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On the Nehari univalence criterion and quasicircles

F. W. GeHrRING* and CH. POMMERENKE

1. Jordan domains

We assume throughout the paper that the function f is meromorphic and
locally univalent in the unit disk [). The Schwarzian derivative

_d f'(2) 1(_1‘_”_(_z_))2 (1.1)

f'(2)
is analytic in D. It satisfies
S peoi2) = Se(W(2)W' (2)* + S, (2) (1.2)

for ¢ e MOb, where Mob denotes the group of Maobius transformations.
Nehari [13] has shown that if

(1-1z])?|84(z)|=2 for zeD, (1.3)

then f is univalent in D.
The bound 2 cannot be improved because

fz)=[1+2)/(1-2)]*, e>0, (1.4)

satisfies (1.3) with 2 replaced by 2(1+ £2) but assumes some values infinitely often
in D.
The univalent function

f*(2)=10g%~§ (zeD) (1.5)

* This research was supported in part by grants from the Humboldt Foundation and the U.S.
National Science Foundation.
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satisfies (1— 22)2Sf*(z)-—-:2 and maps D onto the parallel strip

T T
T {w > Imw 2} (1.6)

Hence f(D) need not be a Jordan domain in C under the assumption (1.3).
Duren and Lehto [S] asked for conditions of the form

(1-zP)? 1S (2)=2A(z])  (ro<|z|<1)
that imply that f(D) is a Jordan domain. They proved that A(r)=1+¢/log (1—r)
with € >0 is a possible choice, and this was improved by Becker [3] to A(r) =
1+2(1+&)(1—=r)log (1—r).

We shall show that the function f* defined in (1.5) is essentially the only
exception.

THEOREM 1. Let f be meromorphic in D and let
(1—|zP)?|S;(z)|=2 for zeD. (1.7)

Then f has a spherically continuous extension to D and f(D) is a Jordan domain or
the image of the parallel slit T under a Mobius transformation. Moreover if z,€ D
and f(z,) #, then

|f(rzo) — f(zo)l = O(dist (f(rzo), 3f@))"'*) as r—1-0. (1.8)

The estimate (1.8) means geometrically that the Jordan curve 9f(®) can at
most have first order cusps (like two tangent circles).

In the second (exceptional) case, we can write

f=o@of*oy with ¢, e MoD, ¢(D)=D.

Thus (1—z1%?|S;(z)| =2 on some hyperbolic geodesic, by (1.2) and (1.5). Hence
we conclude from Theorem 1:

COROLLARY 1. If
(1—-|z»)?|S;(2)|<2 for zeD,

then f(D) is a Jordan domain.
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The following more precise result will be stated under the normalization

f"(0)=0.

THEOREM 2. Let the assumptions of Theorem 1 be satisfied and let f"(0) =0.
Then either

e +z

f(z)=alog + b, a,beC,a#0, 0=0<2m, (1.9

e —z

or f has a homeomorphic extension to D with

f@)— () =M, (1og ) (2. ' D), (1.10)

|z —2'|
If(re'®) — f(e*®)| = M,[dist (f(re'®), af N> (0=r<1,0=0<27) (1.11)
for some constants M, and M,.

As the proof will show (see (3.4)), it is sufficient to assume instead of (1.7) that

Re [ez“’Sf(re“’)]é(—l-j-z;—)—z? 0=6<2m0=r<1) (1.12)

in order to prove (1.10). This condition was considered by Steinmetz [16] who
proved (1.10) with an extra factor 1—2(1—r?/log[8/(1—r?] in (1.12).

2. Quasidisks

The Jordan curve I' is called a quasicircle with constant M if

min [diam I'}, diam IL,]=M |w;—w,| for w;, wyel (2.1)
where I'; and I, are the components of I'\{w;, w,}. A domain bounded by a
quasicircle will be called a quasidisk. If f is univalent in D, the f(D) is a quasidisk
if and only if f has a quasiconformal extension to C as Ahlfors [1] has shown.

