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On products of soluble groups of finite rank

John S. Wilson

1. Introduction

1.1. If H, K are subgroups of a finite group G, then the set HK contains
\H\ \K\l\HCiK\ éléments; thus writing s(X) log|X| for each finite group X, we
hâve

with equality if and only if G HK. More generally, suppose that s is a function
mapping groups to éléments of {x; xgU, jc&gt;0}U{o°} and suppose that s is

constant on isomorphism classes, additive on extensions, and satisfies s(Y)^s(X)
whenever Y is a subgroup of X. If H, K are subgroups of a group G and K is

normal, then

H/(H flX) HK/K &lt; GIK,

and so again (*) holds, with equality if G HK. There are many &quot;rank functions&quot;

s which hâve thèse properties. Our intention hère is to consider some of those
which are useful in the study of infinité soluble groups, and to investigate to what
extent the above conclusions are valid if the requirement that K be a normal
subgroup is relaxed.

The rank function that we shall be mainly concerned with is minimax rank.
The minimax rank m(X) of a group X is the number of infinité factors in a finite
séries

i xo&lt;.-.&lt;ixn x
for X with ail factors finite, cyclic or quasicyclic, if such a séries exists, and is

infinité otherwise. It follows from Schreier&apos;s refinement theorem that m(X) is an
invariant of X. The groups with finite minimax rank are just the soluble by finite
minimax groups, and a description of many of the properties of thèse groups can
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338 JOHN S WILSON

be found in Robinson [7], Chapter 10. Polycyclic groups are minimax, and the
minimax rank of a polycyclic group X is just its Hirsch number h(X). We shall say
that a group G is almost the product of its subgroups H, K if the set HK contains
a subgroup of finite index in G. We may now state our first resuit as follows:

THEOREM 1. Let H, K be subgroups of a soluble by finite minimax group G.

Then
(a) m(G) + m(HnK)&gt;m(H) + m(K), and
(b) equality holds in (a) if and only if G is almost the product of H and K.

This is not in the same category as the elementary results mentioned earlier:
we shall show later that it implies a weak form of Dirichlet&apos;s Unit theorem. The
fact that the above equality holds if G HK was proved for the case when H, K
are abelian by Zaicev in [10], and for the case when H, K are nilpotent by
Amberg and Robinson in [1].

1.2. Theorem 1 yields information about subgroups of a minimax group which

permute with each other, because of the simple

LEMMA 1. For subgroups H, K of a group G the following conditions are

équivalent:
(i) G is almost the product of H and K;
(ii) H has a subgroup Ho of finite index such that H0K KH0 and \G : H0K\ is

finite ;

(iii) K has a subgroup Ko of finite index such that HK0 K0H and \G : HK0\ is

finite.

Proof. Each of (ii), (iii) clearly implies (i). If (i) holds, there is a subgroup
L&lt;G with G/L finite and L&lt;HK We define H0 HHLK; thus LK is a

subgroup, and both \H:H0\ and jG:LK| are finite. However

This and a similar argument show that (i) implies (ii) and (iii).

We may now deduce

COROLLARY 1. Let H, K be subgroups of a soluble by finite minimax group
G such that HK KH, and let Hr be a subgroup of finite index in H. Then there

exists a subgroup H2 of finite index in Ht such that H2K KH2.
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To prove this, we apply Theorem 1 twice. First we obtain

then, since m(HnX) m(HiflK) and m{H) m(H^, we deduce that HK is
almost the product of JF^ and K, and the resuit follows from Lemma 1.

It has long been known that every product of two abelian groups is metabelian
(Itô [5]), and one suspects that every product of two abelian by finite groups is

metabelian by finite. The next corollary provides further évidence for this
conjecture.

COROLLARY 2. Let G HK, where H, K are abelian by finite. If G is

soluble by finite and minimax, then G is metabelian by finite.

Corollary 1 permits us to deduce this from Itô&apos;s theorem; it yields an abelian
subgroup of H2 of finite index in H such that H2K KH2 and an abelian
subgroup K2 of finite index in K such that H2K2 K2H2. Thus H2K2 is a

metabelian subgroup, and it has finite index in HK since \HK : H2K\ &lt; \H : H2\ and

\H2K:H2K2\^\K:K2\.

