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Quasiregular mappings and metrics on the n -sphère with punctures

Seppo Rickman*

1. Introduction

Let Dbea domain in the Euclidean n-space Rn and f:D-^Rn continuous.
We call / quasiregular if / belongs to the local Sobolev space W^loc(D), i.e. / has

generalized first order partial derivatives which are locally Ln-integrable and
there exists K, 1&lt;1C&lt;oo) such that the distortion inequality

\f&apos;(x)\n^KJf(x) a.e. (1.1)

holds. Hère f(x) is the formai derivative of / at x defined by the partial
derivatives, \f(x)\ its operator norm, and Jf(x) the Jacobian déterminant. The
définition extends immediately to maps f:M—&gt;N where M and N are oriented
connected Riemannian n-manifolds, see for example [6]. If hère N is Rn
Rn U{oo}, equipped with the spherical metric

A 2do¦
2)2&apos;x|2)

where dx2 is the Euclidean metric, and M is a domain in .Rn, we also call /
quasimeromorphic. A quasiregular homeomorphism is called quasiconformal. The
smallest K in (1.1) is the outer dilatation K0(f) of / and the smallest K in

Jf(x)&lt;K inf |f (x)h\n a.e.
|h| l

is the inner dilatation Kt(f) of /. A quasiregular mapping / is called K-
quasiregular if the dilatation K(f) max (K0(f), Kj(/)) satisfies K(/)&lt;K

Quasiregular mappings form a natural generalization of analytic functions in

plane to the real n-dimensional space. For the basic properties we refer to [2],
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[12]. For some years ago a Picard type theorem on omitted values was proved in
the following form:

1.2. THEOREM [9]. For n&gt;3 and K&gt;\ there exists a constant q q(n, K)
such that every K-quasiregular mapping f:Rn-*Rn \{ax,..., aq}, where

a1?..., aq are distinct points in Rn, is constant.

The proof of 1.2 in [9] is based on two basic tools in the theory of quasiregular
mappings, namely, the method of moduli of path families and the theory of
quasilinear partial differential équations. A proof which uses only the first of thèse

methods is given in [11] by means of ideas from [10]. It was recently proved by
the author that at least for n 3 Theorem 1.2 is qualitatively best possible, in fact,
any number of points can be omitted.

The purpose of this paper is to give some geometrical insight from a différent
point of view to Theorem 1.2. We shall study quasimeromorphic mappings of the
unit bail B ={xeJRn | |x|&lt;l} into Y Rn\{a1,..., aq} where q is sirfficiently
large. We consider B as the Poincare model of the hyperbolic n-space with the
hyperbolic metric

2 Adx2

Our main resuit is that if Y is equipped with a metric with a certain natural
singularity behavior near the points a,, then / is a Lipschitz mapping if small
distances are ruled out (Theorem 2.4).

Let us first take. a look at the classical case n 2. If q &gt; 3, the analytic
universal covering surface of Y is conformally équivalent to B. Let tt : B —&gt; Y be
an analytic covering projection. The map ir induces a complète metric dr2 on Y,
called the Poincare metric of Y. If / : B —&gt; Y is analytic, we can lift / to an analytic
function f:B-^B such that TT°f f. According to the Schwarz-Pick lemma f is

distance decreasing, and with the metric dr2 on Y, so is /. For the case q 3 one
gets from estimâtes on the metric dr2 the Picard-Schottky theorem (see [1,
Theorem 1-13]).

Let then n &gt; 3. To some extent the covering projection tt in the 2-dimensional
case can be replaced by a branched covering which is quasimeromorphic. In
Section 3 we consider such maps ft :B —&gt; Y Rn\{au aq} which are auto-
morphic with respect to some discrète group G of Môbius transformations acting
on B and which are injective in each fundamental set. Such a map h induces a

distance r(y, z) for points y, z in Y from the hyperbolic metric in B. The singular
behavior of the metric r is similar to the behavior in the classical case as is shown
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in Proposition 3.2. In dimension three we give explicitly an example of this type
where the dilatation of h has an absolute bound and q is arbitrarily large. The
possible sets {ax,..., aq} in thèse constructions dépend on G and the dilatation
of h.