THEOREM 3. If f is meromorphic in D and if

1—-1zP)?|S4(z)|=b<2 for zeD, 2.2)
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then f(D) is a quasidisk with constant

M§8(1 —g)"m. (2.3)

This result was proved by Ahlfors and Weill [2] except for the above estimate
for the constant M. When b <2 the function

— >\ — 1/2
f(z)=[(1+z)/(1 z)] 1( D) az(l—é) ’

[(A+2)/(1-2)F+1 ¢ 2

satisfies (2.2) while (2.1) holds for I' = 9f(D) only if

ma\"'_ 2 b\ "2
M§(2 i ——) 2——(1~——) .
st 4 T 2

Thus the order of the bound for M in (2.3) is best possible as b — 2.
We give an extension of the Ahlfors—Weill theorem.

THEOREM 4. Let f be meromorphic in D and let

limsup (1 —1z]%)?|S:(2)| < 2. (2.4)

jz|l—=1

Then f has a spherically continuous extension to D and there exists p < such that f
assumes every value at most p times in D. If p=1 then f(D) is a quasidisk.

The number p can be arbitrarily large because every function that is
meromorphic and locally univalent in D satisfies (2.4).

The last assertion was conjectured by Becker [4]. He proved it under the
additional hypothesis

"(Z)

<%

limsup (1—|z?)

|z|—1

If f is not injective on dD), then f(D) need not be a quasidisk as the example
f(z) =e™ shows.

COROLLARY 2. If the meromorphic function f satisfies (1.7) and (2.4), then
fD) is a quasidisk.
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This follows at once from Theorems 1 and 4; the exceptional case in Theorem
1 cannot occur because of (2.4).

Our next result is a quantitative version of a theorem of Sullivan [17]. It is a
consequehce of a result of Mané, Sad, and Sullivan [11] for which we give an
invariant version in terms of the cross ratio

Z17 23 2,724

(ZI’ Zy, 23, 24) = . (25)
21724 2o 23
The Jordan curve I'cC is a quasicircle if and only if [1, p. 295]
‘(le 23, 23, Z4)|§KO (26)

for all ordered quadruples z,, z,, z3, z, on I' and some constant K.

THEOREM 5. Let the domain G =C be bounded by a quasicircle I satisfying
(2.6). Let the function

g=g(z, A):GxD—-C

be injective in z (for fixed A\) and meromorphic in A (for fixed z). Let g(z,0)=z. If
A €D, then g(G, L) is bounded by a quasicircle g(I', \) with

1+!/\|]

1
l(wla W3, W3, W4)| =— exp [(77 +10g KO) T:m

16 2.7

for all ordered quadruples w,, w,, ws, w, on g(I', A).

Let now G be a simply connected domain and let p; denote the hyperbolic
(Poincaré) metric of G. Let the functions f be meromorphic and locally univalent
in G. Ahlfors [1] and Gehring [8] have proved that, if and only if G is a quasidisk,
there is a constant a >0 such that

1S¢(2)| = aps (2)*(z € G) implies f univalent in G.
It follows from the argument given in [8] that also the image f(G) is a quasidisk if
a is replaced by a smaller number.

We show now that the last fact holds in a much more general context.

THEOREM 6. Let G be bounded by a quasicircle I' satisfying (2.6) and let p
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be any positive function. Suppose that
1S;(z)| = ap(2)*(z € G) implies f is univalent in G. (2.8)
If 0=b<a and
IS;(2)|=bp(z)> (z€G), (2.9)

then f(G) is bounded by a quasicircle f(I') with

1
|(wy, Wy, wi, w,)| =— exp [(77 +log K,)

16 (2.10)

a+b]
a—b

for all ordered quadruples w,, w,, w;, w, on g(I').
In we choose G =D, p(z)=(1—|z/»)™" and a =2, then (2.8) becomes the
Nehari criterion. Hence we obtain a new proof of the Ahlfors—Weill theorem. It

turns out however that, for b close to 2, the bound is substantially larger than the
one obtained in Theorem 3.

