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Definite unimodular lattices having an automorphism
of given characteristîc polynomial

Eva Bayer-Fluckiger*

Introduction

A lattice will be an intégral symmetric bilinear form of non-zero discriminant.
The orthogonal group of a definite lattice is finite. This implies that the charac-
teristic polynomial of an automorphism of a definite lattice is a product of
cyclotomic polynomials. Conversely, let / be a product of cyclotomic polynomials.
Does there exists a definite and unimodular lattice which has an automorphism
with characteristic polynomial /? The first part of the présent paper is devoted to
the study of this problem. We shall give a complète solution in the case where / is

a power of a cyclotomic polynomial. As an example, let us discuss the case f &lt;f&gt;m,

the mth cyclotomic polynomial, where m is not a power of 2. We shall give some

necessary conditions for the existence of a definite unimodular lattice (L, S)

having an automorphism t with characteristic polynomial &lt;£m. One of thèse

conditions is that m must be mixed, i.e. m is not of the form pr or 2pr where p is

a prime. Indeed, if m pr or 2pr then det (1 -f) det (1 + f) &lt;f&gt;m(l)4&gt;m(-l) p (cf.

e.g. [13] Chap. VIII, §3, 1 and 3). Therefore the déterminant of Sf S(t-t~1) is

p. But this is impossible because S&apos; is skew-symmetric so det (S&apos;) must be a

square. On the other hand it is not difficult to prove that (L, S) must be even, i.e.

S(x,x) is divisible by 2 for ail x in L (see Lemma 1.4). The rank of an even,
definite lattice is divisible by 8 (cf. e.g. [21], Chapitre V, 2.1) therefore &lt;p(m)

deg &lt;t&gt;m rnust be divisible by 8.

It turns out that thèse necessary conditions are also sufficient:

THEOREM. Let m be a positive integer such that m is not a power of 2. Then
there exists a definite unimodular lattice having an automorphism with characteristic

polynomial &lt;f&gt;m if and only if m is mixed and &lt;p(m) is divisible by 8.

* Supported by the &quot;Fonds National de la Recherche Scientifique&quot; of Switzerland
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510 EVA BAYER-FLUCKIGER

In the second part of the paper we shall investigate some properties of definite
lattices which hâve an automorphism of characteristic polynomial &lt;£C:

DEFINITION. A lattice is said to be indécomposable if it cannot be written as

the orthogonal sum of two non-trivial lattices. We shall say that a lattice (L, S)

represents 2 it there exists xeL such that S(x,x) 2.

For instance we shall prove the following theorem, which also holds for non
unimodular lattices:

THEOREM. Let m be a square free integer, and let (L, S) be a definite lattice

having an isometry with characteristic polynomial 4&gt;m. Then (L, S) is indécomposable.

If moreover &lt;p(m)&gt;8 and m is not prime, then (L, S) does not represent 2.

It is possible to apply thèse results to obtain some interesting examples. The
first theorem implies that for m 35, 39, 56 and 84 there exist definite unimodular

lattices of rank 24 having an automorphism of characteristic polynomial &lt;/&gt;m.

Using the second theorem and similar results, we see that thèse lattices do not
represent 2, so by a theorem of Conway [3] they are isometric to the Leech lattice.
We also obtain lattices of minimum 4 in dimensions 32 and 40. In higher
dimensions we obtain lattices of minimum at least 4.

In the last part of the paper we shall study the classification problem of lattices

having an automorphism with characteristic polynomial &lt;t&gt;m, and also the possibil-
ity of constructing such lattices explicitly. This leads to difficult problems concern-
ing the signatures of units of a cyclotomic field.

I thank R. Gillard for useful conversations about the signatures of the units of
a number field. I thank M. Kervaire for many useful comments on my manuscript.

1.

Let / be a product of cyclotomic polynomials. We shall say that (L, S) is an

f-lattice if (L, S) has an automorphism with characteristic polynomial /. Let us

dénote 4&gt;m the mth cyclotomic polynomial. In this section we shall solve the
existence problem of definite unimodular &lt;j&gt;^-lattices, and then we shall make a

few remarks on the corresponding problem for an arbitrary /.

THEOREM 1.1.

I. Assume that m is not a power of 2. Then we hâve:

a) // n is divisible by 4, then there exists a definite unimodular ^-lattice for
any m.



Definite unimodular lattices 511

b) If n 2 mod 4, then there exists a definite unimodular ^-lattice if and
only if &lt;p(m) is divisible by 4.

c) If n is odd, then there exists a definite unimodular (fr^-lattice if and only
if m is mixed and &lt;p(m) is divisible by 8.

IL If m is a power of 2, then there exists a definite unimodular (fy^lattice for
any n.

Moreover if m is not a power of 2 then the lattices will be even (cf. Lemma
1.4).

COROLLARY 1.2. Let f be a product of cyclotomic polynomials. There exists

a definite unimodular lattice having an automorphism with minimal polynomial f if
and only if f has no repeated factors.

Proof of Corollary 1.2. Let (L, S) be a definite lattice and let t :L —» L be an
automorphism of (L, S). Let / be the minimal polynomial of t. Then / has no
repeated factors: indeed, if f=g2h, then M gh(t)(L) is an isotropic submodule
of L.

By taking orthogonal sums it suffices to prove the corollary for / &lt;f&gt;m. But this
foliows immediately from Theorem 1.1.

Remark 1.3. Let f f\&apos;&apos;-fr where fx is a power of a cyclotomic polynomial,
i 1,..., r. Assume that the résultants Res (fo /,) ±1 for ail i^j, Then there
exists a definite unimodular /-lattice if and only if there exists a definite
unimodular f -lattice for ail i 1,..., r.

Indeed, let (L, S) be a definite unimodular lattice having an automorphism t

with characteristic polynomial /. Let F /2 • • • fr. There exist intégral polynomials
G and H such that

/xG + FH-1.

Let Lt F(t)(L) and L2 /i(0(L), and let Sx and S2 be the restrictions of S to Lt
and L2. Then it is easy to check that

(L,S) (L1,S1)H(L2,S2)

where H dénotes the orthogonal sum, and that (Lt, S2) is an /x-lattice.
We hâve Res (&lt;£&gt;n, &lt;f&gt;m) ±l except if m=prn, where p is a prime (see for

instance [23], Proposition 3.4).
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The remainder of this section will be devoted to the proof of Theorem 1.1. We
shall need a few lemmas:

LEMMA 1.4. If (L, S) is a ^-lattice with m not a power of 2, then (L, S) is

even.

Proof. Let t be an automorphism of (L, S) with characteristic polynomial &lt;/&gt;^.

As m is not a power of 2, we hâve det (1-t) 1 or det (1 +t) 1 (cf. e.g. [13]
Chap. VII §3). By replacing t with — t if necessary we may assume that 1-f is

invertible. We hâve S(wx, y) S(x, w&apos;y) with w (l-f)~\ w&apos; (l-r1)&quot;1. It is

easy to check that w 4- w&apos; idL. Therefore S(x, x) S((w + w&apos;)x, x) 2S(wx, x) so

(L, S) is even.

