*~**! est fini,
donc, par spécialisation sur le cone tangent et le théoréme de préparation de
Weierstrass, le morphisme de P, dans C?~**! est fini. Si la variété polaire P, n’est
pas vide, son image dans C*~**! par la projection p qui sert a la définir est une
hypersurface réduite que nous appellerons image polaire de dimension d — k de
X. Si la variété polaire est vide, nous dirons que I'image polaire correspondante
est vide.

L’image polaire est appelée dirimant dans [8].

1.5.5. Variétés polaires et espace conormal

Replagons nous dans la situation de 1.5.1, et soit D,_,,, un sous-espace
vectoriel de CV de codimension d — k + 1. Notons L4 < P¥~! Je sous-espace
projectif des hyperplans de C" qui contiennent D,_, ;. On peut caractériser les
variétés polaires de la fagon suivante (cf. [41]) Chap. 4, 4.1.1 ou [8] 3.2.1(c)):

1.5.5.1. Si D4z, est assez général, I'image réduite par le morphisme
conormal relatif k; de I'image inverse de L*~* par le morphisme A; (défini au N°
1.2.4.2) est égale a la variété polaire P.(f; Dy_r+1):

|Kf(Af_l(Ld‘k))| =P(f; Dy—g+1)

Pour cette raison, nous noterons parfois la variété polaire de X associ€ a p
sous la forme P,(f), ou méme simplement P,, pour indiquer sa dépendance par
rapport au sous-espace L = L?% c P¥~! des hyperplans contenant Kerp.

PROPOSITION 1.5.5.2. Pour tout k, 0 <k <d, le morphisme
Kp | A7 (L) A (L) = Po(fs D)
est une modification pourvu que D ;_, ., soit assez général.

Preuve. Posons P, = Pi(f; Dy_x+1), €t notons A, :Cs(P)—P ' le mor-
phisme associé a la construction de I’espace conormal de P,; I'ensemble des
points z de P N X° o Tps(z)),.. + Da-x+1 M'est pas un hyperplan est contenu
dans une variété polaire relative qui est I'image par la modification de Nash
relative v, de I'image inverse par y; d’une variété de Schubert de la Grassmani-
enne qui est rare dans celle qui définit P,. Comme dans Loc. cit., on utilise le
théoréme de transversalité de Kleiman pour montrer que pour une projection
assez générale, cette variété polaire est rare dans P,. En tout point z de cet
ouvert de P9 N X° dense dans P, (voir [41], Chap. 4, 1.3.2) out Tp s¢).. +
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D,_y+1 est un hyperplan de CV, cet hyperplan coincide avec T x(f(z)).z + Da—i+1,
et est 'unique hyperplan tangent a X(f(z)) en z contenant D,_,,; cela définit
en ce point la section cherchée de k; | A;'(L*"*), dont I'image est contenue dans
ALNL**), ce qui achéve la démonstration. W

1.6. Spécialisation sur le cone normal

Etant donnés un espace analytique X et un sous-espace analytique fermé Y de
X défini par I'idéal cohérent J de Oy, le cone normal de X le long de Y est par
définition ’espace Cy y = Specan (gr;0x) ou gr,0x désigne la 0y -algebre graduée
de présentation finit €,.,J*/J**! (Voir [11]). Le cdne normal Cy y est donc
naturellement muni d’une projection analytique sur Y, dont les fibres sont des
cones, et contient Y comme ‘“‘section nulle”.

Si Y est non-singulier en y, on peut choisir au voisinage de y un plongement
de X dans un ouvert U de C" et une rétraction analytique complexe r: U—Y.
Ensemblistement, |Cy y| peut étre identifié au voisinage de y avec le cOne des
limites de sécantes xr(x) quand x tend vers un point de Y voisin de y (Voir [11]).

La construction de la spécialisation sur le cone normal est essentiellement due
a Gerstenhaber ([3]) dans le cas local. Elle a été redécouverte plusieurs fois (voir
[37], [1]). Nous suivons ici la présentation de [37], auquel nous renvoyons pour
des démonstrations détaillées.

Soient O un anneau et:

{

O=H>H 2 H,>- DX >H, ., >...

une filtration décroissante telle que ¥, # #,. Posons ¥, = O pour i <0.

1.6.1. Considérons I'anneau gradué (Algebre de Rees généralisée) Ry =
@D..; #v~ c O[v, v™']. Dans d’assez nombreux cas, et en particulier quand O est
une algébre analytique et %, =J' pour un idéal J de O, la O-algeébre R, est de
présentation finie. Si nous nous restreignons au cas ou O est une algebre
analytique et donc contient C, le morphisme composé C[v]— R, déduit des
inclusions C[v]c O[v]c Ry, est plat. Lorsque Ry est une O-algebre de
présentation finie, on peut construire ’espace analytique X = Specan (R,) et un
morphisme plat f: X— C, qui est de plus muni d’une section o:C— X qui pique
le point marqué dans chaque fibre. On vérifie facilement que pour tout v #0, le
germe en o(v) de la fibre f~'(v) est isomorphe au germe (X, x) correspondant a
O, tandis que f~'(0) est isomorphe a I’analytisé du cone correspondant au gradué
gry O associé 3 la filtration #. Dans le cas ou # est une filtration J-adique, ce
morphisme réalise donc une spécialisation de (X, x) sur le germe en x du cOne
normal dans X du sous-espace défini par J. Dans ce cas, nous noterons Oy
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I’anneau associé a O et a la filtration J-adique J. Cette construction naturelle se
globalise pour donner une spécialisation du couple (X, Y) d’un espace analytique
X et d’un sous-espace analytique fermé Y sur le couple (Cx y, Y) formé du cone
normal Cy y de Y dans X et de son sommet Y.

1.6.2. Dans le cas d’une filtration J-adique, on peut donner une interprétation
géométrique (Voir [23], 1.4.3) de cette construction comme ceci: notons
Z— X X C I’éclatement dans X X C du sous-espace Y X {0} défini dans X X C par
I'idéal (J, v) de O, engendré par J et une coordonnée v sur C s’annulant en 0. On
vérifie que le faisceau de Oy-algebres Ry obtenu en faisceautisant la construction
ci-dessus s’identifie au faisceau des fonctions analytiques, algébriques en v, sur
'ouvert X de Z ou I'idéal (J, v). 0, du diviseur exceptionnel est engendré par v.
Le morphisme f s’identifie alors au morphisme composé X< Z— X X C—C.

1.6.3. Dans le cas local et lorsque # est la filtration par les puissances d’un
idéal J de O définissant un germe de sous-espace non-singulier Y de X en x, 'on
peut aussi construire X comme ceci:

Choisissons un plongement local (X, x) < (C", 0), et soit I 'image réciproque
de J par la surjection correspondante Ocw o—> 0. Pour chaque élément g € Oy =
Ocn o posons v(g) =sup {n/g € I"} et notons in, (g) la forme initiale de g dans
gr; Oy = @D,.o I'/I'*}, C’est-a dire I'image de g dans [V®)/[V®*1,

Choisissons des équations locales (g, . . . , g) pour X dans C" telles que leurs
formes initiales in, g; engendrent I'idéal in,J de gr, Oy engendré par les formes
initiales des éléments de J, c’est-a-dire I'idéal définissant le cone normal Ccn y de
C" le long de Y.

Posons m;=v(g;), choisissons des coordonnées locales z,..., z,
Zie1, - - ., Zy de CV telles que Y soit défini par I'idéal I = (2,44, . .., zv)Ocnp, €t
soit X le sous-espace de C" x C défini au voisinage de {0} X C par les équations
v "™g(zy, ..., 2y VZyq,...,0zZy)=0, 1<i<k. On notera f la restriction a X
de la projection sur C. Pour v #0, les fibres sont toutes isomorphes a X par
’homothétie de rapport v, et pour v =0, on retrouve bien les équations du cone
normal de X le long de Y.