Remark. A similar argument can be used to prove the following analogue of
Theorem 6. Let the functions f be analytic and locally univalent in the simply
connected domain G <C. If there is a constant a >0 such that

%,((g =ap(z)(ze G) implies f univalent in G (2.11)
and if 0=b<a, then

‘f”(Z) b G olies F(G) ; ik 2.12)

)= p(z)(z € G) implies f(G) is a quasidisk. .

Martio and Sarvas [12, Theorem 4.9] have shown that (2.11) holds for some a >0
and p=ps if G is a quasidisk. Astala and Gehring have just established the
converse of this result, namely that (2.11) holds for some a >0 and p = pg only if
G is a quasidisk.

3. Proof of Theorem 2

(a) Let 0=0 <27. The function

e —1
h - i8
(B=e e'+1

(teT) (3.1
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maps the strip T conformally onto [ and
g=foh 3.2)
is meromorphic and (at least) locally univalent in T. Computation shows that
g’ =21 -rd)|f'(re’®)] for teR, h(t)=re®. (3.3)

Since S, (t)=-3, it follows from (1.2) and (1.12) that

Re S, (t) = —3+3(1—r?)?* Re [e*°S(re’®)]=0 (3.4)
for teR and h(t) =re®.

We define

v(t)=|g’(O|"* for teR; (3.5)

this function is zero at a possible pole of g. We see that

’ 7 " "2 ]
-”—=—%Re-g—,,”——/”—) ——iRe [i%] (3.6)
v g v \v dt g
and therefore
v"()=p@)v(t) for teR 3.7
(except where g has a pole) where
_ 1 1 g"(t) 2

by (3.4). Hence v is non-negative and convex in R; this is also true if g has a pole
at to€R in which case v(t,) =0.

(b) We use now the hypothesis that f"(0)=0. It follows from (3.2) that
g"(0)=0. Hence (3.6) shows that v'(0)=0. Therefore v has its minimum at 0
where v(0)>0, and we conclude that g(t) # for teR.

Let first v'(ty) =0 for some ¢, #0, say t,>0. Since v is convex, we conclude
that v'(t) =0 for 0=t=t, and thus v"(t)=0. Hence Re[g"/g']=0 by (3.6) and
Im[g"/g']=0 by (3.4) and (3.8). We conclude that g"(t) =0 for 0=t=t, and thus
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for te T by the identity theorem. It therefore follows from (3.1) and (3.2) that f
has the form (1.9).

Suppose next that f is not of the form (1.9). Then the above argument shows
that v'(1)>0 for each choice of the constant 6 in (3.1). It follows by continuity
that

vV()Za>0 for 1=t<w
for some constant a and therefore

v()=v(ty)+a(t—t,) for 1=t =t<oo. (3.9
In view of (3.5) this means that

= .
~ [o(to) + a(t—to)P

lg' (1) for 1=St,=t<oo, (3.10)

(c) We obtain from (3.1), (3.3), and (3.10) that

‘f'<7->|§2a‘2<1——|z|2>"(1og—1f:j‘1)— for oz,

Hence there are constants a and b such that
1f'(2)| <—2— (log = )~2+b f D (3.11)
z 1-—|z|k0g1-|z| or zeD. .

We apply now a standard method (see for instance [15]) to derive (1.10) from
(3.11). It is sufficient to consider z, z’' € because then (1.10) shows that f is
uniformly continuous in D and hence has a continuous extension to D. Let I' be
the hyperbolic segment joining z and z’ in D. Then I has length = |z —2'|/2
and

min (s, l—-s)ég a-¢) (3.12)

for each ¢ eT, where s is the length of the part of I between z and:{. We see
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from (3.11) and (3.12) that
)~ feI= | 1@ ldg
r

= Tglesig) e

/2 4 -2
= 2aj (log —E) ds + bl
o 2s

=x (log| 162 ‘)—1+229|z—z'|§M1(10g‘—;-_—3i—z—,-l>_1

/\

1 8\ 2
because < (log ;) is decreasing in (0, 1).

