
Complete minimal hypersurfaces in hyperbolic
n-manifolds.

Autor(en): Anderson, Michael T.

Objekttyp: Article

Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 58 (1983)

Persistenter Link: https://doi.org/10.5169/seals-44599

PDF erstellt am: 02.05.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-44599


Comment. Math. Helvetici 58 (1983) 264-290 0010-2571/83/002264-27$01.50 + 0.20/0

© 1983 Birkhauser Verlag, Basel

Complète minimal hypersurfaces in hyperbolic n-manifolds

MlCHAEL T. ANDERSON

This paper is concernée! with the existence and basic properties of minimal
hypersurfaces in hyperbolic n-manifolds. A powerful and gênerai method fo
constructing minimal hypersurfaces in complète Riemannian manifolds Nn is

given by géométrie measure theory. For example, it is known that there exists an
area-minimizing hypersurface, with small singular set, in any codimension one
homology class of N. More recently, Schoen-Yau [SY] and Sachs-Uhlenbeck
[SU] hâve constructed smooth branched minimal immersions of surfaces /: J£g —»

N, area-minimizing in a conjugacy class of homomorphisms tt^X^) —&gt; tti(N),
provided /# is injective on ir^ In case N is a 3-manifold, thèse surfaces are
smooth immersions and in fact embeddings in case / is homotopic to an embed-
ding (see [FHS]).

Restricting ourselves to hyperbolic manifolds (or more generally manifolds of
négative curvature), we prove existence theorems for minimal hypersurfaces
related to the above results, but distinct in several ways. The method, briefly
stated, is as follows. Let N71 be a complète manifold of strictly négative sectional
curvature c2^KN^c1&lt;0 and let Nn be its universal cover. Using géométrie
measure theory, we produce complète area-minimizing hypersurfaces in AT1, with
prescribed behaviour at infinity; if F is a discrète group of isometries of Nn whose
action at infinity is sufficiently tame, we prove the existence of F-invariant
area-minimizing hypersurfaces in Nn. Thus when F acts freely, one obtains
complète immersed minimal hypersurfaces in N&quot;, provided Fczi^C/VT1).

In dimensions greater than three, thèse existence results are new; however, the

generality of the resuit is unclear, since the action at infinity of discrète subgroups
of isometries is not well understood in thèse dimensions.

In dimension three, thèse results partially overlap with those of [SY] and [SU];
in many respects, their results are much stronger. However, the lifts of least area
incompressible surfaces to the universal cover are not in gênerai area-minimizing,
so that there is reason to believe the two methods may produce différent surfaces

in the quotient 3-manifolds. We show in sections §4 and §5 that this is in fact so

and is related to the non-uniqueness of minimal surfaces in a given homotopy
class. Prèvious examples of such non-uniqueness are due to Thurston and

264
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discussed in [SU]; see also the interesting work of Uhlenbeck [U] for related
discussion.

From a somewhat différent point of view, the results for F-invariant minimal
surfaces complément the construction of Lawson [L] on complète minimal
surfaces in S3 and Nagano-Smyth [NS] on surfaces in U3 invariant under discrète

groups of isometries. The construction of surfaces in H3 and Hn is simpler and

more complète than in the other space forms, due to the structure of Hn at

infinity.
We now présent our results and organization of the paper in more détail. The

first section is of a preliminary nature, providing the necessary background in
géométrie measure theory and hyperbolic geometry. In §2, we prove a gênerai
existence theorem for complète area-minimizing hypersurfaces in Hn with pre-
scribed behavior at infinity; for example, one may choose the boundary at infinity
in H3 to be an arbitrary Jordan curve (perhaps non-rectifiable). The constructions
used in this theorem occur repeatedly throughout the paper. We also remark that
a similar resuit holds for manifolds of négative curvature c2^KiV&lt;c1&lt;0, al-

though we do not give a proof hère.
In §3, we discuss the action of discrète groups F of isometries on Hn

(&quot;Kleinian groups&quot;) and prove the existence of F-invariant area-minimizing
hypersurfaces provided the limit set Ar is sufficiently tame; this class includes in
particular the case of quasi-Fuchsian groups in ail dimensions. This leads to a new
method of constructing closed minimal hypersurfaces in manifolds of négative
curvature in dimensions greater than three.

The last two sections are concerned with dimension 3, where a great deal more
can be said. We first prove that for any torsion free quasi-Fuchsian group F acting
on H3, there is a complète smoothly embedded F-invariant minimal dise; when
FciTTiCM3) for M3 a hyperbolic 3-manifold, one obtains in this fashion stable

incompressible minimal surfaces in M3 in the given homotopy class. This dupli-
cates a spécial case of gênerai results of [SY] and [SU] in the case F has no cusps

or torsion. (Our method encompasses this case also.) The method of proof relies

on the work of Almgren-Simon [AS] on embedded solutions to the Plateau

problem; based on this work, one may prove the existence of curves y on S2(«&gt;) in
H3 such that any complète absolutely area-minimizing surface X asymptotic to y
has genus greater than a fixed g0.

In §5, thèse results are used to prove certain non-uniqueness and non-
finiteness results. First, we note that there are naturally occurring quasi-circles 7
(limit sets of quasi-Fuchsian groups F) for which any F-invariant area minimizing
surface asymptotic to y at infinity has infinité genus. As corollaries of this, it is

shown that such curves must bound an infinité number of complète smoothly
embedded minimal surfaces at infinity. Second, such groups F hâve at
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least two distinct F-invariant minimal dises; thus one finds non-uniqueness of
incompressible minimal surfaces in a given homotopy class, for a large class of
quasi-Fuchsian manifolds of a given genus. Further, such manifolds provide
examples where the least area incompressible surfaces of [SY] are not homologi-
cally area-minimizing. Finally, we establish a gênerai finiteness resuit for compact
area-minimizing surfaces in hyperbolic 3-manifolds, based on the method of Tomi
[To]. Thèse last results answer some questions of Uhlenbeck in [U].