Vérifions I’assertion de 1.6.2 dans ce cadre local; d’aprés le Lemme 6 du
Chapitre 3, §2 de [9], qui est valide sans supposer la non-singularité du centre
d’éclatement, les équations v™"g;(z1, . . ., Zpy UZpsqs - - - vzy) =0, 1<i<k sont
précisément les équations définissant, dans I'ouvert de I'éclaté de C" X C le long

de Y x {0} ol v engendre I'idéal engendré par (J, v), le transformé strict de
X xC.

DEFINITION 1.6.4. On appellera f : X— C la spécialisation de X sur le cone
normal Cy y en x. Dans le cas od Y = {x}, et donc J = m, idéal maximal de Oy ,,
on appellera f la spécialisation de X sur son cOne tangent Cx , en x.
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La Proposition (1.3.8) a comme corollaire un avatar du Th. 3.1 de [28]:

PROPOSITION 1.6.5. Soient X un espace analytique complexe purement de
dimension d, Y un sous-espace non-singulier de X, et 0 un point de Y. Soit
f :X— C la déformation de X sur le cone normal Cx y et X° la partie de X — f ~}(0)
lisse au-dessus de C. Les conditions suivantes sont équivalentes:

i) Le couple de strates (X°, Y) satisfait les conditions a) et b) de Whitney (ou,
ce qui est équivalent, la condition w)) en 0.

ii) Le couple de strates (X°, Y x C) satisfait la condition ws en (0, 0).

Prouvons i)=>ii): Notons h I'isomorphisme X°— X°x C* qui au point de

coordonnées (y;, ..., Y, Zw41,---,2n, V) associe le point de coordonnées
Y1y -+ s Ve VZigr, ..., 02y, V). Si (by:+:-+:b,ia,0y:- - -:ay) est un hyperplan
tangent a la fibre de f en z, ’hyperplan (vb,:- - -:vb,:a,,,:- - -:ay) est tangent a

X°x {v} en h(z), et la distance de h(z) 3 Y X {v} est égale a |v| dist (z, Y X C)
= |v| dist (z, Y X {v}). Il suffit maintenant de regarder I’expression de la distance
angulaire donnée dans la preuve de 1.3.8.

Prouvons ii)=i): D’aprés 1.3.8, la condition ii) implique que les idéaux
définissant C;(Y X C) N C;(X) et k7 '(Y X C) dans C;(X) ont la méme fermeture
intégrale en tout point de k;'(0, 0), donc en tout point de I'image inverse par k;
d’un voisinage de (0,0) dans X. Par restriction au-dessus de (0, v), pour v #0
assez petit, et application en sens inverse de 1.3.8, on obtient la condition {). W

§2. Cones exceptionnels

2.1. Soient X un espace analytique complexe réduit purement de dimension
d, Y un sous-espace analytique fermé de X, x un point non-singulier de Y, et
X>W cUcC" un plongement local en x, ol W est un voisinage ouvert de x
dans X plongé comme fermé dans un ouvert U de C". Choisissons une rétraction
(que nous supposerons analytique ici et dans la suite) locale r:U—Y au
voisinage de x et des coordonnées locales dans r~*(0); nous avons le diagramme
normal/conormal de X le long de Y et les plongements naturels que voici, ou ¢ est
la dimension de Y et o W est abusivement noté X:

XXxPV- 1" x PVISELC(X) -5 C(X) < X x PV!

J ! -

XxP¥"'""'oE,X —> X

ou k est le morphisme conormal projectivisé défini en 1.2.4.3, e = ey I’éclatement
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de Y dans X, é=2¢, I'éclatement dans C(X) du sous-espace k~'(Y), et k' le
morphisme analytique dii a la propriété universelle de I’éclatement. Posons
{=kcé=eok', et soit {D,} la famille finie des espaces réduits sous-jacents aux
composantes irréductibles de dimension N —2 du diviseur {~'(Y), que nous
considérons comme sous-espace de Y x P¥~'~*x P¥~!, Pour chaque a, posons
Vo=IK'D)lcY XPV " et W, = |é(D,)| < Y x PN-1,

Remarquons que d’aprés le Hauptidealsatz, les composantes de {~'(Y) qui
sont de dimension <N — 2 sont immergées et donc on a les égalités ensemblistes
27 (W) =UDs, e (V) =UV, et [k}(Y)| = U W,.

Observations que e '(Y) =P(Cyx.y), et que |k~'(Y)| est, par définition (cf.
1.2.4.2), ’ensemble des limites en des points de Y d’hyperplans tangents a X°.

Remarque. Le fait que (X°, Y) satisfasse la condition a) de Whitney au
voisinage de y €Y est équivalent a Pinclusion U W,(y)c {y} xP¥"'"* od
PV-1=*c P! désigne, ici et dans la suite, I'ensemble des hyperplans de CV
passant par y et contenant Ty ,. En fait lorsque Y est non-singulier au voisinage
du point considéré, nous supposerons souvent Y plongé linéairement dans CV, ce
qui permet d’identifier tous les PV =17,

Le résultat principal de ce travail relie les V, aux conditions de Whitney pour
X° le long de Y et a la structure de I’ensemble des hyperplans tangents 2 X aux
points de Y:

THEOREME 2.1.1. Soient X = C" un espace analytique réduit, Y < X un
sous-espace non-singulier et x € Y. Les conditions suivantes sont équivalentes:
i) Le couple de strates (X°, Y) satisfait les conditions de Whitney en x.
i) On a l’égalité dim {™'(x)=N—-2—t, out=dimY.
iii) Pour chaque «, la composante D, est égale a 'espace conormal relatif de
son image V, Y X PN717' et toutes les fibres du morphisme §:D,— Y ont la
méme dimension au voisinage de x.

DEMONSTRATION. Nous allons montrer ii) = i) = iii) > ii); L’équivalence
de i) et ii) est démontré dans ([41], Chap. 5, Th. 1.2 et dans [7], Théoréme 1, p.
579, voir aussi [8], Théorgme 6.1), et iii)=>ii) est évident. Prouvons donc
i) > iii). Pour cela nous montrons d’abord:

LEMME. Etant donnés une décomposition locale en produit C¥N =Y X CN~* et
un choix de coordonnées (y,, ..., Yo Zix1s - -+ » Zns byie - 2ibeiagy - - - 1ay) pour
CY X P¥~! adapté a cette décomposition, notons p:P¥ '\Proj(Y)— PN~ Iq
projection linéaire associée a ce choix. Soit L une sous-variété de CN x PN-1
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conique par rapport aux homothéties de CN™' et telle que la 1-forme « =
Y. b;dy; + ¥ a, dz; s’annule sur tout vecteur tangent a L' et que la projection
Id (CY) X p induise un morphisme fini L— L, de L sur son image L,c
Y X CV*x PN='"*. Alors L, est conique par rapport aux homothéties de CN™*
et l'espace projectivisé de L, par rapport a ces homothéties, noté P(L,)c
Y X P¥=1=t x PN=1! est une sous-variété Y-Lagrangienne.