(d) We also obtain from (3.5) and (3.10) that

r\g’(t)\ dt._r = - lg (to)]'?

o L [o(t) +alt—t) av(ty) «

for 1=t,<. Hence we see from (3.1), (3.2), and (3.3) that
1/2
)~ fre®) =~ |3 1-P) el | (3.13)
a2

and (1.11) follows from a consequence of the Koebe distortion theorem
[14, p. 22]. This completes the proof of Theorem 2 except for the statement that f
is injective on dD.

4. Proof of Theorem 1

There exists ¢ € Mob such that (¢ f)"(0) = 0. Hence it follows from Theorem 2
that @of and therefore f has a spherically continuous extension to D.

Suppose now that f is not injective on dD. Since S is invariant under Mdbius
transformations, we may assume that

f(z1) =f(zp) = o, ; zy,2,€0D,  z;# z,. 4.1)

Let I'" be the hyperbolic geodesic joining z, and z, in D and let h map the strip T
conformally onto D such that h(R)=1T.
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We set g =foh. Then g is analytic in T and we see as in part (a) of the proof
of Theorem 2 that

v(=1g'OI""?  (teR)

is convex and positive. Suppose that v'(ty) # 0 for some t,€R. If v'(t;) = a >0 then
we obtain (3.10) as in part (b) of the proof of Theorem 2. This implies g(+) #
in contradiction to (4.1). Similarly v'(t,) <0 leads to g(—) # o contradicting (4.1).

Thus v'(t)=0, g"(t)=0 and geMob. Hence f(D) is the image of T under the
Mobius transformation g.

5. Proofs of Theorems 3 and 4

We need the following characterization of quasidisks. We say that the domain

G < C has a c-accessible boundary if each z,, z,€dG can be joined by an open
arc A < G such that

m}n2 |z—z]|=cdist(z,dG) for zeA. (5.1
1=1,
It follows from (5.1) that c=1.

LEMMA 1. Let G be a Jordan domain in C. Suppose that there is a constant ¢
such that, for all ¢ e M6b with ¢(G)<C, the domains ¢(G) have c-accessible
boundaries. Then oG is a quasi-circle with constant M =2c.

It easily follows from [9, Theorem II1.2.3] that the converse holds except for
the constants.

Proof. We show first that each w,, w, €3G can be joined by an open arc B< G
such that

lw—w,|=c|lw;—w, for weB. (5.2)
We may assume that w,, w, are finite and set
e(w)=(w—wy)/(w—w,).

Then ¢(G)=C with 0, ©€ d¢(G). By hypothesis there is an open arc A joining 0
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and « in ¢(G) such that
|lw|=c dist (w,0e(G))=c|w—1| for weA
because 1g ¢(G). If we B=¢ '(A) we deduce that

lo(w)|

W= wil = W)= 1]

|W1“ W2| =c lW1‘ W2|-

Now fix w;, w,€dG and suppose that
min (diam Fls diam Fz) >2c le - Wz‘

where I'; and I'; are the components of 3G \{w,, w,}. Then we can choose z; €I}
with

j’g22|zi—wk|>c lwi—w,. (5.3)

Let C be the open segment (w;, w,) and suppose first that C(oG = .
If C<= G then we join z, z, by an open arc A < G satisfying (5.1). Since C
separates z; and z, in G we can choose z € A () C in which case

dist (z, 0G) =3 |w;— w,|.