On the other hand, if we take an arbitrary sufficiently large set {au aq} in
Rn and a metric t on Y JRn\{a1,..., aq} which has a singular behavior near
each a, like in Proposition 3.2, then we obtain a counterpart (Theorem 2.4) for
the classical distance decreasing resuit mentioned above. As a corollary we get an

analogue for the Picard-Schottky theorem and in this way also a new proof for
Theorem 1.2.

1.3. Notation. The Euclidean (spherical) bail and the (n - l)-dimensional
sphère with center x and radius r are denoted by B(x, r) (D(x, r)) and S(x, r)
(C(x, r)) respectively. We write B(r) B(0, r), S(r) S(0, r), B B(1)L S S(l).
The hyperbolic metric in B is denoted by p and the spherical metric in Rn by cr.

2. The main resuit

Let au..., aq9 q &gt;3, be distinct points in JRn. We fix|8&gt;0 such that

and write Y R&quot; \{au a,,}, Ui, D(a,-, ^)\{aI}, and

We shall consider metrics t in Y which satisfy the conditions

y2) if yi,y2eY\l/,
X

(2.2)

for some positive constants P and Q.
Metrics t satisfying (2.1) and (2.2) are for example obtained from conformai

metrics

dr2 y2da2 (2.3)
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where 7 is continuous in Y, constant in Y\U, and

-y(y) if y g U
via,, y) log (l/a(aï, y))

We formulate our main resuit as follows.

2.4. THEOREM. For each K&gt;\ and for each integer n&gt;3 there exists a
number 8 8(n,K)&gt;0 and a positive integer q0 qo(n, K) such that the following
holds. If f:B^&gt;Rn\{au aq}= Y is a K-quasimeromorphic mapping where

ai,..., aq are distinct and q ^qo, then

r{f(xl), /(x2)) &lt; C max (p(xl9 x2), S), xu x2 e B, (2.5)

where r is a metric in Y satisfying (2.1) and (2.2) and C is a constant depending
only on n, K, 0, P, and Q.

The proof of 2.4 includes some value distribution results which we shall first
list below.

2.6. Averages of the counting function over sphères. Let V be a bail B(x0, r0)

and g : V —» JRn a nonconstant K-quasimeromorphic mapping. For y e jRn and for
a Borel set E such that É &lt;= V we define

n(E,y)= £ i(x, g)
xeg 1(y)OE

where i(x, g) is the local topological index of g at x; see [2, p. 6]. If E is as above
and X is an (n - l)-dimensional sphère in Rn, we let v(E, X) be the average of
n(E, y) over X with respect to the (n - l)-dimensional spherical metric. Espe-
cially, if JE B(r) and X S(t), we call n(r, y) n(E, y) the counting function and
write v(r, t) v(B(r)y S(f)), in which case we also hâve that

v{r, t) n(r, ty) dM y
o&gt;n-i Js

where Htn~1 is the normalized (n — l)-dimensional Hausdorff measure and û)n_!

2.7. LEMMA. For r,s,t&gt;0 and 6&gt;l such that B(6r)^ V we have

t n-l
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This lemma is in a slightly weaker form in [8, 4.1]. The above form is due to
M. Pesonen and A. Hinkkanen (independently) and the proof can be found in [7]
and [11].

Let A(r) be the average of n(r, y) over Rn with respect to the n-dimensional
spherical measure. From 2.7 we obtain (see [8, p. 456]).

where a, a&apos;&gt;0 dépend only on n. Since A(r) remains invariant if g is followed by
a rotation in Rn, we get from (2.8) the following lemma formulated with spherical
radii.

2.9. LEMMA. For y,zeRn, for 0&lt;s, f&lt;7r/2, and r&gt;0 and 0&gt;1 such that
B(6r) cVwe hâve

v(Or,C(y,s))&gt;v(r,C(z,t))-
(log e)&quot;&quot;1

where b,b&apos;&gt;0 dépend only on n.