Preuve du lemme: D’aprés I'hypothése il existe un ouvert dense U de L,

au-dessus duquel le morphisme L— L, est étale. Soient u, = (x, §,1:- - :5n)
un point de U et v; un vecteur tangent a L, en u,, ayant pour coOr-
données (dy,,...,dy, dz.y,...,dzy, O,4y,...,0n). Soient u=
(x,&:--:&:&4 .- -:EN) un point de L au-dessus de u, et v=(dy,, ..., dy,
dz,pq,...,dzn, 04,...,0, 6,4,...,0x) un vecteur tangent a L en u, qui se

projette sur v,. Il suffit de prouver que I'on a:

N

> adz, =0

t+1
ce qui résulte de la conicité de L; en effet si v=(dy,, ..., dy, dz,yy, ..., dzy,
64,...,0, 0,41,..., 0y) est tangent & L au point de coordonnées (y,, ..., ¥,
Ziatr ooy 2Zn; biicccibgagy:---:ay), pour AeC*, le vecteur v'=
(dyr,...,dy, Adz4y,...,Adzy, 64,...,08, 6;4y,...,0x) est tangent au
point (yy, ..., Yo AZig1s ..., AZy; byio--2bta, -+ -:ay) de L et 'on a

N t
a(vl) = 2 Aak dzk + Z b,‘ dy, =(
1

t+1

d’ou le résultat.

D’apres les résultats 4.4.2 2 4.4.5 de [17], et de I'appendice 4 de [34], le cOne
normal de C(Y)N C(X) dans C(X) est la fibre au-dessus de 0 du morphisme
composé q:C;(X)—>X—>C dont la fibre au-dessus du point veC est une
sous-variété qui est isomorphe 3 C(X)cCM x P¥~! et Lagrangienne pour la
structure donnée par la forme différenticlle o =} b; dy; + X a, dz,. Le mor-
phisme g satisfait ’hypothése du principe de spécialisation lagrangienne 1.2.6,
B). La forme « s’annule donc sur la partie non-singulie¢re de L =|q~'(0)|. De
plus, (loc. cit.), étant donnée une décomposition CV =Y x CV™!, cette fibre
réduite L est conique par rapport aux homothéties de CV~* puisqu’elle est
contenue comme sous-cone du c6éne normal de Y X CV~ x PV~! le long de
C(Y)=Y x {0} x PVN-1~,

Par ailleurs on suppose que (X°, Y) satisfait les conditions de Whitney, donc
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la condition w) d’aprés ([41], Chap. 5). D’aprés la Proposition 1.3.8, le
morphisme de cones normaux Ccx,ciryncon= Cewxx-1(v) €st fini d’aprés les
propriétés de la dépendance intégrale des idéaux (voir [41], Chap. 1, §1, et [24]).
Comme (X°, Y) satisfait la condition (a) de Whitney, il en résulte que le diviseur
exceptionnel D c E,C(X) est une sous-variété de Y x PV~*~1 x PV=*~1 et son
cone Ccx).x-i(y) €St une sous-variété de Y x C¥~*x P¥=*~! qui est conique par
rapport aux homothéties de CV~* et est I'image de L par la projection
YXCV*'XPV ! Y X CV*x P¥"1 Le lemme ci-dessus montre alors que le
diviseur exceptionnel D < EyC(X) est une sous-vari€té Y-Lagrangienne de
Y x PV~ x P¥=*~1 Chacune de ses composantes irréductibles met en dualité
ses images dans Y X PV ~*"! et dans Y x P¥*"1, &

Remarque. Le Théoréme ci-dessus contient la version correcte de la mal-
heureuse Proposition 1 de la note [40].

L’équivalence de i) et iii) peut étre reformulée comme ceci:

COROLLAIRE 2.1.2. Le couple de strates (X°, Y) satisfait les conditions de
Whitney si, et seulement si, pour tout « les images V, et W, de D, sont en Y-dualité
projective. Dans ce cas, |k ~'(Y)| est réunion des Y-duaux des V,. B

Remarque 2.1.2°°. La condition a) de Whitney pour (X°, Y) équivaut
clairement au fait que le diviseur exceptionnel ensembliste |7'(Y)| <
Y x PN~1=t x PN~ 50it en fait contenu dans Y X PV~ x PV1=* ob PV~ est
I’espace des hyperplans contenant (’espace tangent a) Y. D’aprés ce qui précede,
si a) est vérifiée, la condition b) de Whitney équivaut a ce que ce diviseur
exceptionnel soit de plus Y-Lagrangien dans Y x P¥~'~" x P¥=1—,

Nous verrons plus bas comment 1’'on peut calculer les V,,.

Lorsque Y est un point, les conditions de Whitney sont toujours satisfaites
(Lemme de Whitney, [47], corollaire immédiat de 1.3.8). Le théoréme 2.1.1
fournit donc, pour chaque x € X, une collection de sous-cOnes O(V,) du cone
tangent Cy ,, contenant en particulier les composantes irréductibles de |Cx .| et
telle que:

COROLLAIRE 2.1.3. L’ensemble |k~ '(x)| = BV~! des limites d’hyperplans
tangents @ X en un point x est la réunion des variétés projectives duales des

V,cPV! m

Remarque. 11 était connu de Zariski et Hironaka (Communications privées, et
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voir [18], th. 1.2.1) que le dual du projectivisé réduit du c6ne tangent est contenu
dans I'ensemble des limites d’hyperplans tangents. Dans le cas ou X est une
surface dans C°, on retrouve la structure de ([6]) puisque les cones O(V,) qui ne
sont pas des composantes irréductibles du cdne tangent sont des droites qui
définissent les tangentes exceptionnelles de X en x.

I1 est naturel d’introduire la définition suivante:

DEFINITION 2.1.4. Soient X cC" un espace analytique réduit et Y un
sous-espace analytique fermé de X. Notons D, les composantes irréductibles de
dimension N — 2 du diviseur image inverse de Y par le morphisme E,C(X)— X,
et V, leurs images dans e3'(Y). Les cones Y(V,) qui ne sont pas des composantes
irréductibles du cone normal de X de long de Y sont appelés cones exceptionnels
de X le long de Y.

La collection des Y-variétés projectives V, contenues dans le projectivisé du
cone normal de X le long de Y (ou, par abus de langage, celle des cones Y(V,)
contenus dans le cone normal de X le long de Y) sera appelée auréole de X le
long de Y. Lorsque Y est un point x, on dira auréole de X en x.

Remarques. 1) Parmi les V,, il y a les composantes irréductibles du
projectivisé réduit du cone normal de X le long de Y. Tous les V,, étant contenus
dans ce projectivisé, ils héritent d’une projection dans Y.

2) Bien que les V, puissent &tre définis pour tout Y, c’est seulement dans le
cas o (X° Y) satisfait les conditions de Whitney que I'on sait les relier aux
limites d’hyperplans tangents.

L’auréole apparait aussi naturellement dans la déformation sur le cOne
normal:

PROPOSITION 2.1.4.1. Gardons les notations de 2.1, supposons que (X°, Y)
satisfait les conditions de Whitney et posons q = f °k;: C;(X)—>X— C. Les cones
Y(V,) sont les images ensemblistes par x; dans f~'(0) = Cx.y des composantes
irréductibles de la fibre q~'(0).

D’aprés la proposition 4.2.2 de [17] ou I'appendice 4 de [34], le cOne normal
de C(Y)N C(X) dans C(X) est la fibre au-dessus de 0 du morphisme composé
q:C;(X)—>X—C. D’apres la Proposition 1.3.8, puisque (X°, Y) satisfait les
conditions de Whitney par hypothése, I'idéal définissant x~'(Y) dans C(X) a
méme cloture intégrale que I'idéal définissant C(Y) N C(X). Par conséquent le
morphisme naturel Ccx) cryncxy= Cowxy.x-i(vy des cones normaux di a
I'inclusion des idéaux est un morphisme fini et les composantes irréductibles de
ces deux cones ont donc les mémes images dans Cyx y. Par construction, le
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projectivisé de Cc(x) «-1(v) €st la réunion des composants D, de 2.1, d’ou le
résultat. W

Par ailleurs, 'auréole de X le long de Y a la propriété de minimalité suivante:

PROPOSITION 2.1.4.2. Si (X° Y) satisfait les conditions de Whitney, une
stratification Y-conique (T,) de |Cx y| qui satisfait la condition a) de Whitney a la

propriété que (X°, T,) satisfait a; pour tout t si et seulement si elle est compatible
avec les Y(V,).