Thus, by (5.1),
1’2{2 |Zi—Wk|§§lW1_W2I+lZ“Wk|§C lwi—w, (5.4

where w, is the endpoint of C nearest to z.
If C<C\G let B be an open arc joining w;, w, in G for which (5.2) holds.
Then BUC is a Jordan curve which separates z; and z,, and hence

E{% |zj —wi|= JIax lw—wi|=c|w;—w,
by (5.2). Together with (5.4) this shows that
min_ |z, w| S ¢ [wy—w 5.5

whenever CNJG = g,
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Thus we see from (5.3) that CNaG# J. Let C; and C, denote the compo-
nents of dG\{z,, z,}. For j=1,2 we choose wje CNC, such that

lwi—wj|=dist(CNC,, CNC,)

and let C’' = (w1, w3). Then z; and z, lie in different components of dG\{w], w3}.
Since C'NaG = it follows from (5.5) that

,xin:i?z |z; — wil=c |lwi—w)|.

It is easy to see that this is a contradiction to (5.3). Thus 4G is a quasicircle with
constant M =2c.

Proof of Theorem 3. We show first that G is c-accessible. We verify (5.1)
where it is sufficient to consider z; =f(—1), z, =f(1) because of (1.2).

We employ the notation of Section 3 with 6 = 0. It follows from (2.2) and from
(3.4) through (3.8) that

v"(t)=a’v(t) for —oo<t<oo (5.6)

where a®=(2—b)/8. For given t, we may assume that v'(t,) =0; otherwise we
replace g(t) by g(—t).
We compare the differential inequality (5.6) with the initial value problem

u'()=a’u®)tzt), ult)=vltp), u't)=0
which is solved by
u(t) =v(t,) cosh a(t—t,).
From a well-known comparison theorem, or directly from

dvu() v'®ult)—v(u'(t)
dru(t) u(r)?

= u(t)‘zj t (V"u—ovu") ds +0v'(tx)v(ty) =0

(4]

for t=1,, we deduce that v(t)= u(t) for t=1t,. Thus, by (3.5),

| g0l ar=1g @[ feosh a1 de =L g

0 (1]
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If zoe(—1, +1) is given, we choose t, such that z,= h(t,) and obtain
. 1, 2 .

min ‘Zi —f(zo) =—g'(to)| =— dist (f(z,), 0G)

i=12 a a

by (3.3) and the Koebe distortion theorem. Thus (5.1) holds with

c =4(1——§)_1/2. (5.7)

Since the Schwarzian derivative is MoObius invariant, we therefore conclude that
the assumption of Lemma 1 is satisfied with (5.7) and G =f(D). Thus f(D) is a
quasidisk with constant

b\ /2
M§2C=8(1—E) .

Proof of Theorem 4. By (2.4) there exist § >0 and r; <1 such that

(1-1z])?|S:(2)|<2—-58 for r=|z|<1. (5.8)

Let a >0. The function

1+

c@=e"2(113) —ia (eD) (5.9)

maps D conformally onto a wedge of vertex —ia and angle 7(1— &) that lies in the
right-hand halfplane and has [—ia, —i] as one boundary line. Hence

i0 ‘P({)'— 1

P()=e o(OF1

0=60=2m, (5.10)

maps D conformally onto a domain H in [ bounded by an arc of 9 D together with
a circle through e and e*(a—i)/(a+i) that forms the angle 7(1—8) with
dD. Hence we can choose a so large that H < {r; <|z|<1}. We see that, for some
fixed B >0 independent of 6,

{e":0—-B=t=0}coH. (5.11)
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We obtain from (1.2), (5.10), and (5.9) that

26(2-98)
(1-¢%7?
Since ¢(D)=H c{r,<|z|<1}, it follows from (1.2), (5.8), and (5.12) that the
function h = foys satisfies

— 2\2
S @SS U s,

_(2-58)+46_ 2-3
T A-zP? a-lzP?

S,(0)=S8,()= (L eD). (5.10)

for zeD. Hence we see from Theorem 3 that h maps D topologically onto a
closed quasidisk with constant M = 8(2/8)">.