1.3. The other rank functions that we consider are torsion-free rank and Cp~-

rank. The torsion-free rank ro(X) of a group X is the number of infinité cyclic
factors in a finite séries for X each of whose factors is either infinité cyclic or a
torsion group; and for each prime p the Cp~-rank rp(X) is the number of factors
quasicyclic of type Cp~ in a finite séries each of whose factors either is of type Cp~

or has no sections of type Cp~. Of course thèse are understood to be infinité if no
séries of the required type exist, and, if finite, they are invariants by Schreier&apos;s

refinement theorem. It is easy to see that the class of soluble by finite groups
having no infinité abelian sections of finite exponent contains the class of soluble
by finite minimax groups and is contained in the class of groups of finite
torsion-free rank. We shall prove the following two results:

THEOREM 2. If G is a soluble by finite group having no infinité abelian
sections of finite exponent and if G is almost the product of its subgroups H, K, then

ro(G) + ro(H HK) ro(H) + ro(K).

THEOREM 3. Let G be a soluble by finite minimax group and let H,K&lt;G.
Then for each prime p

(a) rp(G) + rp(HflK)&gt;rp(H)+rp(K), and
(b) equality holds in (a) if G is almost the product of H and K.



340 JOHN S WILSON

If X is a minimax group, then m(X) ro(X) + £ rp(X), the sum being taken
over ail primes p, and so Theorem 2 and Theorem 3 provide one of the
implications in Theorem l(b). In conjunction with Theorem 1, they yield a little
more information than Theorem l(b).

COROLLARY 3. If G is a soluble by finite minimax group and H, K are
subgroups of G, then G is almost the product of H and K if and only if

rp(G) + rp(H H K) rp(H) + rp(K)

for p 0 and for every prime p.

1.4. Let R be a commutative ring and U a subgroup of its group of units, and

write G for the group of matrices

lu b\
Vo î/&apos;

with ueU, beR. Let A, H be respectively the group of ail upper unitriangular
matrices in G and the group of ail diagonal matrices in G, and let K be the group
of ail matrices

(u u-l\
Vo i r

with u e U. Thus A is normal in G and is isomorphic as an abelian group to R,
while both H and K are compléments to A in G and are isomorphic to U.

Our theorems are proved by first reducing to the case of groups with structure
rather like this group G, and similar réductions would apply for any sufficiently
well behaved rank functions. It is in the considération of groups with the above

structure that the choice of rank function becomes important, and we can best

illustrate this with some examples.

EXAMPLE 1. First we take jR=Z[1/s], where s is the product of distinct

primes pi,..., pn, and we take U to be the multiplicative group generated by

Pi,..., pn. Thus G is minimax and

m(G)=m(A) + m(H) 2n 4-1.
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However

ro(G) n + l and HC\K=1,

so that

ro(HnK)- ro(H)- ro(K) =n + l-2n l-n.

Therefore no inequality holds in Theorem 2 corresponding to the inequalities in
Theorem l(a) and Theorem 3(a).

EXAMPLE 2. More generally, we take for R any ring which is minimax
regarded as an abelian group, and we take for 17 any finitely generated subgroup
of its group of units. Then

m(G)+m(HnK)-m(H)-m(K) m(A)-m(H) m(R)-m(U).

According to Theorem 1 we therefore hâve m(U)&lt;m(R). This applies in
particular if R is the ring of integers of an algebraic number field F, and it shows
that no abelian subgroup of the group of units of R has torsion-free rank greater
than dimQ F. This is the weak form of Dirichlet&apos;s Unit theorem mentioned earlier.
In fact Theorem 3(a) implies that the group of units of R is itself finitely
generated. A form of the Unit theorem plays a crucial part in the proof of
Theorem 1.