Montrons que si la stratification est compatible avec les Y(V,), les hypotheses
de la proposition 1.3.5 sont satisfaites, avec la déformation f:X— C de X sur le
cone normal Cx y. On plonge X dans C X C" et on note p la projection de C x C
sur C. Le morphisme f est la restriction de p @ X. On reprend les notations de
1.3.4 avec x,:PT*(CxC"/C)—>C xC". D’aprés la remarque d) suivant la
proposition 1.2.6 le sous-espace C;(X) de PT*(C xC"/C) est p-Lagrangien.
Donc, avec g =f°k;, la fibre |g~'(0)| est Lagrangienne. D’apreés la Proposition
2.1.4.1. Si la stratification (7,) de X(0) satisfait la propriété (a) de Whitney et est
compatible avec les Y-cones Y(V,), la proposition 1.3.5 a) montre que (X°, T;)
satisfait a, pour tout 7.

Réciproquement, soit {7,} une stratification de |Cx y| satisfaisant a) et telle
que (X° T,) satisfasse a; pour tout 7. Fixons a. Il existe un 7 pour lequel
T. N Y(V,) soit ouvert et dense dans Y(V,). Soit z un point de I'intersection qui
est un point non-singulier de Y(V,) et done de I’espace réduit |7, N Y(V,)|.
Supposons que T, # Y(V,). Dans ce cas la dimension de 7, est strictement plus
grande que celle de Y(V,). Comme (X°, Y) satisfait les conditions de Whitney,
d’apreés la proposition 2.1.4.1 et le théor¢me 2.1.1, tout hyperplan tangent a
Y(V,) en z est limite d’hyperplans tangents aux fibres de f et contient donc une
direction limite T en z d’espaces tangents aux fibres de f. Comme le plan tangent
a T, en z est supposé strictement plus grand que celui de Y(Y,) en z, il existe un
hyperplan tangent a Y(V,) qui n’est pas tangent a T, c’est-a-dire ne contient
aucune direction limite T d’espaces tangents aux fibres de f contenue dans
'espace tangent a T,. Ceci contredit la condition 4, donc nécessairement T; est
contenu dans Y(V,). Ainsi chaque Y(V,) contient une strate dense, notée T,,. Si
onaT,NT,=T,NY(V,)#0, daprés la condition de frontiere T, c T,=Y(V,),
ce qui montre que {7} est compatible avec I'auréole de X le longde Y. W

Montrons maintenant comment le comportement de I’auréole de X le long de
Y décide des conditions de Whitney:
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PROPOSITION 2.1.5. Soient X un sous-espace analytique fermé réduit d’un
ouvert de CN et Y un sous-espace non-singulier connexe de X. Le couple (X°, Y)
satisfait les conditions de Whitney si et seulement si, pour chaque «, toutes les
fibres de la la projection V,— Y ont la méme dimension.

Démonstration. Supposons les conditions de Whitney satisfaites. On se place
en un point y de Y; on peut choisir des coordonnées locales en y de telle facon
que Y soit plongé linéairement dans CV et que 'on ait une rétraction locale
linéaire de C sur Y en y, c’est a dire localement en y une structure de produit
CN=CM*'xC, ot t=dimY, et Y={0} xC". Soit H un hyperplan de CV
général parmi ceux qui contiennent Y. Utilisant la rétraction, écrivons le
H=H,XxY, od Hy est un hyperplan de C"~". D’apres ([41], Chap. 5, 1.3),
(IX N H|% Y) satisfait encore les conditions de Whitney et par ailleurs d’aprés
(Loc. cit., Chap. 5, preuve de 1.2, p. 458)) nous avons un morphisme fini du
transformé strict |X N H|'™ par { de XN H sur E,C(|X N H|) qui a la propriété
que limage de D,N|XNH|'"" dans E,C(|XNH|) a pour image dans
E,(JX N H]|) l'intersection V, N (Y x P(H,)). Si toutes les fibres de V,— Y ne
sont pas de la méme dimension, on se rameéne par sections successives au cas ou
la fibre générale est vide, ce qui est contredit par le fait que le morphisme de
chaque D, sur Y est surjectif d’apres la condition ii) du théoreme 2.1.1.

Inversement, supposons que pour chaque a, toutes les fibres du morphisme
V,—Y aient la méme dimension; ceci implique que pour chaque a, le
morphisme D,— Y est surjectif. Comme D, est irréductible, 'image réciproque
d’un ouvert analytique dense de Y (par exemple celui ot (X, Y) satisfait les
conditions de Whitney) est dense dans D,. Comme dans ([41], Chap. 3, 2.3.1) on
remarque que les fonctions “sinus de 'angle d’un hyperplan tangent a X en
x € X° et de Ty, et “sinus de I'angle d’un hyperplan tangent 2 X en x € X" et de
la sécante xr(x)” s'étendent en des fonctions continues sur E,C(X). Les
conditions de Whitney étant satisfaites en tout point d’'un ouvert analytique dense
de Y (voir [46], [10], ou [41]), ces fonctions s’annulent en tout point d’'un ouvert
dense de chaque D,, donc sur D, tout entier, ce qui implique que les conditions
de Whitney sont satisfaites sur tout Y. W

2.2. Lorsque (X°, Y) satisfait les conditions de Whitney, la Proposition
suivante permet de ramener le calcul de l'auréole, donc celui des limites
d’espaces tangents a3 X° le long de Y, au calcul des cones normaux le long de Y
des variétés polaires de X, pour lequel on dispose de méthodes algébriques
effectives.

Rappelons d’abord qu’il a été prouvé dans ([41], Chap. 5, §2), que si (X, Y)
satisfait les conditions de Whitney et si I'on se donne une rétraction locale
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r:X—Y, les variétés polaires de X relatives a r coincident avec les variétés
polaires absolues de X.

PROPOSITION 2.2.1. Soient X un espace analytique réduit, Y un sous-espace
non-singulier de X tel que (X°, Y) satisfasse les conditions de Whitney en x € Y.
Choisissons un plongement local de (X, x) dans (C", 0), une rétraction locale
r:CN—Y, et identifions C avec Y x CN™" et avec son cone normal le long de Y.

Pour chaque entier, k, 0<k <d —1, considérons les projections linéaires
p:YXCV 'Y XC* " qui induisent Didentité sur Y et s’écrivent donc
p =1dy X p,.

a) Si po est assez générale, pour tout y € Y, le noyau Kerp, est transverse dans
CM~* a la fibre en y du cone normal le long de Y de la variété polaire P.(X;p).

b) Le cone normal le long de Y de la variété polaire P.(X;p) associée a une
projection linéaire p :C" — C*~**! comme ci-dessus est la réunion des Y(V,) de
dimension d — k et des variétés polaires relatives de codimension j (pour la
projection sur Y) des cones Y(Vg) de dimension d — k + j définies par la méme
projection p, pour j = 1. (Ces variétés polaires sont bien définies a cause du a)).