Let £ be a primitive rath root of unity, and let K Q(Ç). We shall dénote by
an overbar the Q-involution of K which sends £ to f1. Let I be a fractional
Z[£]-ideal such that ï I, let L be a torsion free Z[£]-module of finite rank and let
h:LxL—&gt;I be a hermitian or skew-hermitian form. We shall say that (L, h) is

unimodular if and only if the adjoint of h, ad (h) : L —» Homz[4](L, I), is bijective.
The following lemma will be important for the construction of &lt;^^-lattices:

LEMMA 1.5 (Stoltzfus [23], Lemma 2.6 and Addendum). Let A be the inverse

différent of K/Q. Let h:LxL-&gt;A be a unimodular hermitian form, and let

n rankztC] (L). Set

S(x,y) TrKyQ(h(x,y)). (1)

Then (L, S) is a unimodular ^-lattice. Conversely, if (L, S) is a ^-lattice then

there exists a unique hermitian form h.LxL^A such that (1) holds. If moreover

(L, S) is unimodular, then h is unimodular.

Let F Q(£ + £-1) be the fixed field of the involution. We shall dénote by ^ the

minimal polynomial of t) ^ + ^~1, and by i// the derivative of ijj.

We shall also need the following lemma:

LEMMA 1.6. The différent of K/Q is (Ç-

Proof. The différent of KlF is (Ç-^MÛ and the différent of F/Q is

tfr&apos;(Tï)Z[T)], see for instance [14], III, §1. The lemma now follows by the multiplicative

property of the différents, see [14], III, §1.

Notice that this lemma gives a bijection between unimodular hermitian forms
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with values in the inverse différent and unimodular skew-hermitian forms with
values in Z[£].

Let V be a finite dimensional K-vector space and let hK:VxV-&gt;K be a

non-singular e-hermitian form, where e ±1. We shall need to know under what
conditions (V, hK) contains a unimodular lattice, i.e. under what conditions there
exists a unimodular e-hermitian form h:LxL-+ Z[£] such that (L, h) &amp;#£] K
(V, hK). If e —1, then we only need to consider the case where dimK (V) is even.
In this case det(hK) is an élément of F&quot;, and we shall dénote D=det(hK)e
F&apos;/NjQpiK&apos;) the discriminant of (V, hK).

LEMMA 1.7. (Wall [27] Proposition 6, or Levine [16] Lemma 24.3). Let
0 (£ — £-1)2 and let (,)P be the Hilbert symbol Let us dénote D the discriminant of
hK.

e +1 (V, hK) contains a unimodular lattice if and only if (D, 6)P 1 for every
finite prime P of F which does not ramify in K.

e —1, dim (V) even. Then (V, hK) contains a unimodular lattice if and only if
(D, 6)p 1 for every finite prime P of F which does not ramify in K, and for every
non-dyadic finite prime of F which ramifies in K.

Proof of Theorem 1.1. Let us check that the conditions of the theorem are

necessary. If m is not a power of 2 then a 4&gt; ^-lattice (L, S) is even by Lemma 1.4.

If moreover (L, S) is definite then rankz (L) is divisible by 8, see for instance [21],
Chapitre V, 2.1. Therefore n&lt;p(m) must be divisible by 8. We hâve already proved
in the introduction that the condition m mixed is necessary in part c.) of the
theorem.

We shall now prove that the conditions are also sufficient:
La) Notice that it is sufficient to consider the case n 4. Let de F&apos; such that

dip&apos;(a) is totally positive and set a (^-^~1)d. Let us dénote (a) the skew-
hermitian form g:KxK-^K such that g(x, y) axy. Set V K4, and let hK be
the form &lt;a)El(a)El&lt;a)Œl&lt;a) where EB dénotes the orthogonal sum. Lemma 1.7

implies that (V, hK) contains a unimodular lattice (L, h). Now let

then (L, S) is a unimodular &lt;^^-lattice by Lemma 1.5 and Lemma 1.6.

We hâve to show that (L, S) is positive definite. It suffices to show that the
form SQ: Vx V-&gt;Q, obtained by extension of the scalars, is positive definite. We
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have SQ S&apos;Q El S&apos;Q EB S&apos;Q ES S&apos;Q where

with x, y e K Now

Sq(x, x) TÏk/q (777-T xx and ——

is totally positive. Therefore Sq is positive definite.
b) It is sufficient to consider the case n=2. Let de F&apos; such that di/r&apos;(cr) is

totally positive and set a (f - £~*)d. Let V K2, and let hK : V x V -^ K be the
skew-hermitian form (a) El (a). The discriminant of hk is D (£ — £~x)2 d2 — 1 e
F&apos;/NjQpiK&apos;). We have (— 1, 0)P 1 if F is a finite prime of F which does not
ramify in K (cf. [14], IX, §3). If m is mixed then no finite prime of F ramifies in K
(see [28], Proposition 2.15) so the conditions of Lemma 1.7 are satisfied in this

case. If m pr or 2pr, then exactly one finite prime F of F ramifies in K, and

NK/Q(P) p. We have &lt;p(m) (p- l)pr~\ We are assuming that p is odd and that
&lt;p(m) is divisible by 4. This implies that p lmod4. Therefore —1 is a square
mod p, and by Hensel&apos;s lemma this implies that (—1, 0)P 1. So the conditions of
Lemma 1.7 are satisfied in this case also, therefore (V, hK) contains a unimodular
lattice (L, h). Set

for x, y € L. As in the proof of case a) we check that (L, S) is a positive definite
c^lattice.

The case 1. (c) of Theorem 1.1 will follow from a description of unimodular
definite $m-lattices, given by Proposition 1.8. In order to state this proposition we
need the notion of signature.

Recall that the field F is totally real. Let G Gal(F/Q), which can be

identified with the set of real embeddings of F over Q. Define a:W —»F2G by
cr(a) 0 if a is positive, &lt;r(a) 1 if a is négative. The signature sgn : F&apos; —» F2G is

given by:

sgn(x)= £ a(gx)g~1.
geG

This is an equivariant homomorphism.
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Let fi,..., Çs, Ci1 • • - ,CnX where N &lt;p(m)/2 be a list of the primitive mth
roots of unity such that, if we set !?,=£,+ Ç&quot;1, then tj, &gt; r)k for / &lt; k.

Let gk be the real embedding of F which sends r\ to r\k.
Recall that (,)P is the Hilbert symbol, and that 0 (£-C1)2.

PROPOSITION 1.8. Let mbea positive integer such that m is mixed that &lt;p(m)

is divisible by 8.
1) There exists an aeF&apos; such that (a, 6)P 1 for ail finite primes P of F, and

that
M

sgn(a)=
k

where

&lt;p(m)
M

2) If aeF&apos; is as in 1) then there exisfs a fractional Z[Ç]-ideal I such that the

hermitian form

defined by

h(x,y)

is unimodular.
3) Let a and I be as above. Set

(2)

then (I, S) is a definite unimodular &lt;f&gt;m-lattice.

Conversely, if (I, S) is a definite unimodular &lt;f)m-lattice then I can be identified
with a fractional Z[Ç]-ideal, and S can be written under the form (2) so that the

hermitian form h:IxI-»Z[f] defined by h(x,y) axy is unimodular, and that
aeF&apos; satisfies the conditions of 1).

Proof of Proposition 1.8. 1) Let F, be the infinité prime of F corresponding to
gj. Then the condition

M

sgn(a)= X g2k
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is équivalent with (a, 0)Pj (— 1)J for j 1,..., N — &lt;p(m)/2. By Hilbert reciprocity
there exists an a g F* such that (a, 0)Pj (-1)J for j 1,..., N and that (a, 6)P 1

for F finite if and only if flf^i (~1)J 1- This is the case if and only if (p(m) is

divisible by 8.

2) Let V K and let hk be the 1-dimensional hermitian form (a). By Lemma
1.7 the form (V, hk) contains a unimodular lattice, i.e. there exists a fractional
Z[£]-ideal I such that h:lxj—»Z[£], h(x, y) axy is unimodular.