EXAMPLE 3. It is well known that, if H, K are closed subgroups of an

arbitrary linear algebraic group G, then the set HK is closed and its dimension is

dim H + dim K - dim (HDK). Therefore

dim (G) + dim (HHK)&gt; dim (H) + dim (K),

with equality if G HK. For our final example we take G of the type constructed
above and we take JR C and 17 C\{0}. Then G is a linear algebraic group, and

dim (G) + dim (HHK)- dim (H) - dim (K) 0.

However G is not almost the product of H and K: if it were, then since A is

divisible we would hâve A &lt; HK, and an easy calculation shows that the élément

Gî)
of A does not lie in HK.
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In §2, Theorems 1, 2 and 3 are shown to follow from two results concerning
groups G and subgroups H, K such that H, K are compléments to an abelian
normal subgroup A. Thèse results, Propositions 1 and 2, are proved in §3. In
Proposition 1, A is a divisible abelian q-group of finite rank for some prime q,
and the proof is straightforward. Proposition 2 lies deeper, and the Unit theorem
enters its proof through Lemma 5 in §3.2.

The case of Theorem 1 in which G is polycyclic (and in which minimax length
becomes Hirsch number) is of spécial interest, and its proof is somewhat easier
than the gênerai case. Firstly, there are fairly obvious simplifications in the proof
that it follows from Proposition 2. The use of Lemma 5 in Proposition 2(a) can be

replaced by an appeal to a weak form of the Unit theorem: that if F is an

algebraic number field then the group of units of its ring of integers has

torsion-free rank less than diiriQ F. Finally, for the proof of Proposition 2(a) in this

case, the first paragraph of the proof of Lemma 6 is unnecessary.

2. Réductions

2.1. In Lemmas 2 and 3, s is a function mapping groups to éléments of
{x; x ei, x &gt;0}U{°°} and G is a group such that s(G) is finite; s is assumed to be

constant on isomorphism classes, additive on extensions, and to satisfy s(Y)^
s(X) whenever Y is a subgroup of X.

LEMMA 2. Suppose that H,K&lt;G and A &lt; G, and suppose in addition that
one of H, K contains A. Consider the following statements:

(i) s(G/A) + s((HA/A) D(KA/A))&gt;s(HA/A) + s(KA/A);
(ii) s(G) + s(HnK)&gt;s(H) + s(K).

Then (i) and (ii) are équivalent; and equality holds in (i) if and only if equality
holds in (ii).

This is a straightforward conséquence of the modular law.

LEMMA3. Suppose that H,K&lt;G and A&lt;Gy and defïne H1 HDKA,
Kt KCiHA and G^HAHKA. (Thus Gl (HC\KA)A= HtA and Gx

KXA). Consider the following statements (i)-(iv):
(i)
(ii)
(iii)
(iv)
(a) If (i), (ii) and (iii) hold, then so does (iv).
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(b) If equality holds in (i), (ii) and (iii), then equality holds in (iv).
(c) If (i), (ii) and (iii) hold and equality holds in (iv), then equality holds in (i),

(ii) and (iii).

This foliows on adding (i), (ii) and (iii).

LEMMA 4. Let H,K&lt;G and A&lt;G, and suppose thaï G is almost the

product of H and K. Write Hx Hn KA, Kt KHHA and G^HAH KA. Then
(a) G is almost the product of HA and K;
(b) HA is almost the product of HA HKA and H; and
(c) Gt is almost the product of Hx and Kt.

Proof. (a) is clear. Let Lbea subgroup of finite index in G such that L ^ HK.
Then \HA : HA H L\ &lt; oo and

HAnL^HAHHK H(HADK)^H(HAnKA).

Similarly \(HA H KA) : (HA H KA) H L\ &lt; oo and

2.2. We are now ready for the

FIRST REDUCTION STEP. It is sufficient to prove Theorems 1, 2, and 3 for
groups G and subgroups H, K satisfying the following additional conditions:

(i) G has an abelian normal subgroup A such that

G HA KAy HHA KnA l, and CG(A) A;

(ii) either A is a torsion-free group with ro(A) finite on which H acts rationally
irreducibly by conjugation, or, for some prime q, A is a divisible q-group with rq(A)
finite, ail of whose proper H-invariant subgroups are finite.