DEMONSTRATION. Puisque d’aprés ([41], Chap. 5, Th. 1.2, voir aussi
[7]), les variétés polaires Pi(X;p) sont équimultiples le long de Y, d’apres
([25], §5), I’assertion a) équivaut a la transversalité de Kerp et du cone tangent en
y a la variété polaire P,(X; p); cette derniére assertion est prouvée dans [22].

Prouvons b): Le Y-Projectivisé P(C;) du cone normal de P.(X; p) le long de
Y, est l'intersection avec ey!(Y) du transformé strict de P, par ey. D’aprés les
résultats généraux de transversalité ([41], 4.2.5, 4.3.1 et 5.2), c’est aussi I'image
par k' de Pintersection de la réunion des D, avec I'image réciproque par éy de
ATYL**), ot L4* est I’espace projectif des hyperplans de C" contenant Kerp.
Nous avonc donc I'égalité:

IP(C)l = Uy |&' (Do N (Y X PYI7 X L),

~

ou

Lg—k—-t — Ld—-k N [pN-l—t - [p)N—l—t.

Remarquons que cette derniére intersection est transversale parce que Kerp
est transverse a Y.

La transversalité de Kerp, et des V,(y) implique la transversalité des
intersections L, N W,(y) et de cela résulte que si dimV, =d — k — 1, I'image de
D, N (Y x PN~1=*x L&~*~") est bien une variété polaire relative de V,, égale a V,
si dimV, =d — k — 1. D’apres la Proposition 2.1.5, il suffit de raisonner en un
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point général de Y, et par une section transversale ([41], Chap. 3, 4.2.2) on se
ramene au cas ou Y est un point.

Puisque L?"* est supposé assez général, l'intersection de D, avec P¥~' x L4~*
est transversale, et est donc vide ou de dimension d — k — 1. Considérons les «
pour lesquels k'(D, N(PY~!x L*°*)) est vide ou de dimension d —k — 1. Si
I'image n’est pas vide, elle est contenue dans V, et I'on a donc dimV, =
d—k—1. Si elle est vide, D, N (P"~! x L4 %) est vide donc la fibre de D, au
dessus d’un point de V, est de dimension <N—-1—-d+k=N-2-(d—-k—-1)
d’aprés le Théoréme de Bézout, ce qui implique dimV,=d -k -1
Inversement, supposons avoir dim V, =d — k — 1; comme le morphisme k' | D,
fait de D, le conormal de V, dans P!, 'image x'(D, N (PY"! x LY7%)) est par
définition une variété polaire de dimension d — k — 1 de V,, donc est vide ou de
dimension d — k — 1 (Voir [22]).

Remarques 2.2.1.1. 1) Aprés la Proposition 2.2.1, on peut retrouver une
partie de la Proposition 2.1.5, en utilisant le fait que d’apres ([41], Chap. 5, Th.
1.2), si (X°, Y) satisfait les conditions de Whitney, les variétés polaires de X sont
équimultiples le long de Y, et que ceci implique d’apreés [11] ou ([24], §2)
’équidimensionalité des fibres du cone normal de Y dans les P (X), dont les
Y(V,) sont des composantes irréductibles.

2) De ce que nous venons de voir et des résultats de ([41], Chap. 5), il résulte
que les morphismes V,— Y et D, — Y sont a fibres de dimension constante dés
lors qu’ils sont surjectifs: il semble que quelque chose s’oppose a ce qu’ils
présentent de I’éclatement.

3) Par contre, les morphismes D,— V, peuvent présenter de I’éclatement.
Néanmoins, la dimension des fibres générales du morphisme induit D,(y)—
V,(y) ne dépend pas de y quand (X°, Y) satisfait la condition a) de Whitney.

DEFINITION 2.2.2. Soient Y(V,) un cone exceptionnel pour X le long de Y
et H un hyperplan de C" tangent a Y(V,). Nous dirons que _H est un hyperplan

exceptionnel associ€ a V, s’il n’est tangent & aucun des Y(Vp) tels que V, soit
contenu dans Vj.

En un point assez général d’'un cOne exceptionnel, presque tous les
hyperplans tangents sont exceptionnels. Cette terminologie differe légérement de
celle de [6] et [23] ou n’était considéré que le cas ol X est une surface et Y un
point.

La Proposition 2.2.1 montre que les cdnes normaux le long de Y des variétés
polaires interviennent de fagon essentielle dans la structure de ’ensemble des
limites d’hyperplans tangents & X aux points de Y, et que ces cOnes ont des
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composantes dépendant de la projection servant 2 les définir, et d’autres qui en
sont indépendantes, ce qui motive la définition suivante:

DEFINITION 2.2.3. Soient Y c X tels que (X°, Y) satisfasse les conditions
de Whitney. Les composantes de dimension d — k du c6ne normal le long de Y de
la variété polaire de dimension d — k qui sont des Y(V,) ne dépendent pas de la
projection p et sont appelées composantes fixes de ce cone normal. Les autres
varient effectivement avec la projection, comme les variétés polaires projectives
le font toujours, et sont appelées composantes mobiles.

Remarque. 1l est immédiat de voir que si X est le cone O(V') sur une variété
projective V, les variétés polaires de X sont les cOnes sur les variétés polaires de
V au sens projectif (Cf. [31]) et n’ont aucune composante fixe a part X lui-méme.

Le résultat suivant précise dans le cas absolu le Corollaire 5.6 de [8] et, joint &
la Proposition 2.2.1, nous donne la structure de I’ensemble des hyperplans
tangents aux images polaires d’un espace analytique X:

THEOREME 2.2.4. Au voisinage de xe Yc X cCV, si (X°, Y) satisfait
les conditions de Whitney en x, pour tout k, 0<k=<d—1, l'image polaire
A, cC¥%*Y de la wvariété polaire P.(X;p) correspondant a une projection
p:CN— C¥**! gssez générale satisfait les conditions de Whitney le long de
I'image Y, =p(Y) et a pour auréole le long de Y, la collection des images par
Papplication P |Cx, y|— PCci-++1 v induite par p des V, de dimension <d—k—1
et des composantes irréductibles du cone normal de P,(X, p) le long de Y.

DEMONSTRATION. Soit L «PV~! I'espace projectif de dimension d — k
formé des hyperplans contenant le noyau de p. Notons P, la variété polaire
correspondante et A, son image dans C?**!. On a pour A, le diagramme
normal/conormal le long de Y;:

EyC(AL) LN C(A,) c CH+1 x [pd—*

| b

EYIAL __;_) ALCCd—k+1

e

L’auréole de A, est par définition la collection des images par k' des
composantes irréductibles de (e, ° k;)~'(Y;). Nous allons obtenir ces composantes
a partir de la géométrie du diagramme normal/conormal de X = C":

X X PVt x PV 5 ELC(X) —= C(X) e X x PN

I

XxPV-'""'5E,X —> XcCV
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Tout d’abord, I'application H— p(H) de L dans P¢~* induit évidemment un
isomorphisme de C(A.; CY)N(CY x L) sur C(A,), ou C(A.;C") est le conor-
mal de A, dans C".

D’autre part, la méme application H+ p(H) induit un morphisme fini et
biméromorphe 7:|A”'(L)|— C(A,).