The next resuit is a variant of [9, 3.2] for spherical distances:

2.10. LEMMA. There exists 60 60(n, K)&gt;1 such that the following holds. Let
r&gt;0 and 0&gt;60 be such that ë(02r)aV, let u,veB(r) and y eRn be points such

that s cr(g(u), y)&lt;t a(g(v), y). If y and some z in Rn\D(y, t) are not in gV,
then for some dn&gt;Q depending only on n

2.11. Proof of Theorem 2.4. We may assume that / is nonconstant. We write

C 6X max (60, exp {^Kd&apos;1)),

where b, b&apos;, 60 and d^ are the constants appearing in 2.9 and 2.10. Let q0 be the
smallest integer such that

qo^^-ifl;ii23n-3e?n-2 (2.12)
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and let

Ô 2~5072. (2.13)

Hère fln-\ is the (n - l)-measure of the unit bail in Rn~1. Because |3&lt;3, it is

possible to choose p &gt; 3 such that

(2.14)

Let xu x2eB be such that p(xl5 x2) S and write yt /(xj, i 1, 2. Because /
is open, it suffices to find a suitable estimate for T(y1? y2). We consider différent
cases according to the location of y! and y2.

Case 1. yl5 y2eD(ab (3/p) for some k.

Set s, cr(ak, y,), î 1,2, and assume s2^sx. By (2.1) we hâve

(2.15)

Write Ti |xi —x2| Oi. By (2.13) and by simple estimation of the hyperbolic
distance we get r1&lt;2~4(l-|x1|). Lemma 2.10 gives

v(B(Xl, ri), C(ak, Sl))a:r»^i log - (2.16)
A. \ S2/

By Lemma 2.9 we obtain

v(ë(xu 2rx), C(ap p/p))&gt;v(B(xu rx)9 C(ak, s^-c^log^-) (2.17)

for ail /. The left hand side of (2.17) is positive if

v(B(xu rO, C(ak, sj) &gt; d(log y)

By (2.16) this in turn is true if

logsl1 / d»log«i
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Suppose now that t^, y2)&gt;c2 where

(218)

Then the left hand side of (2.17) is positive by (2.15).
Since a, is omitted and v(È(x1,2r1)9C(ajyplp))&gt;0, we hâve E]

S(xl92r1)nf~1C(aJ9 |8/p)^0 for ail /. Let b be the smallest of the Euclidean
distances d(E,, El), \f i, and let b d(Eb EJ. Then q,fin_1(6/2)n-1&lt;con_1(2r1)n-1.

By (2.12) b&lt;\x1-x2\/2. Let x\e Et and xIgê^ be such that b \xl~xl\ and
write r2 |xf-xi| B\. Since f(xl) and /(xi) are separated by the ring
D(ah /3)\D(ah /3/p), Lemma 2.10 implies

v(B(xl r2), C(o,, p)) &gt;^1^1 (log p)n-i (2 19)

Lemma 2.9 gives then for ail j

v(B(xl 2r2), 0(0,, P/p)) ^ y(B(x?, r2), C(o,, /3)) - cx (log|)U \ (2.20)

The left hand side of (2.20) is positive because

according to the choices of 6X and p.

Continuing similarly we get a séquence (x1? x2) (x}, x2), (x?, x|), (x?, xi),...
of pairs in B such that xîl+1,x2n+1€B(xïl,2rm) and rm |xîl-x2n| e\^rm-xl2.
Then |xït-x1|&lt;4r1&lt;2&quot;2(l-|x1|) which implies that x^x^-^XqGB. But
o&quot;(/(^îl),/(^2n))&gt;P for ail m which contradicts the continuity of / at x0.

We hâve thus proved that

(2.21)

where c2 is defined in (2.18).

Case 2. yxeD(ak, $lp), y2£D(ak, |8/p) for some fc.

Assume first that y^D^, ($lp2) or y2^D(Ofe, /3). Then yx and y2 are separated

by the ring D(ak, plp)\D(ak, ($lp2) or D(ak, /3)\D(ak, |3/p). Starting as in
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Case 1 from the inequality (2.19) we get a contradiction with continuity if
Hyi, y2)&gt;c2.