Proof. We begin with Theorem 2 and argue by induction on t(G) - ro(G) + /,

where l is the smallest integer such that G has a séries of normal subgroups of
length J with each factor finite, torsion-free abelian or torsion abelian. Let N be
the first non-trivial term in such a séries of length /. The resuit is certainly true if
ro(G) - 0 and so the induction begins. We define A to be a non-trivial torsion-
free abelian normal subgroup if such a subgroup exists and to be N otherwise. In
the first case we may add to our induction hypothesis the assumption that
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Theorem 2 holds for every group having a torsion-free abelian normal subgroup
B with 0 &lt; ro(B) &lt; ro(A).

By Lemma 4, the hypothèses of Theorem 2 are satisfied by each of the triples
(G,HA,K)9 (HA, (HA H KA), H) and (Gl9Hl9KJ9 where Gl9 Hx and Kx are
defined as in the lemma. Using induction on t(G) and working modulo A, we see

from Lemma 2 that the first two triples satisfy the conclusion of the theorem.
Thus by Lemma 3 it suffices to show that the theorem holds for (Gu Hu Kt).
Replacing (G, H, K) by this, we may therefore suppose that G HA KA.

Suppose now that A is a torsion group. We must show that ro(HDK) ro(K).
For any chain (Lx) of subgroups we hâve ro(\jLK) mdix(ro(Lx)); thus if
ro(H(1X)&lt;ro(K) then Zorn&apos;s Lemma yields a subgroup Ht&gt;H maximal subject
to ro(H1DK)&lt;ro(K). Choose aeA\Ht and let B (aG), so that H1B&gt;Hl.
Because of the hypothesis on elementary abelian sections of G, the subgroup B is

finite. It follows that {H^nKi^OKl is finite and that ^(H^nK)^
ToC^HK), in contradiction to the choice of Hx.

Suppose instead that A is torsion-free. By Lemma 2 we may pass to factor
groups modulo f)(H*;geG), and so we may assume that D(H*;geG) l.
Thus since CH(A) &lt; G we hâve CH(A) 1, so that

CG(A) A and HnA&lt;CH(A) l.

If KOA&gt;1 then the resuit holds by induction and Lemma 2, and so we may
assume that KC\A 1. Finally our induction ensures that the resuit holds if G
has an abelian normal subgroup B&lt;A with 0&lt;ro(B)&lt;ro(A), and so we may
assume A rationally irreducible as an H-module. This complètes our réduction of
Theorem 2.

The réduction of Theorem 1 and Theorem 3 is rather similar. In thèse results
G is a minimax group and we argue by induction on m (G). We may assume
m(G)&gt;0, so that G has an abelian normal subgroup A which is either torsion-
free or a divisible q -group for some prime q, and we may add to our induction
hypothesis the assumption that Theorem 1 and Theorem 3 hold for every group
having an abelian normal subgroup B with 0&lt;m(B)&lt;m(A).

We defer the réduction of the proof that if m(G) + m(HnK) m(H) + m(K)
then G is almost the product of H and K, and we complète the réduction of the

proofs of ail the other assertions of Theorem 1 and Theorem 3 simultaneously. If
the triple (G, H, K) is such that G is almost the product of H and K, then each of
the triples (G,HA,l&lt;0, (HA,(HAnKA\H) and (Gl9HlyK^ has the corres-
ponding property by Lemma 4. Thus, after using induction and Lemma 2, and
after appealing to Lemma 3, we are left to consider the triple (Gl5 H1? Kt). In
other words, we may assume G HA KA. By Lemma 2 we may assume that
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fi (H8; g g G) 1, so that HHA CH(A) 1. Induction and Lemma 2 allow us
to assume that m(KflA) 0 and that KHA is finite. If A is a divisible q-group
then only the identity automorphism of A induces the identity automorphism of
AKKHA), so that the centralizer in G of AI(KDA) is CG(A) A. Further we
hâve

Therefore, if we now pass to the quotient group G/(KC\A), ail conditions
(including the conditions that CG(A) A and HC\ A 1) are preserved and so we

may also assume that KC\A 1. Finally the induction hypothesis on abelian
normal subgroups of G allows us to assume that H acts rationally irreducibly on
A if A is torsion-free and that A has no proper infinité H-invariant subgroups if
A is a divisible q-group.