En effet, le morphisme Cp ¢— Cga-x+1 induit par p est fini d’aprés ([22],
4.1.8), donc le morphisme P, — A, induit par p est fini d’apres ([41], Chap. 1, 5.2
ou [22], §1). Il est biméromorphe puisque sinon, en prenant I'image réciproque
d’un 2-plan général de C*~“*!, on obtiendrait une projection non biméromorphe
d’une courbe polaire générale sur son image (voir [20], 4.1.6), en contradiction
avec ([41], Chap. 5, Lemme-cl€). (Pour une autre démonstration du fait que cette
projection est finie et biméromorphe, voir [8], 4.3.6). On a donc un ouvert
analytique dense U de P,, isomorphe par p a un ouvert analytique dense U, de
A;. Comme d’aprés 1.5.5.2, le morphisme |A~'(L)|— P, induit par k est une
modification, I'image inverse V de U par ce morphisme est dense dans A~'(L).
L’application (x, H) > (p(x), p(H)) est un isomorphisme de V sur I'ouvert V,
image réciproque de U, dans C(A,) par k.. Par continuité, on obtient le
morphisme biméromorphe 7, qui est fini puisque la restriction de p a P, I'est (voir
aussi [8] 4.3.11).

On construit un diagramme commutatif:

€'~ '(Ly)l —> 1A7(D)I

T r

EyCA) — C(A)

ol les morphismes horizontaux sont induits par les morphismes é et é,
respectivement, T est le morphisme que nous venons de construire, et T le
morphisme induir par (x, l, H)— (p(x), p(l), p(H)). Ce dernier morphisme est
bien défini: en effet, la projection étant générale, le morphisme Cp, y—> Cei-t+1y,
induit par p est fini, d’aprés ([22], 4.1.8) qui donne la finitude pour les cOnes
tangents, les conditions de Whitney qui d’apres ([41], Chap. 5, Th. 1.2), donnent
I'équimultiplicité de P, le long de Y, et ([24], §5) qui permet de passer grice a
’équimultiplicité du cone tangent au cone normal. L’application [+~ p(l) est
donc bien définie. L’isomorphisme ci-dessus entre U et U, induit par p montre
que I'image de |Cp, y] dans Cea-r+1 y, st |Cy, v, |, €t donc que T est bien défini, fini
et.biméromorphe.

Nous retrouvons ainsi le fait prouvé dans ([22], 5.1.3.2) que % est le
morphisme transformé strict de 7 par é, cest-a-dire que |[é7'(A7!(L))| est le
transformé strict de A~'(L) par é.

Notons D, le diviseur image réciproque de Y; dans E,,C(A,) par {; =e,°k};
c’est I'image par ¢ de Dy = U(D, N (Y xPY~""!'x L)) ou les D, sont ceux de
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2.1.1. Comme L est assez général, Y Xx P¥~'"! x L est transverse a chaque D,.
On en déduit que les composantes de D; sont les D, N (Y X P¥Y™*"! X L) non
vides; en effet, les morphismes D, — Y sont surjectifs, et il résulte du Théoréme
de Bertini que leur fibre générale D,(g) est irréductible. Les points singuliers de
D,(g)N(PY~*"'x L) sont les points d’intersection avec P¥~*"'x L du lieu
singulier 2 de D,(g), et d’aprés le Théoreme de Lefschetz quasi-projectif, ([5],
Theorem 2.1.2), si L est assez général, l'intersection (D,(g) — Z)N(PV "' x L)
est connexe, donc D,(g)N(PY*"'!X L) est irréductible, ce qui donne
Pirréductibilité de D, N (Y x PY~"! x L). Puisque L est assez général, et que
toutes les fibres de D,— Y ont la méme dimension, les composantes de D;, qui
sont les D, N (Y X PY~*~! x L) non vides sont aussi équidimensionelles au-dessus
de Y;, ce qui prouve ([41], Chap. 5, Th. 1.2) que A, satisfait les conditions de
Whitney le long de Y; (Pour une autre démonstration de ce fait, voir [8], Th.
6.1).

L’application (x, [, H)—(p(x), p(H)) définit un morphisme analytique
|6~ (A"Y(L))|—= Ey,(AL) égal a la composition de % et ;. L’auréole de A, le long
de Y; est donc formée des images par ce morphisme des D, N (Y x P¥N~*"1x L)
non vides. Montrons que les images par p des V, de dimension <d — k — 1 sont
des composantes de cette auréole. Pour cela, il suffit de remarquer que le
morphisme D, N (Y X PV~*~1 x L)— V, est surjectif si et seulement si la dimen-
sion de V, est <d —k —1, et que cette surjectivité entraine que I'image que
I’élément correspondant de 'auréole de A, est I'image de V,. Les images des
D, N (Y xP¥Y"*"1x L) correspondant aux autres V, sont les images par p des
composantes irréductibles de P(Cp, y) d’aprés la Proposition 2.2.1. W

Dans la situation de 2.2.4, nous dirons par abus de langage que I'auréole de
A, le long de Y, est I'image par p de 'auréole de X le long de Y.
Nous sommes maintenant en mesure de prouver ’énoncé “‘dual” de 2.1.5.

COROLLAIRE 2.2.4.1. Soient X un sous-espace analytique fermé réduit d’un
ouvert de CV et Y un sous-espace non-singulier connexe de X. Le couple (X°, Y)
satisfait les conditions de Whitney si et seulement si, pour chaque «, toutes les
fibres de la la projection W, — Y ont la méme dimension.

DEMONSTRATION. Si toutes les fibres ont la méme dimension, les
morphismes W,— Y sont surjectifs, donc aussi les morphismes D,— Y ce qui
implique les conditions de Whitney d’aprées la remarque 2.2.1.1, 2).

Supposons avoir les conditions de Whitney le long de Y, et qu’un morphisme
W, — Y n’ait pas toutes ses fibres de méme dimension. Soient 8 la dimension de
la fibre générale et 8,> 6 la dimension de la fibre spéciale au-dessus de x € Y.
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Choisissons une projection générale p:C¥—C?**1 ol §=N—-1—-d +k>6.
Soient A I'image polaire correspondante et Y; I'image de Y par p. Comme dans la
preuve de 2.2.4, on a le diagramme commutatif:

le=' @7 (L) — 1IATH(L)]

L

E,,C(4) — C(4)

ou 7 et ¥ sont des morphismes finis et biméromorphes; les composantes de
W, N L sont des composantes irréductibles de x~'(Y) N A~!(L). Le morphisme é
envoie les composantes irréductibles de D, Né~'(L) sur celles de W, N L. Le
morphisme % envoie les composantes irréductibles de D, Né~'(L) sur des
composantes du diviseur image inverse de Y; dans E,, C(A) et, comme W, N L,
celles-ci ne s’envoient pas surjectivement sur Y;, ce qui contredit le Théoréme
2.2.4 et ([41], Chap. 5, Th. 1.2). B

Nous pouvons résumer les résultats du théoréme 2.1.1, la proposition 2.1.5, la
remarque 2.2.1.1, 2) et le corollaire 2.2.4.1, avec les mémes notations, par:

PROPOSITION 2.2.4.2. Soient X un sous-espace analytique fermé réduit d’un
ouvert de C" et Y un sous-espace non-singulier connexe de X. Les conditions
suivantes sont équivalentes:

1) Le couple (X°, Y) satisfait les conditions de Whitney

2) Pour tout «, la projection V,— Y est surjective (resp. toutes les fibres de la
projection V,— Y ont la méme dimension);

3) Pour tout a, la projection W, — Y est surjective (resp. toutes les fibres de la
projection W,— Y ont la méme dimension);

4) Pour tout «, la projection D, —> Y est surjective (resp. toutes les fibres de la
projection D, — Y ont la méme dimension). B

Rappelons la Proposition suivante (Voir [8], 4.3.12):