3) If m is mixed then no finite prime of F ramifies in K9 and £ — £~* is a unit.
Therefore by Lemma 1.6 the inverse différent of K/Q is 1/i//(tj)Z[£]. By Lemma
1.5 this implies that the lattice (I, S) defined by (2) is unimodular. Let us check
that (I, S) is also definite: it suffices to prove that ai//(Tj) is totally positive, i.e. that

sgn W(r})) I g».

We hâve

f[(X-V,), so &lt;1&gt;&apos;(vk)=fl(vk-V,).

1=1 J#k
J l

Recall that r\} &gt; r)k if j &lt; k. Therefore it is immédiate that the signature of ijj&apos;(r\) is

as above.

Conversely let (I, S) be a positive definite &lt;f&gt;m-lattice. We hâve seen in the first
part of the proof that the inverse différent of K/Q is 1/i//(tj)Z[£]. Therefore by
Lemma 1.5 we can write S under the form (2) where h:lxl-+ Z[£], h(x, y) axy
is a unimodular hermitian form. Therefore (a, 0)P 1 if F is a finite prime of F.

It is easy to check that S positive definite implies a*pr(ri) totally positive (use
weak approximation). Therefore

M
sgn (a) sgn (i/&gt;&apos;(t]))= X g^-

It is clear that this proposition implies I. c), therefore the proof of part I of
Theorem 1.1 is complète.

Part II of Theorem 1.1 can be proved by direct computation: the form
&lt;1)E1- • -ŒK1) is a &lt;£m-lattice if m=2r. It also follows from the description of
definite unimodular &lt;£w-lattices, m =2r, given by Proposition 1.9:

PROPOSITION 1.9. Let m=T and set k m/4.
1) Let a g F&apos; be totally positive and such that (a, 6)P 1 if P is a non-dyadic

finite prime of F. Then there exists a fractional l\JC\-ideal I such that the skew-
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hermitian form

defined by

is unimodular.
2) Let a and I be as in 1). Set

then (I, S) is a definite unimodular &lt;f)m-lattice.

Conversely, if (I, S) is a definite unimodular &lt;f&gt;m-lattice then S can be written
under the form (3) with aeF&apos; as in 1).

Proof. 1) By Lemma 1.7 there exists a fractional idéal I such that the
hermitian form g:IxI-&gt; Z[£] defined by g(x, y) axy is unimodular. As £k is a

unit, this implies that (I, h) is also unimodular.
2) By Lemma 1.5 and Lemma 1.6 we see that (I, S) is unimodular. Let

a =(£ — Ç~x)Ç~k. In order to prove that (I,S) is positive definite, it suffices to
prove that

As in the proof of Proposition 1.8 we see that

M

sgn (i//(tï)) X gïiî
h=i

where M &lt;p(m)/4= fc/2 if m^4 and M 0 if m =4. Notice that

/2M2jl)y /2i7r(2jl)\
Tfc =exp ^ j + exp ^ j ] 1,..., fc.

We hâve

It is easy to check that g, (a) is positive if / is odd and négative if / is even.

Therefore (I, S) is positive definite.
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Conversely let (I, S) be a definite unimodular &lt;£m-lattice. By Lemma 1.6 and
Lemma 1.5 we hâve

hi±*&gt;)

where hrlxl—»Z[£] defined by h(x, y) 6xy is a unimodular skew-hermitian
form.

Set a b£~\ Then a g F&apos;, and

Let us check that a satisfies the conditions of 1). As (I, h) is unimodular, the
hermitian form g : I x I—&gt;Z[£] defined by g(x, y) axy is also unimodular. Therefore
by Lemma 1.7 we hâve (a, 6)P 1 for ail finite non-dyadic primes P of F. We
hâve seen in the proof of 1) that *l*&apos;(r])(Ç--Ç~1)Ç~~k is totally positive. Therefore a

is also totally positive.

Remark 1.10. Let m 2r. It is easy to check that if we take a 1 and I Z[£]
in Proposition 1.9, we obtain the lattice (l)ED- • -Œl(l). On the other hand, if
(2, S) is a definite &lt;f&gt;m-lattice such that I is a non-principal Z[£]-ideal then (I, S)
does not respresent 1. Indeed, suppose that there exists an xel such that
S(x, x)= 1. Then (Zx, S) is an orthogonal summand of (L, S). A definite lattice
factorizes uniquely into the orthogonal sum of indécomposable sublattices (cf.

[19], 105.1). This implies that either t(x) ±x, or S(x, t(x)) 0. Let a m/2-1.
Then the éléments x, t(x),...., ta(x) are linearly independent, so we must hâve

S(tl(x), tJ(x)) 0 if i + l But we also have S(tl(x), tl(x))= 1, so the lattice
(Z[£]x, S) is unimodular. As Z[£]xcl, this implies that Z[£]x I so I is a

principal idéal.

Remark 1.11. I thank J. Milnor for the following observations. Theorem 1

implies that for ail integers m &gt; 1, there exists a definite unimodular lattice L such

that the orthogonal group of L contain a cyclic group Cm of order m, and such

that Cw acts freely on L\{0}.
Let f be an automorphism of order m of a lattice L. Then the cyclic group

generated by t acts freely on L \{0} if and only if the characteristic polynomial of t

is a power of the cyclotomic polynomial 4&gt;m.
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2.

In this section we shall investigate some properties of definite &lt;f&gt;^-lattices. If
there is no ambiguity we shall write just L instead of (L, S). We shall be
interested in the décompositions L Lx EB • • • El Lk into the orthogonal sum of
sublattices (the sublattices l^ are not supposed to be stables by an automorphism
of L). We shall say that L is indécomposable if L cannot be written as the
orthogonal sum of two non-trivial lattices.

Let us recall that £ is a primitive mth root of unity, that K Q(£) and that A is

the inverse différent of K/Q.

THEOREM 2.1. Let (L, S) be a positive definite ^-lattice such that

S(x,y)=TrK/Q(h(x,y))

where h:LxL-^&gt; A is an indécomposable hermitian form.
Let L L1\B&apos; &apos; • El Lk where the L/s cire indécomposable lattices.

Then Ll—L] for ail i and j. The number of indécomposable components k

divides m and ncp(m). We hâve rankz(Ll) n(p(m)lk, and Lj is a &lt;f&gt;rmjk-lattice for
some r. In particular &lt;p(m/k) divides n&lt;p(m)/k.

If (L, S) is unimodular and if m is not a power of 2, then n&lt;p{m)lk is divisible
by 8. If moreover n 1, then m^ fcpr, m±2kpr where p is an odd prime.

Proof. Let t : L —» L be an automorphism of (L, S) with characteristic polyno-
mial 4C. Then t permutes the Ll&apos;s:t(Ll) Lp because the décomposition into the

orthogonal sum of indécomposable sublattices is unique (cf. [19], 105.1). Suppose

that L=MBN with t(M) M (therefore also t(N) N). Then M and N are
subZ[£]-modules of L. By Lemma 1.5 there exist hermitian forms g:MxM—&gt;A
and g&apos;:NxN-+A such that

S(x, y) Tr^Q (g(x, y)) x, y g M

and

S(x, y) Tr^a (g&apos;(x, y)) x, y e N.