The argument for the remaining assertion of Theorem 1 is slightly différent.
The hypothesis on (G, H, K) is that

Since Theorem l(a) has already been proved for groups G with m(G)&lt;m(G),
Lemma 3(c) shows that the triple (Gl5 Ht, Kt) inherits this hypothesis. If the
conclusion holds for this triple then some subgroup of finite index in Gx lies in
HtKl9 and so for some n we hâve An&lt;H1K1. However, applying Lemma 3(c)

again with An in place of A, we find that (G, HAn, K) inherits the hypothesis. By
Lemma 2, so does (G/An, HAn/An, KAn/An); thus by induction some subgroup
of finite index in G lies in (HAn)(KAn). Since

(HAn)(KAn) HAnK^HH1K1K HK,

the resuit follows.
Thus we must investigate the triple (Gl9 Hu Kx), and we replace (G, H, K) by

this, so that we hâve G HA KA. Suppose that N &lt;G and N is contained in H
or K. By Lemma 2 the hypothesis is satisfied by (G/N, HN/N, KN/N), and if the
conclusion holds for this triple then it clearly holds for (G, H, K). This observation

permits us to follow the argument above. First we may assume that f] (Hg; geG)
1, so that AnH=CH(A)=l. Next, by induction we may assume that

KHA is finite, and passing to G/(KnA) we also ensure that KHA 1. Finally,
an appeal to the hypothesis on abelian normal subgroups complètes the réduction.

2.3. The following two Propositions will be proved in §3:
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PROPOSITION 1. LetG HA KA, where A is a non-trivial divisible abelian
normal q-subgroup of finite rank, and where

Hr\A Kr\A l and CG(A) A.

Suppose thaï H is abelian by finite and has finite torsion-free rank, and suppose that
ail proper H-invariant subgroups of A are finite. Then (H,K)C\A is finite. In
particular

(a) ail ofthe indices \(H,K):H\, \(H,K):K\, \H:HC\K\ and \K:HHK\ are

finite, and \G:(H, K)\ is infinité;
(b) G is not almost the product of H and K.

PROPOSITION 2. Let G HA KA, where A is a non-trivial torsion-free
abelian normal subgroup of finite torsion-free rank, and where

HnA KHA l and CG(A) A.

Suppose that H is abelian by finite and has finite torsion-free rank, and suppose
that H acts rationally irreducibly on A. Then

(a) rp(G) + rp(HnK)&gt;rp(H) + rp(K) for each prime p, and moreover

m(G) + m(HnK)&gt;m(H) + m(K) i/m(G)&lt;oo;
(b) G is not almost the product of H and K.

SECOND REDUCTION STEP. Theorems 1, 2 and 3 follow Propositions 1

and 2.

First we note that in Proposition 1 and 2 the hypothesis that H is abelian by
finite is implied by the other hypothèses and the assumption that H is soluble by
finite. To see this we use the well known fact that soluble by finite irreducible
linear groups are abelian by finite (cf. Wehrfritz [9], Corollary 3.4 supplemented
by Theorems 1.7 and 1.19). In the case of Proposition 2, H acts on faithfully and

irreducibly on the Q-vector space A &lt;8&gt;z Q. For Proposition 1 it is most convenient
to use duality (see Hartley [4]): A* Homz (A, Q/Z) is a free Zp-module of finite
rank on which H acts faithfully according to the rule a(fh) (ah~x)f, for aeA,
feA*, heH; moreover A*®2QP is an irreducible QpH-module by Lemma 2.1

of [4].
It follows that in the cases of Theorem 1, 2 and 3 that remain to be studied,

the hypothèses of either Proposition 1 or Proposition 2 are satisfied. Propositions
l(a) and 2(a) give the inequalities required in Theorem l(a) and Theorem 3(a).
The remaining implications of Theorems 1, 2 and 3 hold vacuously in thèse cases:
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Propositions l(a) and 2(a) show that equality cannot arise in Theorem l(b) while
Propositions l(b) and 2(b) show that G cannot be almost the product of H and K.