PROPOSITION 2.2.5. Soient X = CV un espace analytique réduit purement de
dimension d, x un point de X, k et k' deux entiers tels que 0<k<k'<d -1,
p :CN— C4~**! une projection linéaire générale et p,:C*~**'— C**"*! une autre
projection linéaire générale. Posons p' =p,°p et notons A, et A, les images
polaires associées a p et p' respectivement. Au voisinage de I’image de x par p',
I’image polaire de dimension d — k' associée par p, a 'image polaire A, est égale a
I'image polaire A,..
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DEMONSTRATION. Soient L et L' les sous-espaces de P¥~! formés des
hyperplans contenant les noyaux de p et de p’ respectivement. Nous avons vu
dans la preuve de la proposition précédente que le morphisme H+— p(H) induit
un morphisme fini et biméromorphe 7:|A"'(L)|— C(A,). L'image par t de
|A"Y(L")| est égale a |C(A)NALY(L})|, o A, est le morphisme naturel
C(AL)—>P? % et L est I'espace des hyperplans de C*~**! contenant le noyau de
p.. Soit A, 'image polaire de A, dans C?~*'*! associée a p,; toujours d’apres ce
qui précéde, le morphisme L;— P*~* défini par H,~ p,(H;) induit un mor-
phisme fini et biméromorphe |C(A.)NAL'(L})|— C(A,). D’autre part, on a
évidemment une inclusion A; . < A,, comme on le vérifie en un point non-
singulier de A,.. Enfin, le diagramme suivant, ou les fleches verticales sont des
morphismes propres et biméromorphes, commute:

ATN(L') — |C(A) NALY(L)I

,, l

C(AL) C(4)
AL'( > A]

I'inclusion est donc une égalité. W

On retouve ainsi le fait que pour k <k’', 'auréole de A, le long de I'image de
Y par p’ est image par p, de 'auréole de A, le long de Y;.

2.3. Pour étudier le comportement de ’auréole par section hyperplane, nous
avons besoin de préciser des conditions géométriques sur une projection p non
nécéssairement générique suffisantes pour que I'on puisse obtenir une description

analogue a celle de 2.2.1 du cone normal de la variété polaire associée a la
projection p:

PROPOSITION 2.3.1. Soient X cC" wun espace analytique réduit
équidimensionel, Y un sous-espace non-singulier de X tel que X° satisfasse les
conditions de Whitney le long de Y en un point x € Y. Soit H un hyperplan de cV
passant par x et non tangent a X.

Pour tout entier k entre 0 et d — 1, il existe un ouvert de Zariski dense U de
Pespace des projections linéaires p :CY — C*~**! dont le noyau est contenu dans H
tel que pour p € U, la variété polaire associée a p soit vide ou de dimension d — k,
et que le réduit de son cone normal le long de Y soit constitué des Y(V,) qui sont
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de dimension d —k et des P(Y(V3);p)=Y(P(Vs;p)), ou les P(Vg;p) sont les
variétés polaires au sens projectif de dimension d — k relatives a la projection p des
Vs de dimension >d — k.

DEMONSTRATION. Fixons au voisinage de x une stratification de Whitney
de C(X) compatible avec chaque W, ainsi que k~'(x) et une rétraction analytique
r:C¥N—Y. Comme H n’est pas tangent 2 X en x, il n’est tangent & aucun Y(V,)
d’apres 2.1.1, et en particulier, H N Y(V,) est de dimension dim Y(V,) — 1.

Constatons I'existence d’un ouvert dense U de I’espace des projections dont le
noyau est contenu dans H tel que pour p € U, le dual projectif L = P¥~! de Kerp,
espace des hyperplans contenant Kerp, soit transverse dans PV~' aux strates
contenues dans k~'(x), que Kerp N Y(V,)= {0} pour tous les Y(V,) de dimen-
sion <d—k, et que KerpNY(F(Vg;p))={0} pour tous les P(Vy;p) de
dimension d — k.

Remarquons que 'hypothése que p est dans U suffit pour pouvoir appliquer
Pargument démontrant la Proposition 2.2.1, b), car L sera alors transverse
au-dessus d’un voisinage de x aux strates contenues dans k~'(Y), et 'on pourra
appliquer le Lemme de transversalité de ([41], Chap. 3, 5.2) a L et au morphisme
éy: EyC(X)— C(X), et achever la démonstration comme en 2.2.1. B

L’auréole se comporte bien par section hyperplane générale:

Rappelons que si la forme initiale dans le gradué gr, 0y, d’une équation de H
dans C" n’y est pas diviseur de 0, on a identification canonique du cdne normal
Cxnu.ynn avec le sous-espace de Cy y défini par la forme initiale le long de Y
d’une équation de H, sous-espace que nous noterons Cy N "H. Clest le cas en
particulier si H n’est pas tangent a3 Cy y. Nous noterons t:P(Cx y) NP(*H)—
P(C,xnn,, ynu) l'identification correspondante aprés projectivisation.

THEOREME 2.3.2. Soient X c C" un espace analytique réduit purement de
dimension d, et Y un sous-espace non-singulier tel que (X', Y) satisfasse les
conditions de Whitney en un point y € Y. Soit H un hyperplan de C" passant par y
et qui n’est pas tangent a X rn v; alors on a:

i) L’hyperplan H n’est tangent a aucun des Y(V,) constituant I'auréole de X le
long de Y.

ii) L’intersection X" N H est, au voisinage de y, la partie non-singuliere de
X N H et satisfait les conditions de Whitney le long de Y N H en y.

iii) L’identification « identifie la famille des |V, N P(YH)| non vides a I'auréole
de | XN H| le long de Y N H.
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DEMONSTRATION. i) est une conséquence immédiate du Théoréme 2.1.1.

On a P’inclusion évidente (X N H)° = X°N H. L’ouverture de la transversalité
implique que H est transverse 2 X° en tout point assez voisin de y, et que cette
inclusion est une égalité (Voir [36], §1). Ceci prouve la premiére partie de ii) et
I'égalité |P.(X; p) N H| = P.(|X N H|; p) pour tout k et toute projection p dont le
noyau est contenu dans H et au demeurant assez générale.

La seconde partie résulte de ([41], Chap. 4, 5.1, 5.3.1, et Chap 5, Th. 1.2) ou
de l'argument suivant, qui prouve aussi iii) d’aprés 2.1.5: d’aprés 2.3.1, les
variétés polaires de X associées a des projections assez générales parmi celles
dont le noyau est contenu dans H ont pour composantes fixes de leur cOne
normal les Y(V,) de la bonne dimension. Comme H n’est pas tangent au cOne
normal le long de Y de ces variétés polaires, on a pour chaque k égalité entre
P'intersection avec YH du cone normal de P.(X; p) le long de Y et le cdne normal
le long de Y N H de l'intersection avec H de P.(X; p). D’apres 2.2.1, I’auréole de
|X N H| le long de Y N H est la famille formée des |V, N P(*H)| non vides. W

Remarque. Puisque (X°, Y) satisfait les conditions de Whitney, d’apres ([41],
Chap. 5, 1.2.1), la condition que H ne soit pas tangent a X en x est en particulier
vérifi€ée pour tout hyperplan appartenant & un ouvert dense de l’espace des
hyperplans contenant Y (que nous pouvons supposer plongé linéairement).

COROLLAIRE 2.3.2.1. Soient c un entier et E un sous-espace vectoriel de C¥
de codimension c qui est intersection de c hyperplans H,, . . . , H_ tels que H, ne soit
pas tangent a | X "H,NH,N---NH;_| pour 1<i=<c. Alors la multiplicité en x
des variétés polaires P.(|I X N E |) est égale a celle des variétés polaires P.(X) pour
O<k=<d-c-1.