Then (L, h) (M, g) El (N, g&apos;), but we hâve supposed (L, h) indécomposable so
this implies M 0orN 0. Therefore t induces a cyclic permutation of the L/s.
So k divides m. On the other hand the L/s are ail isometric, and in particular
k • rankz (Lj) n&lt;p(m). We hâve ^(LJ L,, so the L/s are &lt;f&gt;^/k-lattices for some
r. Then rankz (L,) rcp(m/fc), so r&lt;p(m/k) n&lt;p(m)/k.
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If (L,S) is unimodular, then the L,&apos;s are unimodular too, therefore
rankz (L,) n&lt;p(m)lk must be divisible by 8 (see e.g. [21] Chapitre V, 2.1). Let
n l. We hâve cp(m/fc)^&lt;p(m)/k, therefore r l, and L, is a &lt;£m/k-lattice. By
Theorem 1.1 this implies that m/k must be mixed or a power of 2.

We shall say that a lattice (L, S) represents 2 if there exists an x g L such that
S(x,x) 2.

COROLLARY 2.2. Let (L,S) be a definite 4&gt;m-lattice with m square free.
Then (L, S) is indécomposable. If moreover m ^ p, 2p where p is a prime and if
&lt;p(m)&gt;8 then (L,S) does not represent 2.

Proof. As (L, S) is a &lt;£m -lattice, by Lemma 1.5 it is the trace of a rank one
hermitian form, which is of course indécomposable. Let k be a common divisor of
m and of &lt;p(m). It is easy to check that as m is square free, we hâve (p(m)/k &lt;

&lt;p(m/k) if fc^l. Therefore by Theorem 2.1 we must hâve fc l, so (L,S) is

indécomposable.
Let R={xeL such that S(x, x) 2} and set M ZR. Let t be an automorph-

ism of (L, S) with characteristic polynomial &lt;\&gt;m. Then f(M) M. As 4&gt;m is

irreducible, we hâve either M 0 or rankz (M) cp(m). If M^ 0, then (M, S) is a

definite &lt;f&gt;m-lattice, so by the first part of Corollary 2.2, (M, S) is indécomposable.
Then R is an indécomposable root System, therefore R Ah or I\ with h

&lt;p(m), cf. for instance [18] p. 145-146. The automorphism group of Ah is the

product of the symmetric group of h + 1 letters Sh+x with C2 Z/2Z and the

automorphism group of J\ is a semi-direct product of Sh with C\ (cf. [2], Chap.
VI, no 4.7 and no 4.8) and it is easy to check that thèse groups do not contain any
élément t such that the characteristic polynomial of the automorphism t:ZJR-&gt;

ZR is &lt;f&gt;m. Therefore M 0 and R is empty.

In the foliowing Corollary we shall assume that (L, S) is unimodular:

COROLLARY 2.3. Let (L, S) be a definite unimodular ^-lattice such that

one of the following holds:
a) n 1, m is mixed and for ail divisors k of m and of &lt;p(m) such that

(p(m/fc) &lt;p(m)/fc, either m/k is not mixed or &lt;p(m/fc) is not divisible by 8.

b) n=2, m=p or 2 - p with p prime and p 1 mod 4.

c) n=4, m=p or 2- p with p prime and p 3mod4.
Then (L, S) is indécomposable.

Proof. By Lemma 1.5, S(x, y) TrK/Q(h(x, y)) where h:LxL—&gt;à is a
unimodular hermitian form. By Theorem 1.1 we see that h is indécomposable. The

indecomposability of (L, S) then follows immediately from Theorem 2.1.
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Let (L, S) be a definite lattice and let a be a positive integer. Set R={xgL
such that S(x, x) a}. We shall say that R is decomposable if R Rt U R2 such
that Rt and i?2 are disjoint and S(x, y) 0 for xeRu y €jR2-

If a 2 then JR is a root System.
The following Corollary is a conséquence of Theorem 2.1 and of results of

Kervaire:

COROLLARY 2.4. Let (L, S) be a definite fâ-lattice. LetTaR such that T
is indécomposable.

a) If R contains exactly k copies of T, then k • rankz (ZT) r(p(m) for some
integer l^r^rc. If r l, fhen k divides m, and ZT is a ^^-lattice. In
particular rankz (ZT) &lt;p(m/k).

b) Suppose that a — 2 (so R is a root System) and that m is not a power of 2.
Then T is either D4, E6, E8 or Ah with h even.

Proof. a) Let t be an automorphism of (L, S) with characteristic polynomial
&lt;£C. We hâve t(R) R. Let M be an orthogonal summand of (ZJR, S) such that
t(M) M and that M does not hâve any orthogonal summands N with t(N) N.
By Lemma 1.5 it is clear that (M, S) satisfies the hypothesis of Theorem 2.1. Let
M L1H- • HLa then by Theorem 2.1 we hâve Lt—Lj for ail i and j, so

a • rankz(Lj) rankz(M) which is divisible by &lt;p(m). Notice that L,—ZT for
some indécomposable T&lt;^R. It is easy to see that this implies that
k - rankz (ZT) r&lt;p(m) for some integer l^r^n.

If r l, then there exists a unique M&lt;=^ZR as above such that ZT&lt;=M. By
Theorem 2.1, ZT is a $^/k-lattice for some integer b. We hâve rankz(ZT)
b(p(m/k), so b&lt;p(m/k) &lt;p(m)/k. But cp(m/fc)^&lt;p(m)/k9 so b l.

b) If m is not a power of 2, then either 1 — t or 1 +1 is invertible (indeed, t
is the multiplication by a primitive mth root of unity). Therefore (L, S) has

an automorphism s such that 1 —s is invertible. Kervaire has proved that this
implies that (ZT, S) also has an automorphism s&apos; such that 1 —s&apos; is invertible
(cf. [8] Proposition 2). On the other hand be also proved that this implies that
T must be one of the root Systems D4, E6, E8 or Ah with h even (see [8]
Proposition 3).

COROLLARY 2.5. Let (L, S) be a definite indécomposable &lt;t&gt;m-lattice.

Assume that for ail common divisors k of m and of &lt;p(m) such that (p(m/k) cp(m)/fc

we hâve : cp(m)^4k, &lt;p(m)/6fc, and either &lt;p(m)/k is odd, or

k k

Then (L, S) does not represent 2.
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Proof. Let JR={xeL such that S(x, x) 2}, and let Tbean indécomposable
root System. Assume that R contains exactly k copies of T. Then part a) of
Corollary 2.4 implies that k divides m and (p(m) and that rankz (ZT) &lt;p(m)/k

&lt;p(m/fc).

Moreover (ZT, S) is a &lt;£&gt;m/k-lattice. By part b) of Corollary 2.4 we hâve

T D4, E6 or Ah with h even. But we hâve assumed that &lt;p(m/k) j= 4, 6 so T Ah
where h &lt;p(m/k). The automorphism group of Ah is Sh+1 x C2 (cf. [2], Chap. VI,
no 4.7). We hâve assumed that m/k &gt;2(h 4-1), therefore the automorphism group
of Ah T does not contain any élément of characteristic polynomial &lt;f&gt;m/k.

Therefore T is empty, so (L, S) does not represent 2.

We shall give an application of Theorem 2.1 to the indecomposability of
tensor products of definite lattices. We shall need the following lemma:

LEMMA 2.6. Let Çbe a primitive mth root of unity, and let (L, S) be a definite
lattice. Set M L (8^Z[£], and let h:MxM-&gt;Z[(] be the hermitian form defined
by

If (L, S) is indécomposable, then (M, h) is also indécomposable.

Proof. The proof is essentially the same as Kitaoka&apos;s proof of a similar
statement for quadratic forms, cf. [9] Corollary of Theorem 4.