3. Proof of Proposition 1 and Proposition 2

3.1. First we give the rather elementary proof of Proposition 1.

We suppose the first assertion of Proposition 1 false; thus (H, K)HA is an
infinité H-invariant subgroup of A, and so (H, K) f) A A and (H, K) G. Since

H is abelian by finite and rQ(H) is finite, there is a finitely generated normal
subgroup Hl (hl9..., hr) of H such that H/H1 is periodic. For each i, write
h^afa with ateA and kteK. The normal subgroup A! of G generated by

at,..., ar is finite. We hâve Hx^AiKy and therefore H1 has a subgroup of finite
index, which may be chosen characteristic in H\, which lies in K. Replacing Hx by
this, we hâve H\ &lt; K and we still hâve Hx &lt; H. Thus

AH1&lt;AH=G and H1 AH1HK&lt;K.

Since &lt;H, K) G we conclude that Hx &lt; G. However H1DA 1 and CG(A) A,
and therefore Hx 1.

It follows that H is a torsion group. Since torsion subgroups of Aut A are
finite (see Robinson [7], Corollary to Lemma 3.28), H is therefore finite, and
G AH is locally finite. However

so that K is also finite, and G is finitely generated. The resulting contradiction
complètes the proof of the first assertion of the proposition.

The remaining assertions now follow immediately: we hâve for example

and |K:HnK|&lt;|&lt;H, K):H\. Clearly G is not almost the product of H and K
because H and K fail to generate a subgroup of finite index in G.

3.2. Next we turn to the proof of Proposition 2(a). The crucial information about

ranks is given by the following lemma, the first assertion of which is well known.

LEMMA 5. Let Abe a torsion-free abelian group of finite torsion-free rank and
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let H be an abelian group which acts faithfully and rationally irreducibly on A.
(a) If ro(H) is finite, then H is finitely generated.
(b) If further A is a minimax group, then ro(H)&lt;m(A).

Proof. The action of H on A makes V A &lt;8)z Q an irreducible QH-module,
and the centralizer ring F End&lt;QHV is a division ring by Schur&apos;s Lemma.
Because H is abelian, its image H in End&lt;Q V lies in and spans F, so that F is an

algebraic number field and dimFV=l. Since H^H, assertion (a) now follows
from the theorem of Skolem [8] that the multiplicative group of an algebraic
number field is a direct product of a finite cyclic group and a free abelian group.
However we shall give a proof of (a) since the arguments are needed in the proof
of (b). We shall use the Unit theorem (see for example Cassels [3], p. 72) together
with some facts about valuation rings and Dedekind rings; a convenient référence
is Bourbaki [2], Chapters VI and VIL

Since H has finite torsion-free rank, it has a finitely generated subgroup
L (hl9..., hm) such that H/L is a torsion-group. Each élément of F lies in ail
but finitely many of the valuation rings of F (see [2], proof of Proposition 12 on

p. 487). Let Vl9..., Vk be the valuation rings not containing the set

{hl9 hï1, h2, h^1,..., hm, h^1}, let St be the family of non-archimedean absolute
values on F corresponding to Vl9..., Vk9 and let S be the union of Sx and the set
of archimedean absolute values on F. Thus if V is a valuation ring of F and

V£{Vl9..., Vk} then the group of units U of V contains L; indeed, since V is

integrally closed, ail roots of éléments of L lie in [/, and so H &lt; 17. It follows that
H is contained in the group of S-units of F, so that the Unit theorem may be

applied: it yields that Û is a direct product of a finite cyclic group and a free
abelian group of rank at most \S\-1, and (a) follows.