Cela résulte aussitot du Théoreme 2.3.2 et de la Proposition 2.2.1, b). R

Le théoréme 2.3.2 nous permet maintenant d’obtenir ce qui est d’aprés [36] et
[44] une généralisation de I’énoncé “u constant entraine u* constant pour les
sections hyperplanes d’'une méme hypersurface” de ([44], Appendice):

COROLLAIRE 2.3.2.2. Supposons Y plongé linéairement dans C". Soit U
Pouvert de Zariski dense de PV~ formé des hyperplans non tangents a X en x, et
soit E c U X CN la restriction a U du fibré tautologique de PN, dont la fibre
au-dessus d’un point est 'hyperplan correspondant. Posons X=E N (U X X) et
Y=EN(UXY)cX, et notons n:X—> U la projection. Soient U, I’ouvert dense
de U formé des hyperplans transverses a Y et U, le fermé analytique de U formé
des hyperplans contenant Y. Notons o la section U— Y qui pique le point x dans
chaque fibre. Pour =0, «, le couple de strates (|n~'(Us)I°, n~'(Us)NY)
satisfait les conditions de Whitney au voisinage de o(Us).
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DEMONSTRATION. Rappelons d’abord que d’aprés ([41], Chap. 5), pour
tout H € U, le couple (|X N H|, Y N H) satisfait les conditions de Whitney en x.

D’apres (loc. cit., Chap. 2, §3), si nous choisissons des coordonnées pour cN
telles que H soit défini par z, =0, et des équations £, =0 (1<i<m) pour X, le
fait que H soit dans U est équivalent a I’énoncé suivant:

Dans Oy ,, 'idéal engendré par les mineurs jacobiens de rang c =N —d, ou
d = dim X, des fonctions f;, au dénominateur desquels z, apparait, est entier sur
I'idéal engendré par les autres mineurs.

Si I’on se restreint a I'intersection V de U et de 'ouvert affine de PV~! ot les
hyperplans ont pour équations z;=Y a;z; et si l'on écrit F(a,, ..., ay,
Z, ..., 2n) pour fi(X a;zi, 25, .. ., zy), les F,=0 sont les équations de x~'(V)
dans V x CV. D’aprés (loc. cit.), pour chaque 4 le fait qu’un hyperplan ¥ A,a; =0
de V x C" ne soit pas limite d’hyperplans tangents a &~ '(V) est également une
condition de dépendance intégrale sur les mineurs jacobiens des F;, et I’on vérifie
facilement que c’est une conséquence de la condition précédente. On peut itérer
ce résultat a I'intersection de plusieurs hyperplans de la méme forme.

Puisque d’apres (loc. cit., Chap. 5), les conditions de Whitney se rameénent a
une question d’équimultiplicité des variétés polaires, et puisque pour chaque
H € U, les variétés polaires de |X N H| sont équimultiples le long de YN H et
puisque enfin, d’apres la transversalité que nous venons de voir, cette multiplicité
est bien celle des variétés polaires de X, ’ensemble des points de 7~ '(Us) N Y on
elles ne sont pas satisfaites est, au voisinage de o(U,), un fermé analytique de la
forme 77'(A)NY ou A c U, pour § =0, .

Pour montrer que A est vide, on peut supposer le contraire et restreindre tout
la situation au-dessus d’une droite D de U, qui ne rencontre A qu’en un point 0 et
qui est la trace sur Us de l'intersection d’hyperplans de PV~! dont les images
réciproques dans V x PV~! satisfont, toujours parce que V est dans U, les
conditions de transversalité itérée de 2.3.2.1: pour montrer que A est vide il suffit
de montrer que | ~'(D)] satisfait les conditions de Whitney le longde #7'(D) N Y).
Soit ¢t une coordonnée locale sur D en 0; le méme argument de dépendance
intégrale que plus haut montre que I'hyperplan ¢t =0 de D x C" n’est pas limite
d’hyperplans tangents a |7~ '(D)| au voisinage de o(D).

Le Théoréme 2.3.2 montre alors que d’une part, pour tout point H,e D
auréole de #~'({H,}) le long de &~ '({H,}) NY est l'intersection avec {H,} x C"
de 'auréole de &~ '(D) le long de 7 '(D)NY, qui est non-singulier puisque D
est dans Uy, et que d’autre part 'auréole de 7~ '({H,}) le long de x7'({H,})NY
est la collection des |V, N H,| non vides. Le corollaire résulte alors de 2.1.5. W

COROLLAIRE 2.3.2.3. Si HcC" n’est pas tangent @ X en x, pour tout k
entre 0 et d—1, il existe un ouvert dense V de l'espace des projections
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p:C¥N—>C***! dont le noyau est contenu dans H tel que pour peV, la
multiplicité de P,(X; p) soit la multiplicité d’une variété polaire P, générique.
Cela résulte aussitot de 2.3.2.1. B

Remarques. 1) Récemment, Smith et Varley ([35]) ont utilisé le cas Y = {x}
du Théoréme 2.1.1 de fagon trés ingénieuse pour déterminer la structure du c6ne
tangent du discriminant de la famille des hypersurfaces projectives de degré d de
P" ou du diviseur théta universel.

2) Il ressort du travail de Mostowski [27] sur les stratifications Lipschitziennes
que certaines des composantes fixes des variétés polaires sont fixes a un ordre
élevé qui contient de I'information géométrique importante.

Appendice: Calcul d’un exemple

Soient a, b, ¢, d quatre entiers tels que 2<a<b<c<d, et considérons
hypersurface (X, 0) = C* d’équation:

x*+y?+z°+w?=0.

Appliquons notre méthode pour calculer ’ensemble des limites en 0 d’espaces
tangents a X.

Il faut d’abord calculer les équations des variétés polaires P, et P, de
dimensions respectives 1 et 2.

Soient a, B, y, 8 et a’, B, y', &' deux suites de nombres complexes assez
générales. La variété polaire P, est la surface d’équations:

X+yP+z84+wi=0 et ax® '+ By" ' +yz T+ 6w =0
et P, est la courbe intersection de P, avec I'hypersurface d’équation
a/fxw-l o ﬂryb—-l + lec-l + (S’Wd_l =0

L’idéal des formes initiales pour la filtration m-adique de I'idéal définissant P,
contient x*~! et y>~!(Bx — ay). Comme nous savons d’aprés [36] et [44] que la
multiplicité de P, en 0 est u® + u® =(a —1)b, ces deux éléments engendrent
Iidéal initial. La composante fixe du cone tangent de P, est donc ensemblistement
le plan x = y = 0. De fagon analogue, puisque nous savons que la multiplicité de
P, en 0 est u® + u® = (a — 1)(b — 1)c, nous vérifions que I'idéal initial de I'idéal
définissant P, est engendré par (x*~', y°~', z7'(Ux+ Wy + Tz)), oa U, W, T
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sont des fonctions non constantes de a, B, y, 4, a', B', y', 6’. La composante
fixe est donc la droite x =y =z =0.

Ainsi, ’espace des limites en 0 d’espaces tangents a X est le plan projectif de
P* dual du point x =y =2z =0 de P* (alors que le dual du céne tangent est un
point de ce plan). Ceci signifie qu'un hyperplan &x + ky + Az + aw =0 de C* est
limite d’espaces tangents si et seulement si & est nul, ce qui confirme les résultats
de [44]. Nous encourageons le lecteur a étendre les calculs au cas a <b <c <d.

L’effectivité du calcul repose sur la relative facilité avec laquelle on trouve les
équations du cone tangent des variétés polaires, et donc leurs composantes fixes,
grace aux calculs de bases standard. Dans I’exemple ci-dessus, nous avons pu
simplifier ces calculs grice a des informations spéciales, mais ils sont en principe
effectifs en général.
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