COROLLARY 2.7. Let (L, S) and (L\ S&apos;) be indécomposable definite lattices
such that (Lr, S&apos;) is a &lt;t&gt;m-lattice. Let r rankz (L). Assume that if k is a common
divisor of m and of r&lt;p(m), then &lt;p(m/k) does not divide np{m)lk.

Then (L, S)(Sk(L&apos;, S&apos;) is indécomposable.

Proof. Let (M, h) (L, S) ®z 2[£] as in Lemma 2.6. Then (M, h) is indécomposable.

We hâve S&apos;(x, y) TrK/Q(g(x, y)), where g:LfxL&apos;-*A is a hermitian
form, and L&apos; is a rank one Z[£]-module (cf. Lemma 1.5). Then

is also indécomposable.
Let (N, S&quot;) be defined by

TrK/Q(/(x,y)).
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Then (N, S&quot;) is indécomposable by Theorem 2.1. On the other hand, it is easy to
see that (N, S&quot;) is isometric to (L, S) ®z (L&apos;, S&apos;), the proof is similar to the proof of
[12], Chapter VII, Theorem 1.3.

Kitaoka has proved a theorem in [10] with same conclusion as Corollary 2.7.
The précise relationship between Kitaoka&apos;s hypothesis and the hypothesis of
Corollary 2.6 is not known.

3. The classification problem of definite unimodular &lt;£m -lattices

Let (L,S) be a definite unimodular &lt;£m-lattice. In Section 1 we hâve found
necessary and sufficient conditions for the existence of such a lattice: namely
either m is a power of 2, or m is mixed and q&gt;(m) is divisible by 8. In the présent
section we shall study the classification up to isometry of thèse lattices.

Let us recall some notations: £ is a primitive mth root of unity, K Q(£),
F Q(£ + r1) is the fixed field of the Q-involution of K which sends £ to f1. We
dénote by $ the minimal polynomial of t) £ + £~\ and by $&apos; the derivative of $.

Let h&quot; be the relative class number of K (i.e. the class number of K divided by
the class number of F).

Let CK and CF be the idéal class groups of K and F. We hâve a homomorphism
NK/F:CK-*CF which is induced by the norm of ideals. Notice that h&quot; is the

cardinality of the kernel of this homomorphism (see for instance [15] Theorem
4.4).

In this section we shall assume that h~ is odd. If m is a power of 2 then this
hypothesis is always satisfied, see Weber [29].

PROPOSITION 3.1. Assume that h~ is odd. Let J be a fractional Z[Ç]-ideal
such that NK/F([J]) 1, where [J] is the class of J in CK.

Then there exists S:Jx/-»Z such that (J,S) is a definite unimodular &lt;f&gt;m-

lattice.

Conversely if (/, S) is a unimodular &lt;t&gt;m-lattice, then NK/F([J]) 1.

Moreover if (J, Sx) and (J, S2) are two definite unimodular ^-lattices, then

dsl)^as2).
Let us recall that G Gai (F/Q), and that we hâve defined the signature

homomorphism sgn:F* —&gt;F2G by

sgn(x)= X «Kgxte&quot;1

geG

where cr(a) 0 or 1 according as a is positive or négative.
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Let UF and UK dénote the group of units of F and of K. We hâve

Nk/f : l/K —» l/F defined by N^Au) uû.

For the proof of Proposition 3.1 we shall need the following lemma (which I
believe is well known):

LEMMA 3.2. Assume that h~ is odd.

Let us dénote IG the augmentation idéal of F2G. Then we hâve:
a) If m is mixed, then

sgn:UF/NK/F(UK)-»IG

is bijective.
b) If m is a prime power, then

sgn:UFINK/F(UK)-*F2G

is bijective.

Proof of Lemma 3.2. Let us dénote UF the totally positive units of F.
a) If m is mixed then by Shimura [22] Proposition A.2 we see that [UF : L/f]

2. But it is well known that [N^Uk): L^] 2, see Hasse [7], §21 and
§22. Therefore UF Nr/j^U*), so sgn : UfINkjF(Uk) -* IG is injective. But
UF/NK/F(UK) and IG hâve the same cardinality, (see [1] Example 2.5)
therefore sgn is also onto.

b) If m =2r, then by Shimura [22] Proposition A.2 we see that UF=UF
NK/F(UK). On the other hand, Ujt/Nk^Uk) and F2G hâve the same

cardinality (see [1] Example 2.5). Therefore sgn: L/F/NK/F(UK)-&gt;F2G is

bijective.

Proof of Proposition 3.1. We hâve two cases to consider: either m is mixed and

(p(m) is divisible by 8, or m is a power of 2.

1) Let us assume that m is mixed and that &lt;p(m) is divisible by 8. Let Jbea
fractional Z[£]-ideal such that N^p^J]) 1. Then there exists a b g F* such

that the hermitian form h:/xj—&gt;Z[£] defined by h(x,y) bxy is uni-
modular (cf. [1], Proposition 1.2).
Recall that 0 (Ç~C1)2, and that (,)P is the Hilbert symbol. No finite
prime of F ramifies in K, therefore by Lemma 1.7 we hâve (b, 6)P 1 for
ail finite primes F of F. By Hilbert reciprocity we hâve Ilpen (b, 0)p 1,

where il is the set of infinité primes of F. It is easy to see that this implies
that sgn (b) g IG.
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Let x =Y%I=i gïk, where M &lt;p(m)/4 (see Proposition 1.8 for the définition
of gt). As &lt;p(m) is divisible by 8, we hâve xelG.
By part a) of Lemma 3.2 we see that there exists ueUF such that

sgn(w) x + sgn (b).

Let a ub, then sgn (a) ££ii g^L and (a, 0)P 1 for ail finite primes P of
F. Set

(2)

then by Proposition 1.8, (J, S) is a definite unimodular &lt;£&gt;m-lattice.

If (J, S) is a unimodular &lt;£m-lattice, then we can identify J with a fractional
Z[£]-ideal. By Lemma 1.5 and Lemma 1.6 we hâve

S(x, y) TrK/Q (—J— h(x, y))

where h : Jx J—»Z[£] is unimodular. Therefore by [1], Proposition 1.2 we
hâve N([J]) 1.

If (J, Sx) and (J, S2) are two unimodular, definite &lt;/&gt;m-lattices, then by
Proposition 1.8 we hâve

such that h, : Jx J—&gt;Z[£] defined by h,(x, y) alxy is unimodular. Therefore

u a1ci21e UF (cf. [1], §2). As St and S2 are definite, by Proposition
1.8 we hâve sgnCa^sgn^). Therefore u is totally positive. By Lemma
3.2 this implies that there exists v g Uk such that u vv. Therefore f:J-+J
defined by /(x) vx gives an isometry between (J, Sx) and (J, S2).

2) Let m =2r. Let J be a fractional Z[£]-ideal such that NK/F([J]) 1. Then
there exists beF&apos; such that the hermitian form h : Jx J—&gt;Z[£] defined by
M*, y) bxy is unimodular (cf. [1], Proposition 1.2). By Lemma 3.2 there
exists ueUF such that sgn (u) =sgn (b). Set
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By Proposition 1.9, (J,S) is a definite unimodular &lt;£m-lattice. The end of
the proof if similar to the case m mixed.

Let us dénote by C~ the kernel of NK/F: CK —&gt; CF and let h be the cardinality
of C7Gal (K/Q).

COROLLARY 3.3. Assume that h~ is odd. The number of isometry classes of
definite unimodular &lt;t&gt;m-lattices is at most h.

Proof. By Proposition 3.1 we hâve a surjective map from C~ to the set of
isometry classes of definite unimodular &lt;£m-lattices. Let cx,c2^C~ and suppose
that there exists âge Gai (K/Q) such that c\ c2.