To prove (b) we must show that |S|^m(A). First we note that the number of
archimedian absolute values on F is r + s, where r is the number of real
embeddings of F and s is the number of (pairs of conjugate) complex embed-
dings; and since

r + 2s diniQ F ro(A),

we certainly hâve |S|-|Sil —ro(^0- It will therefore suffice to show that \St\^
m(A)-ro(A).

Let M be the subring of F generated by H. If a e A\0 then the map x^-^ax
from M to A is injective; thus M is minimax and m(M) &lt; m(A). Let I be the ring
of integers of F and let N be the subring generated by I and M. Since \I : M n I\ is

finite we hâve el^M for some integer e&gt;0, and therefore eN-^M. It follows
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that NIM is a finite group and that m(N)&lt;m(A); and because

m(I)=ro(I)

the resuit will follow if we prove that |S1|&lt;m(N/I).
Since I is noetherian and the ring N is generated by I and H, N is noetherian.

Let P be a maximal idéal of N; then IPlP is a non-zero prime idéal of I and the
localization IInP of I at IH P is a discrète valuation ring (for example by Theorem
1 on p. 494 of [2]). However

and because NP^Fwe hâve NP IInP. It follows, again from Theorem 1 on p.
494 of [2], that N is a Dedekind domain.

Now each integrally closed subring of F is the intersection of the valuation
rings which contain it ([2], Theorem 3 on p. 378); since I lies in ail valuation rings
of F it follows that N is the intersection of ail valuation rings of F apart from

Vl9..., Vk and that 1 NC\ Vx H • • • n Vk. We define

for

Each WJI is a subgroup of N/I and clearly the sum of thèse subgroups is their
direct sum. By Proposition 2 on p. 497 of [2] if f£ Vx there are éléments xeWt
with x-feVt. Thus each WJI is non-trivial, and so is infinité since I is integrally
closed. It follows that m(N/I) &gt; k \Si\&gt; and the proof of Lemma 5 is complète.

It is now an easy matter to prove Proposition 2(a). Let G, H, K and A be as in
the statement of Proposition 2, and let Ho be an abelian normal subgroup of finite
index in H. Since H acts rationally irreducibly on A, the tensor product A ®z Q is

an irreducible QH-module, and so by Clifford&apos;s theorem it is a direct sum of
irreducible QH0-submodules. The intersections Bl9..., Bn of thèse with A are
acted on rationally irreducibly by Ho, and the quotient of A by their product is a

torsion-group. For i 1,..., n let Q C^BJ. Thus

so that Ho may be embedded in (Ho/CJ x • • • x (H0/Cn).
We now apply Lemma 5, regarding Bt as an (H0/C()-module for each i.
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Assertion (a) shows that each H0/Ct is finitely generated. Therefore Ho is finitely
generated, so that rp(H) 0 for each prime p. Since X Hwe also hâve rp(K) 0

and so the assertion of Proposition 2(a) concerning Cp—rank follows. Moreover
for each i we hâve ro(Ho/Cl)&lt;m(Bl), so that

ro(H) ro(Ho) &lt; ^((Ho/CO x • • • x (H0/Cn))

Iro(Ho/C;)&lt;Im(BI)

m(B1x---xBn)&lt; m(A).

Thus

m(HnK)-m(H)-m(K)
&gt;m(A)-m(H)&gt;0.

This concludes the proof of Proposition 2(a).

3.3, Finally we must prove Proposition 2(b). The following lemma is essentially
the spécial case in which H is abelian.

LEMMA 6. Let H be a finitely generated abelian group and let A be a

torsion-free abelian group of finite rank on which H acts rationally irreducibly and
non-trivially. If ô.H^A is a non-zero dérivation and ax,..., am are finitely
many éléments of A then {xô 4- axx\ x e H, i 1,..., m} is a proper subset of A.