If yi^D(ak,p/p2), y2eD(ab|3), we get

^, (2.22)

Case 3. yl,y2él)iD(aJ, plp)=Uf.
From (2.1) and (2.2) we obtain

(2.23)

Our conclusion from the inequalities (2.21), (2.22), and (2.23) is that in any
case

(c2, c3, c4) Ci.

For the constant C in the theorem we can by (2.13) take

C 26621C1.

The theorem is proved.

As a corollary of Theorem 2.4 we obtain a substitute for the Picard-Schottky
theorem in the following form.

2.24. COROLLARY. Let f:B -*Rn\{au..., o^-J, n&gt;3, be K-quasi-
regular and q^q0 where q0 is as in 2.4. Then

log |/(x)| &lt; C0(-log s0+log |/(0)|)(l - |x|)-c (2.25)

where

and Co and C are constants which dépend only on n, K, and s0.

Proof. We choose a metric r in Y Rn\{a1,..., Oq-i} given by (2.3) with
aq=oo and P s0. Since |/(x)| &lt; ir/(2o-(/(x), oo)), we may assume that /(x)e
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D(«,so). H/(0)eD(oo,So),

log 1/(*)L4 log (l/o-(°°,/(*)))
&apos;f(x))

and (2.25) holds. If /(O)jÉD(oo, s0), we choose a point zeC(^,s0) with
t(/(0),/(x))&gt;t(z,/(x)) and obtain

^6 \j V /| ^ ^__ _/_ x/._\\ ^- A _/X/n\ X/^W — y^i /-» I.J\—C
log(l/s0)

&lt; 4 exp t(z, /(x)) &lt; 4 exp r(/(0), /(x)) &lt; C0(l - |x|)&quot;

and (2.25) holds also in this case.

2.26. Remark. Similarly as in the classical case we use Corollary 2.24 to give
a new proof of Theorem 1.2 as follows. Let q be as in 2.24 and let f:Rn-+
Rn \{au aq_i} be K-quasiregular. Let zeRn and h be the map x *-» 2 \z\ x of
the unit bail. Then 2.24 applied to f°h gives

log \f(z)\ &lt; C0(-log s0 + log |/(0)|)2c.

It follows that / is bounded and thus constant by [3, 3.7].

3. Branched coverings of sphère with punctures

Let M and N be oriented connected n-manifolds. A continuous map f:M-+N
is called a branched covering if

(a) / is discrète, open, and surjective,
(b) for each y gN there exists a neighborhood V of y such that each

component of f&quot;1 V is relatively compact.
If / : M —&gt; N is a branched covering and V is as in (b) and connected, then every

component D of f~x V is a normal domain, i.e. fdD dfD, f maps D surjectively
onto V, and the index (see 2.6)

xe/-1(y)nD

is constant for ail y e V.
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We shall consider spécial branched coverings from B onto some Y
Rn\{au — •, &lt;*q}- Thèse will be quasimeromorphic and automorphic with respect
to certain discrète Môbius groups G acting on B.

Let P be a convex (open) hyperbolic polyhedron in B which satisfies the
foliowing conditions:

(1) P has a finite number of faces and finite volume.
(2) Each dihedral angle in P is ir/k for some integer fc&gt;l.

(3) The set of vertices of P in dB is nonempty.
Let F be the group generated by reflections in the faces of P. Then F is a

discrète group acting on B and P is a fundamental polyhedron for F [13]. Let G
be the subgroup of F generated by an even number of reflections in the faces of P.

Then G is a Môbius group. If T is the reflection in some (open) face A of P,

Q int (P U TP) is a fundamental polyhedron for G.

3.1. LEMMA. There exists a homeomorphism &lt;p:P-^B such that &lt;p\P is

quasiconformal.

The proof of this lemma can be carried out as in [5, 3.4]. Fix Q as above. We
extend &lt;p to a continuous map &lt;/&gt; : Q -» Rn by reflection in A and dB. Then ijj

maps PUTPU A quasiconformally onto B U(£n\B)U&lt;pA. Let {bx,..., bq} be
the set of vertices of P in dB and let a] &lt;p(b]). We extend i^toa quasimeromorphic

mapping h of B by setting

h | g(Qnfî) ^g-11 g(QnB), g€G.