It is easy to see that the definite unimodular &lt;£m-lattices associated to ct and c\
are isometric (write the &lt;£m-lattice under the form (2) or (3)).

It would be interesting to know the exact number of isometry classes of
definite unimodular &lt;£&gt;m-lattices. A similar problem (for automorphisms of prime
order) has been solved by H.-G. Quebbemann, cf. [20].

4. The signature of cyclotomic units

We hâve seen in the preceding section that in order to construct definite
unimodular $m-lattices, we hâve to find units of F Q(£ + £~1) (where £ is a

primitive mth root of unity) of prescribed signatures. If the relative class number
h~ of K Q(Ç) is odd, then such units exist by Lemma 3.2. The présent section
deals with the problem of constructing thèse units explicitly.

We shall expose hère a method of Computing the signature of cyclotomic units
which uses some ideas of G. Gras (cf. [6]). This method has been communicated
to me by R. Gillard.

DEFINITION 4.1. Let £ be a primitive 2mth root of unity, and let a be a

positive integer relatively prime to m. Set

It is easy to check that wa is a unit of F (cf. e.g. [5]). We shall say that wa is a

cyclotomic unit.
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Recall that G Gai (F/Q) and that

sgn(x)= £ o-(gx)g-1eF2G
geG

where cr(a) O if a is positive and a(a) 1 if a is négative.
We shall give formulas for sgn (wa). We hâve to distinguish the cases m odd

and m even.

m odd
Set

(m \expl — + 7ri).

Let b be an integer relatively prime to m, and let p(b) be the élément of G
which sends £ + £&quot;* to £b +£~b. Let us dénote jR(fc) the remainder of the division
of b modulo m. We hâve:

p(b)wa e-rb sm
m

f sm

sm-
m

Therefore the sign of cr(b)wa is determined by the parity of R(ab) — R(b). We
hâve

sgn (wa) X [R(ab) -
(b,m) l

0&lt;b&lt;m/2

where [x] dénotes the remainder of the division of x modulo 2.

m even
We may assume that m is divisible by 4. Set

/iri(—
\m +iri

/
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Let 0&lt;5&lt;m, we

p(b)wa
çb_ç_b

EVA BAYEI

have:

(irab \
h sm \-7rab\

sin h irb) 1

\m /
/7ra6\

sin 1 1

sin —
\m /

As a is odd, (—1)^ b=l. We hâve 0&lt;b&lt;m, so sin(7rb/m) is positive.
Therefore we hâve:

sgn(a)= I f-lp(b)1
(b,m)=l L^J

0&lt;b&lt;m/2

where [x] dénotes the remainder of the division of the intégral part of x modulo
2.

Assume that m is mixed and that &lt;p(m) is divisible by 8. By Proposition 1.8

there exists a $m-lattice (I,S) with I — Z[£] if and only if there exists a m g Uf
such that

M
sgn(u)= X gïk (4)

where M cp(m)/4.

(See Proposition 1.8 for the définition of the &amp;&apos;s).

In the following examples we shall construct such units. This construction
makes use of the formulas for the signature of cyclotomic units.

EXAMPLE 4.2. m 15. Then g p(2) générâtes G. We want to find ueUF
satisfying (4), i.e.

sgn (m) p(2) + p(7) g + g3.

The formula for the signature of cyclotomic units in the case m odd shows that

sgn (wa) 1 + g. We hâve (1 + g3)(l 4- g) g + g3, so u w2 • w5(7)

(f+ r1)(f7 + C7) has signature g + g3.
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By Proposition 1.8 the &lt;£15-lattice (Z[£], S), with

is definite and unimodular. By Lemma 1.4 this lattice is even. As the rank of this
lattice is 8, it must be isometric to F8 (see for instance [21] Chapitre V, 2.3).

EXAMPUE 4.3. m 24. Then G={1, p(5), p(7), p(ll)}. Using the formula
for the case m even, we see that sgn(w7) p(5)~1-l-p(ll)~1. Therefore u w7
satisfies the relation (4). As in Example 4.1 we obtain the lattice F8.

EXAMPLE 4.4. m 35. Then g p(2) générâtes G. We want to find ueUF
satisfifying (4), i.e.

1+P(4)-1+P&amp;r1+p(i îr1+p(i3&gt;- *

=g+g3+g4+g9+g10+gn.

By the formula for the case m odd we hâve

We see by direct computation that

Let a g~6+g~7 + g~9 + g&quot;11. Then the unit

n+r11)

Satisfies the relation (4).
Therefore by Proposition 1.8 the 4&gt;35-lattice (Z[£], S) with

is definite and unimodular. As 35 is square free we can apply Corollary 2.2: the
lattice (Z[£], S) is indécomposable and does not represent 2. By Lemma 1.4 the

lattice is also even. As the rank of this lattice is 24, the above properties imply
that it must be isometric to the Leech lattice (cf. Conway [3]).
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5. Examples

There exists a complète list of the isometry classes of definite unimodular and

even lattices of rank at most 24 (cf. Niemeier [18]). For ail mixed integer m such

that &lt;p(m)^24, we shall détermine which of thèse lattices are &lt;f&gt;m-lattices.

Recall that if m is mixed and if &lt;p(m) is divisible by 8, then there exists a

definite unimodular and even &lt;£m-lattice (see Theorem 1.1).

1) Lattices of rank 8

We hâve &lt;p(m) 8, so m 15(30), 20 or 24. As F8 is up to isometry the

unique definite, unimodular and even lattice of rank 8, we see that F8 is a

$m-lattice for thèse values of m.

2) Lattices of rank 16

We hâve cp(m) 16, so m =40, 48 or 60. For thèse values of m the

corresponding cyclotomic field has relative class number h~= 1 (cf. [28], p. 353).
Therefore there exists a unique definite unimodular &lt;£m -lattice with m =40, 48 or
60 (see Section 3, Proposition 3.1). This lattice is F8 El F8 in each case. Indeed, F8

is a &lt;£m/2-lattice (cf. 1)). Let t be an automorphism of F8 with characteristic

polynomial &lt;£m/2. Then I is an automorphism of F8 El F8 with characteristic

polynomial &lt;£w.

Every definite, unimodular and even lattice of rank 16 is isometric to F8 El F8

or to F16. The above discussion shows that F16 cannot be a &lt;^m-lattice. This also

follows from Corollary 2.4: indeed, the root System of F16 is D16.

3) Lattices of rank 24
We hâve &lt;p(m) 24, so m 35(70), 39(78), 45(90), 52, 56, 72 or 84. We shall

study each case separately.

m =35
As 35 is square free, we can apply Corollary 2.2: Every definite &lt;f&gt;35-lattice is

indécomposable and does not represent 2. Therefore if (L, S) is a definite
unimodular &lt;£35-lattice, then (L, S) is isometric to the Leech lattice (cf. Conway
[3]). Explicitly, we hâve L— Z[£] where £ is a primitive 35th root of unity, and

y) TrK/Q (~- uxyj, x,ye Z[£|



Definite unimodular lattices 531

where u (Ç6 + C6)U7 + C7)(Ç9 + C9)(£11 + C11), * is the minimal polynomial of
V =£ + £~1 and i// is the derivative of ^ (cf. Example 4.4).

m =39
As 39 is square free, we can again apply Corollary 2.2 to deduce that every

definite unimodular &lt;£39-lattice (L, S) is isometric to the Leech lattice. We shall
give a description of (L, S) which is similar to Craig&apos;s présentation of the Leech
lattice (cf. [4]). Let K Q(Ç) where £ is a primitive 39th root of unity. It is
straightforward to check that the différent of K/Q is

PlP1P2P2Q11Q11

where Pl5 P2 and Q are prime Z[£]-ideals with norms 33, 33 and 13 respectively.
Let I (P1P2Q11)1, and let us dénote A the inverse différent of K/Q. Then
A IL Therefore we can take L—I and

S(x, y) TrK/Q (xy), x, y € J.