Proof. We suppose the resuit false. If B is a ZH-submodule containing xô and

yô with x, y e H, then

thus if H (ht,..., hs) and if we define al+m ht8 for i 1,..., s, then the
submodule generated by al9..., am+s contains xô for each xeH and so equals A.
Let E (el9..., er) be a free abelian subgroup of A of rank r rQ(A). There are

équations

r

ai Z K&amp; (/ ^ m + 5)
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and

r

etK X Vi,kee, (i ^ r&gt; k ^ s, e g {0, 1}),
j i

with rational coefficients At] and fxljkF. Writing R for the subring of Q generated by
the ÀtJ and fxljke, we see that E®TR is a ZH-module containing A. However

E®TR is free as an K-module, and it follows easily from this that for each

aeA\0 there are only finitely many primes p for which p~1aeA.
Choose yeH\CH(A). Since H is abelian, the map a»-»a(y-l) is a ZH-

module endomorphism of A, and since H acts rationally irreducibly on A, this

map is injective and A/A (y — 1) is a torsion group. It follows that

n(yô) ao(y-l),

for some aoeA and some positive integer n. Since H is abelian we hâve

for ail xeH, so that

(n(xô))(y -1) (n(y8))(x -1) ao(x - l)(y -1)

and

n(xô) ao(x-l)

for ail x € H. Therefore a0 f 0 since 6^0, and writing b, nat + a0 for 1 &lt; i &lt; m

we hâve

m m

«A U {naxx + ao(x -1); x g H} (J {btx -ao;xe H}.
i=i i=i

For i 1,..., m we define U, to be the set of integers u such that nuao

btx - a0 for some x g H. Thus Z IA U • • • U Un. If

btx - a0 and nva0 5ty - a0

with x, y g H, then

(nu + l)bty (nu + l)(nv + l)a0 (nu 4- l)btx,
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so that

Thus if veUt then (nu 4-1)6, is divisible in A by nu + 1 for ail ueUt. If
(nu + \)bt ± 0 for some v e Ul we can therefore conclude that there are only finitely
many primes which divide integers in {nu + 1; ue LTt}; and the same conclusion
holds if (nu + l)bt 0 for ail veUl since then Ut has at most one élément.
Because Z Ut U • • • U Um it follows that the prime divisors of the integers in
{nu + 1;ugZ} are finite in number. However this is absurd: if p is any prime not
dividing n, then — n is invertible modulo p so that p divides an integer of form
nu + 1. The resuit follows.

We may now prove Proposition 2(b). Let G, H, K and A be as in Proposition
2, and suppose that G is almost the product of H and K. Thus An &lt;HK for some

integer n&gt;0. We write Ht HnAnK, so that iH-.Htl is finite. If xeHj then

xaeK for some a e An ; on the other hand if xax kt with ateAn and kteK for
i 1, 2, then al1a2 kïîk2^A DK 1 so that ax a2. It follows that for x € H^
there is a unique x0g An with x(x0)eK. If x, y eHl9 then X contains

and so the map 0:H1-+An is a dérivation. Moreover 6 is surjective because

Let Ho be an abelian normal subgroup of finite index in H such that H0^
let D be an H0-invariant subgroup of An with ro(D) as large as possible subject to
ro(D)&lt;ro(A), and write B/D for the torsion subgroup of An/D. Thus B is

H0-invariant, and Â An/B is rationally irreducible, regarded as an H0-module.
Let C CHo(Â). If T is a transversal to Ho in H, then HolC^HJC for each

t g T, and

n c= n cH3(AniBt)=cIAAn n j
teT teT \ / teT

Since obviously Ho ^ 1 we conclude that Ho acts non-trivially on Â. Lemma 6

shows that Ho/C is finitely generated, and so we also conclude that Ho is finitely
generated.

We define 8 to be the dérivation x»-&gt;(x0)B from HO to À and we choose a

transversal {tl9..., t^ to Ho in H^ Since OiHi-^A11 is surjective we hâve

An= U {(ttx)0;xGHo}= U
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and

Â=Û{af(xô);jceH0},
1=1

where a, (^0)1* for each i.

If 8 were trivial we would hâve Hod&lt;B, and so

n= U

Thus one of the Bf* would hâve finite index in An, by a well known resuit of
Neumann [6], and this is not the case. Therefore 8 is non-trivial, and we may
apply Lemma 7, with À in place of A and Ho in place of H. We obtain a

contradiction, and the proof of Proposition 2(b) is complète.
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