Since the domains H are congruent for all 6, it follows from (5.11) that some
annulus {r, <|z| <1} can be covered by finitely many domains H. Hence we obtain
from the last paragraph that f has a continuous extension to D and assumes every
value at most p times in D for some p <.

Assume now that p=1. Then I'=f(dD) is a Jordan curve. We may assume
that diam I'=1 because the Schwarzian is Mobius invariant. Then there exists
d >0 such that

3™

If'w)— (W)=

if wwerl,|lw—w|=d

Choose wy, w, eI’ and let I'y, I'; denote the components of I'\{w;, w,}.
Let first |w; —w,|=d/(2M). We show that

min (diam I'y, diam I',) = 4M |w, — w,|. (5.13)
Otherwise we could find points z, €Iy, 2,1, with

|z —wy| =2M |w;—w,|=d (5.14)
and a domain H such that z,, z,, w,, w,€df(H). Then z,, z, would lie in different
components of of(H)\{w;, w,} and (5.14) would contradict the fact that of(H) is a

quasicircle with constant M.

2M
diam Flé 1 §—6—l_ |W1"'W2‘.
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Hence we see from (5.13) that I' is a quasicircle with constant M, =
max (2M/d, 4M).

6. Proofs of Theorems 5 and 6

Theorem 5 is an immediate consequence (with A = G) of the following lemma
which is a quantitative and Mobius-invariant version of the surprising ‘“A-lemma”
of Mané, Sad and Sullivan [11].

LEMMA 2. Let A be any set in C and let the function g =g(z,A): A xD—C
be injective in z (for fixed A) and meromorphic in A (for fixed z). Let g(z,0)=z.
Then g(z, A) has a spherically continuous extension to A XD that is meromorphic in
A €D and satisfies

1 N 1+|A
l(wy, wa, ws, wy)|=—exp {(wﬂog (21, 22, 23, 24))) *—l—‘] (6.1)
16 1—|A]
for every quadruple z,, z,, z5, z, in A where w; = g(z;, A).
Proof. Fix distinct points z;€ A (j=1,2, 3, 4). The function
h(A)=(g(z1, A), 8(22, 1), g8(z3, 1), g84(2, 1)) (A eD) (6.2)

is meromorphic and omits the values 0, 1 and » because the points g(z;, A) are
distinct. Hence we obtain

1+|)\|] 6.3)

[hA)I =4 exp | -+ og” 1RO {11
from the precise form of Schottky’s Theorem proved by Hempel [7] (see also [6]).
Since h(0) =(z,, z,, 23, z,) this is our assertion (6.1) for the case z;€ A. The
general case, will follow from the next paragraph by continuity.

Let now zoe A and let £, ¢! be distinct points in A\{z,, z,} with ¢, — z,,
L, — 2y as n — ., The meromorphic functions

h,(A\)=(8(%s M), 8(22, 1), 8(8n, V), 8(z4,A)) (A eD)

omit 0, 1, « and therefore form a normal sequence. Since h, (0) = (£, 25, £, 24) —
0 as n — oo, it follows that h,,(A) — 0 locally uniformly in A €. Hence g({, A) has
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a limit as { — z,, £ € A, and it follows that g has a continuous extension to A XD
which is meromorphic in A.

Proof of Theorem 6. Choose a point zo€ G with zy # . Since the Schwarzian
is MObius invariant we may assume that f(z,) = z,, f'(z¢) =1, f"(z0) =0. Let A €D.
Since G is simply connected, it follows from the theory of linear differential
equations [10] that the initial value problem

a
Se(z2)=A 3 Si(z),  8(zo) =20, 8'(z0) =1, 8"(20)=0
has a unique solution g = g(z, A) which is meromorphic in A. Note that
b
g(z,0)=z, g(z, 5) =f(2). (6.4)

We see from (2.9) that |S,(z)| = ap(z)? for z€ G so that g(z, A) is univalent in G
by condition (2.8). Hence our assertion follows from (6.4) and Theorem 5.
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