(This corresponds to a i//(tî) in Proposition 1.8.)
Notice that for m 35 one cannot write the inverse différent under the form

JJ, therefore this type of description is not possible.

m =45
F8Œ1F8Œ]F8 is a &lt;£45-lattice. Indeed, let t be an automorphism of F8 with

characteristic polynomial &lt;f&gt;15 (cf. 1). Then

is an automorphism of F8 El F8 El F8 with characteristic polynomial cf&gt;45.

Let K Q(O, where Ç is a primitive 45th root of unity. The relative class

number of K is 1 (cf. [28], p. 353). By Proposition 3.1 this implies that up to
isometry F8HF8Œ1F8 is the unique unimodular definite $45-lattice.

m =52
Let (L, S) be a definite unimodular 4&gt;52-lattice. Then Corollary 2.3 implies that

(L, S) is indécomposable. Indeed, k 2 is the only common divisor of 52 and of
9(52) 24 such that &lt;p(52/k) 24/k. But 24/2 12 is not divisible by 8, therefore
(L, S) is indécomposable. Let R={x&lt;=L such that S(x, x) 2} be the associated
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root System. Then Corollary 2.4 implies that either R is empty or JR =2A12. We
shall see that there exists a definite unimodular &lt;£52-lattice (L, S) having root
System 2A12.

The automorphism group of A12 is S13xC2 (cf. [2], Chap. VI, no 4.7),
therefore there exists an automorphism i:ZA12 —*ZA12 with characteristic
polynomial &lt;£26. Set R =2A12, and let T:ZR-*ZR be the automorphism which
is given by the matrix

I 0

Then the characteristic polynomial of T is &lt;j&gt;52.

Let us identify the ith copy of ZA12 with

13 13

Z *A such that *,i eZ, £ x,, =0

for i 1,2. Let
12

Yli =Î3 2* ^ji~Î3
J=l

and let yn ryu. Set R= 2A12, and let L =ZR +Z(yn + y52). Then L is unimodu-
lar (cf. Niemeier [18] p. 163). It is easy to check that T(y11 + y52) y51 —y12

modulo ZR. An easy computation shows that S(yn + y52, T(yn + y52)) 1, therefore

T(y11 + y52)eL. So T is an automorphism of (L, S).
The relative class number of the cyclotomic field corresponding to the 52th

roots of unity is h~ 3 (see [28], p. 353). therefore by Corollary 3.3 there are at

most two isometry classes of definite unimodular &lt;/&gt;52-lattices. We already know
that there exists such a lattice (L, S) with root System 2A12. But Niemeier has

shown that every definite unimodular lattice of rank 24 having root System 2A12
is isometric to (L, S). We hâve seen that there are no other root Systems jR such

that ZR is a &lt;£52-lattice. Therefore if there exists another definite unimodular
&lt;£&gt;52-lattice, it must be isometric to the Leech lattice.

m 56
Let (L, S) be a definite unimodular &lt;£56-lattice. Then Corollary 2.3 implies that

(L, S) is indécomposable. Indeed, k 2 and fc 4 are the only common divisors of
56 and of 24 such that &lt;p(56/k) 24/fc, and in each case 24/fc is not divisible by 8.

Let R={xeL such that S(x, x) 2} be the associated root System. Then
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Corollary 2.4 implies that if R is not empty, then R 2A12, 4E6 or 4A6. It is easy
to check that the automorphism groups of 2A12 and of 4E6 do not contain any
élément of characteristic polynomial &lt;f&gt;56 (cf. [2], Chap. VI, no 4.7 and no 4.12).

We shall see that R=4A6 is also impossible. Indeed, let R=4A6. The
automorphism group of A6 is S7xC2 (cf. [2], Chap. VI, no 4.7) therefore A6 has

automorphisms of characteristic polynomial &lt;/&gt;14. Let T be an automorphism of R
with characteristic polynomial &lt;t&gt;56. Then T is the composition of

with a permutation matrix of order 4, where ^ ±I or an automorphism of A6
with characteristic polynomial &lt;f&gt;14 or &lt;£7. Niemeier has proved that the unimodular

lattice (L, S) with root System JR =4A6 is unique up to isometry (cf. [18], p.
165). We shall see that T does not extend to an automorphism of L.

We shall identify the ith copy of ZA6 with

ri 7 1
\ Z «A such that an eZ, £ «i. =0 [•

Let y1( ^ If=i % ~i&lt;hx and let yn ryll5 for r 1,..., 6. Let xx ylx4- y22+ y33,

X2 y32~&quot;y23 + yi4- then L=ZR+Zxx+Zx2 is a unimodular lattice (cf. Niemeier
[18], p. 166). It is easy to check that

T(yu) iyicxd) modulo JR

where cr is a permutation of order 4. To simplify notations, we shall write ab
instead of S{a,b). We see that XyJ(xù is either ±y1y2±y2y3 or yiy3±y2y3&gt; or
±y1y2±y1y3 (we omit the second index which is irrelevant hère). But none of
thèse can be an integer, as yiy2 f, yiy3 7 and y2y3 f. Therefore T(Xi)^L.

This implies that up to isometry the Leech lattice is the unique definite
unimodular &lt;£564attice.

m =72
a) r8EBr8Œir8 is a &lt;£72-lattice. Indeed, F8 has an automorphism t with
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characteristic polynomial $24 (see 1)). Then

is an automorphism of F8 EB F8 EB F8 with characteristic polynomial
b) There exists a unimodular lattice (L, S) with root System jR 4E6.

Moreover, (L, S) is unique up to isometry with thèse properties (cf. Niemeier [18],
p. 160). We shall see that (L, S) is a 4&gt;72-lattice.

The root System E6 is generated by 6 simple roots au a2,..., a6, with Dynkin
diagram

«4 «5

«2

«6
-m

M=\

The corresponding matrix of inner products is

2 0 -1 0 0 0\
0 2 0-100
-10 2-100
0-1-1 2-1 0

0 0 0-12-1
0 0 0 0-12/

Wehave det(M) 3.
We see that ZE6 is a &lt;£&gt;9-lattice. Indeed, one can identify ZE6 with the lattice

where £ is a primitive 9th root of unity, K Q(Ç) and tj £ + £~1. Notice that the

différent of JK/Q is SiÇ-T1)^2-!), see Lemma 1.6. On the other hand,

NK/q(£ —£~1) 3. As rj and t| — 1 are units, it is easy to deduce from this that
det(S&apos;) 3. It is easy to check that t)/t)-1-1 is totally positive. Therefore S&apos; is

positive definite. Theorem 2.1 implies that S&apos; is indécomposable. But Kneser has



Definite unimodular lattices 535

proved (cf. [11]) that there exists only one isometry class of definite indécomposable
lattices of rank 6 and déterminant 3, so (Z[£], S&apos;) is isometric to E6.
I thank Michel Kervaire for the following explicit identification of (Z[£], S&apos;)

and E6: set a^^ + C3, a2=l, &lt;*3 -(£ + £2), a4 f, as (4, «6

-l + £2-£3 — £4 + £5. Using this identification, he also obtains formulas for an
automorphism 0 of E6 with characteristic polynomial &lt;f&gt;g:

0(a2)

a1 + a2&quot;l&quot; 2a3 + 2a4 4- a5

Let t -6. Then r is an automorphism of E6 with characteristic polynomial
Set

Then T is an automorphism of 4E6 with characteristic polynomial
If (M, S) is a lattice, we shall dénote

M# {x eQM such that S(x, M) g 2}.