Then h is a branched covering onto Y Kn\{a1,..., aq}, it is automorphic with
respect to the group G, and it is injective in each fundamental set.

The map h induces from the hyperbolic metric p in B a metric r on Y defined

by

t(v, z) min {p(u, v)\ue h~\y), v e h~~\z)}.

3.2. PROPOSITION. There exist a constant a(n, K), depending only on n and
K K(h), and a number |3&gt;0 such that

(3.3)

whenever y1; y2eD(a,, p)\{a,}, j
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Proof. Let yl9 y2eY and let xleh~l(yl) be such that T(yx, y2) p(x1, x2)-

Suppose that for some / x, belongs to the horosphere S((l - rt)bv r,), i 1, 2. We

may assume rt^r2. Since b, is a parabolic fixed point for G, [4, 6.16] implies that
for some s,&gt;0

^ if (7(0,, *)&lt;*,, (3.4)

where Ci, C2, 7, and ô are positive constants with l&lt;y/ô&lt;b(n, K). A similar
statement is included also in [4, 6.17(ii)] where, however, the r in the exponent
should be replaced by 1/r.

The inequalities (3.4) give for cr(a,, yj^s,, i 1,2,

-log C2+6/r2 _log (l/o-(a,, y2)) _ -log Q + 7^2

logdMo,, yi))~-log

By choosing s, smaller if necessary we get

t rx 27 logtlM^yzL, r, 27

and log (rjr2) — brx &lt; p(xl9 x2) &lt;log (rjr2) + brx where b is some positive constant.
The proposition follows with /3 min (sl9..., sq).

Sources for examples of groups G of the type above are mentioned for
instance in [13]. The possible configurations of the set {au aq} dépend on G
and the dilatation of h. We shall in the following give an example in dimension
three where the set {at,..., aq} is arbitrarily large and h has an absolute bound
for its dilatation.

3.5. Example. We shall give the définition of a hyperbolic polyhedron in
H3 {xgR3 I x3&gt;0}. Let X be the set of sphères S(x, 1) in R3 where x runs
through the points of the lattice {x e dH3 | x jy/3 ex + fc(V3 eJ2 + 3e2l2), /, k e Z}.
Hère ex is the ith standard coordinate vector. We let m be a positive integer and
define planes

A2 {x € R3 | x2-&gt;/3 xt 0},

A3 {x g R3 | x2 +V3 Xi 3m}.

Let A be the bounded open triangle in dH3 bounded by the planes Ar Let Sm be
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the subset of X consisting of sphères which meet A, and let P&apos; be the open
hyperbolic convex polyhedron in H3 bounded by the sphères in Xm and the planes

Ar Let T be a Môbius transformation which maps H3 onto B3 and
T(&gt;/3 m/2, m/2, m) 0. Set P TPr. The dihedral angle between any two adjacent
faces of P is tt/3 or tt/2. Hence P defines a group G as described before. We shall
next give a more detailed définition of the map (p:P^É3.

Let b be a vertex of P in dB, let 8r Srb be the Euclidean distance from b to
the set of other vertices of P. Let U= Ub be the component of Pn(B\B(l-2r))
such that b e 0. In the following Kx and K2 are some absolute constants &gt;1. By
the technique in [5, p. 128] we first construct a .K^-quasiconformal mapping g gb

of V Vb p n B(b, Ar) onto V\ 0 such that
(1) g is the identity on aVHB(l-2r),
(2) UnB{b,r) ismapped onto Wb (V\0)nB(&amp;&apos;,r/32) and bf g(b) is a

point in S(l-2r)H U such that d(b&apos;,aP)&gt;r/8,

(3) |g(x)-b&apos;| cexp(-l/|x-b|) if xeUC\B(b,r) for some constant c.

Let &lt;px be the map of P such that &lt;pt | Vb &amp;, if b is a vertex of P in dB and

identity elsewhere. Furthermore, there exists a JC2-quasimeromorphic mapping &lt;p2

of E &lt;pxP onto B such that &lt;p21 Wb is the radial stretching x »-» (l-2rb)~1x for
each vertex b in dB. The required map &lt;p | P is defined as (p2°&lt;Pi-
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