We hâve X ZEjf/Z£6 F3x, with x =K-«i + «3-«5 + «6), ^2==|. The
automorphism t of ZJEs6 extends to an automorphism of ZE%, and induces f :X—» X It
is easy to check that t(x) —x.

Following Niemeier (cf. [18] p. 160) we shall dénote ±xl±yl±zl±sl, i=0,1,
the éléments of

® (ZEt/ZE6)

Let L=ZjR+Za+Z6, where a =x1 + y1 + Zi + s0

Jco-yi + Zi + Si -yi + z1 + s1. It is easy to check that aT(a) aT(b) bT(b) 0

and that bT(a) 4. As thèse are ail intégral, we hâve T(L) L.
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The relative class number of the cyclotomic field corresponding to the 72th
roots of unity is 3. Therefore by Corollary 3.3 there are at most 2 isometry classes

of deflnite unimodular &lt;£72-lattices. This implies that up to isometry the only
definite unimodular &lt;£72-lattices are F8 EB F8 E3 F8 and the lattice with root System

m 84
Let (L, S) be a definite unimodular &lt;£&gt;84-lattice. The only common divisor k of

84 and of 24 such that &lt;p(84/fc) 24/k is k=2. As 12 is not divisible by 8,

Corollary 2.3 implies that (L,S) is indécomposable. As 41&gt;26, Corollary 2.5

implies that (L, S) does not represent 2. Therefore by Conway&apos;s resuit [3] the
lattice (L, S) is isometric to the Leech lattice.

The following Proposition summarizes the above results on &lt;£m-lattices of rank
24:

PROPOSITION 5.1. Every definite unimodular &lt;t&gt;m-lattice of rank 24 is

isometric to one of the following:
a) the Leech lattice (m 35, 39, 56, 84)
b) r8Œir8Hr8 (m=45,72)
c) the Niemeier lattice with root System 2A12 (m 52)
d) the Niemeier lattice with root system 4E6 (m =12).

Remark 5.2. J. Tits has given four présentations of the Leech lattice (cf. [24],
[25]) which also make use of trace maps. M.-F. Vignéras has generalized one of
thèse constructions and obtained lattices of higher rank (cf. [26]).

4) Lattices of rank r ^ 32
We shall give some values of m such that every definite unimodular &lt;f&gt;m -lattice

is indécomposable and does not represent 2 (this can be proved by easy applications

of Corollaries 2.2, 2.3 or 2.5). We shall also give the relative class number
h~ of the corresponding cyclotomic field (cf. [24], p. 353).

r 32

r 40

r 48

r 56

r 64

m 51,

m 55,

m 132,

m =65,

m 105,

m 87,

m 85,

h~

h-
h-
h~

h~

h~~

h-

5

10

11

64

13

1536

6205
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r 72 m =91, h&quot; 53872

m =228, h~ 238203

r 96 m 119, h~ 1238459625

This list is not always complète for the given values of r: if r^72, it is easy to
find more examples.

REFERENCES

[1] Bayer, E. Unimodular hermitian and skew-hermitian forms, J. Algebra 74 (1982), 341-373.
[2] Bourbaki, N. Groupes et algèbres de Lie (1968) Hermann.
[3] Conway J. H. A characterisation of Leech&apos;s lattice, Invent. Math. 7 (1969), 137-143.
[4] Craig, M. A cyclotomic construction for Leech&apos;s lattice. Mathematika 25 (1978), 236-241.
[5] Garbanati, D. Unit signatures, and even class numbers, and relative class numbers. J. Reine

angew. Math. 274/275 (1975), 376-384.
[6] Gras, G. Nombres de &lt;p-classes invariantes. Applications aux classes des corps abéliens. Bull. Soc.

Math, de France 106 (1978), 337-364.
[7] Hasse, H. Ûber die KXassenzahl abelscher Zahlkôrper (1952) Akademia-Verlag, Berlin.
[8] Kervaire, M. Formes de Seifert et formes quadratiques entières, to appear.
[9] Kttaoka, Y. Scalar extension of quadratic lattices. Nagoya Math. J. 66 (1977), 139-149.

[10] Kttaoka, Y. Tensor products of positive definite quadradic forms, V. Nagoya Math. J. 82 (1981),
99-111.

[11] Kneser, M. Klassenzahlen definiter quadratischer Formen. Arch. Math. 8 (1957), 241-250.
[12] Lam, T. Y. The algebraic theory of quadratic forms (1973) W. A. Benjamin, Inc.
[13] Lang, S. Algebra (1969). Addison-Wesley Publishing Company.
[14] ^ Algebraic number theory (1970) Addison-Wesley Publishing Company.
[15] Cyclotomic fields (1978). Springer-Verlag, New York, Heidelberg, Berlin.
[16] Levine, J. P. Algebraic structure of knot modules. Lecture Notes in Mathematics 772 (1980),

Springer-Verlag, New York, Heidelberg, Berlin.
[17] Milnor, J. On isometries of inner product spaces, Invent. Math. 8 (1969), 83-97.
[18] Niemeier, H.-V. Definite quadratische Formen der Dimension 24 und Diskriminante 1. J. Number

Theory 5 (1973), 142-178.
[19] O&apos;Meara, O. T. Introduction to quadratic forms (1973). Springer-Verlag, Berlin, Heidelberg,

New York.
[20] Quebbemann, H.-G. Zur Klassifxkaûon unimodularer Gitter mit Isometrie von Primzahlordnung,

J. Reine agnew. Math. 326 (1981), 158-170.
[21] Serre, J.-P. Cours d&apos;arithmétique (1970) Presses Universitaires de France.

[22] Shimura, G. On abelian varieties with complex multiplication. Proc. London Math. Soc. 34

(1977), 65-86.
[23] Stoltzfus, N. W. Unraveling the intégral knot concordance group. Mem. Amer. Math. Soc. 12,

no. 192 (1977), 1-91.
[24] Trrs, J. Four présentations of Leech&apos;s lattice. Finite simple groups II, 303-307. Académie Press,

1980.
[25] Trrs, J. Quatemions over Q(V5), Leech&apos;s lattice and the sporadic groups of Hall-Janko. J. Algebra

63 (1980), 56-75.
[26] ViGNÉRAS, M.-F. Arithmétique des algèbres de quatemions. Springer Lecture Notes in Mathema¬

tics 800, (1980).



538 EVA BAYER-FLUCKIGER

[27] Wall, C. T. C. On the classification of hermitian forms I. Ring of algebraic integers. Compos.
Math. 22 (1970), 424^451.

[28] Washington, L. C. Introduction to cyclotomic fields. Graduate Texts in Mathematics 83 (1982)
Springer-Verlag, New York, Heidelberg, Berlin.

[29] Weber, H. Théorie der abelschen Zahlkôrper. Acta Math. 8 (1886).

Universitêde Genève
Section de mathématiques
Rue du Lièvre 2-4
Case postale 240
CH-1211 Genève 24

(Current address:
The Institute for Advanced Study
School of Mathematics
Princeton, New Jersey 08540, USA)


	Definite unimodular lattices having an automorphism of given characteristic polynomial.