This paper may be viewed as a sequel to [An], which we refer to occasionally.
A portion of the results in this paper are based on part of the author&apos;s Ph.D.
Thesis at U.C. Berkeley. I wish to thank my advisor, H. Blaine Lawson, for his

unending guidance and encouragement. Also, I wish to thank Bill Dunbar for
helpful conversations on 3-manifolds and orbifolds.

§1. Préliminaires

We discuss briefly in this section basic concepts from géométrie measure
theory and hyperbolic geometry used throughout the paper.

A natural class of objects in which the Plateau problem admits a solution with
desired smoothness properties is the class of intégral p-currents; thèse may be

thought of as suitable generalizations of smooth oriented p-manifolds. Recall that
given an oriented smooth Riemannian manifold AT1, the space of p-currents on N
is defined to be the space of continuous linear functionals (12p)* on the space of
p-forms of N, endowed with the weak topology. Clearly, there is a natural
embedding of the set of smooth oriented p-manifolds Sp of finite volume in
0f2p)*, given by

[S](«)= I « asnp(N).

More generally, a rectifiable p-current is a convergent sum of such currents
&amp; 57=i /[$]» where {S,}? is a collection of mutually disjoint oriented p-rectifiable
sets and

hère %p is Hausdorff p-measure for the metric on N. There is a natural mass

norm on the space 0lp(N) of rectifiable p-currents, given as

M(Sf) sup {fiP(w) : M(w) &lt; 1},
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where M(w) supxeN |wx|, |wx| sup{wx(g):g a unit simple p-vector}. The support

of Sf Xj[Sj] is defined as supp Sf Ur=i §&gt; finally, the boundary operator on
(flp)* is given by

One now defines the space of intégral p-currents £P(N) on N to be the set of
currents Sf such that Sf and d$f are rectifiable. One of the deep theorems of
géométrie measure theory is the

COMPACTNESS THEOREM ([FF]). Let K&lt;=:Nn be a compact set and
C€(R+. Then the set

: supp &lt;fcK,

is compact in the weak topology.

It follows easily from the définition that the mass norm is lower semi-
continuous in the weak topology; this, together with the compaetness theorem,
allows one to solve the Plateau problem in the category of intégral currents. Thus,
if Bpl is a (p-1) manifold (or intégral (p - l)-current) such that Bp~x dSe9 for
some $fe#p(N), then there is an SfoeJp(N) satisfying d&amp;0 B and

^M(SP), V^s.t. dSe B.

One says that Sf0 is absolutely area minimizing for the boundary B. We will often
work with currents of non-compact support. One defines the group Si00 of locally
intégral p-currents as the currents Sf such that for ail x e N, there is a t e £P(N) of
compact support such that x^supp (&amp;-r). We then say S/&gt;eJpoc(N) is absolutely
area-minimizing if, for ail compact sets K&lt;=^N, one has

for any re#p(N) with
Next, we briefly discuss the regularity properties of area-minimizing currents.

A point a e supp (50 \ supp (d$f) is regular if there is a neighborhood W of p such

that Wf» supp (S) is a connected p-dimensional C2-submanifold of AT. If a is

regular, then the manifold B W H supp 5? is oriented by &amp;\B and Sf is given by
intégration over B, up to multiplicity. A fundamental theorem in the subject is the
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REGULARITY THEOREM (cf. [F]). Let Sf be an absolutely area-
minimizing intégral (n — l)-current in U c: AT. Then the interior singular set Z of Sf

has codimension &gt;8, Le. 3T(Z) 0, for ail q&gt;n-S.

In particular, if n^7, then any area-minimizing (n - l)-current £f is the
standard orientation current over a smoothly embedded hypersurface.

For further information and détails regarding géométrie measure theory, we
refer to the basic références [Al], [F].

Throughout much of this paper, the ambient space TNT1 will be hyperbolic space
Hn of constant curvature -1, or a quotient of Hn by a discrète group of
isometries. Usually we identify Hn with the unit bail Bn(l) of Euclidean space via
the Poincaré model. In this model, the unit sphère represents the sphère at infinity
Sn~1(&lt;^) of Hn and provides a natural conformai compactification of Hn ; every
point peSn~1(°o) represents an asymptote class of geodesics in Hn. Analogously,
we define the asymptotic boundary si of a locally intégral p-current X in Hn by

where — dénotes closure in the Euclidean topology.
Recall that in the Poincaré model, geodesics are arcs of circles intersecting the

sphère at infinity orthogonally; similarly, totally géodésie k -planes are domains on
Euclidean fc-spheres having orthogonal intersection with S&quot;&quot;1^»). One defines the
convex hull ^(S) of a set S in Hn as the intersection of ail half-spaces containing
S; a half-space is a component of Hn-P, where P is a totally géodésie hyperp-
lane.

Finally, we use standard notation and results from Riemannian geometry;
géodésie balls of radius r are denoted by Bf or Bp(r), where p is dimension.

§2. The boundary-value problem at infinity

In this section, we will prove the existence of complète area-minimizing
hypersurfaces in Hn asymptotic to a rather gênerai class of boundaries in Sn~1(oo);

such boundaries arise naturally as limit sets of discrète groups acting on Hn.
Given compact sets A, B in a metric space (X, d), recall that the Hausdorff

distance between A and B is given by

p(A, B) max (pA(B), pB(A)\

where pA(B) sup{d(x9 B) :xeA}.
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We now state the main existence theorem of this section; both the theorem
and its proof will be used often in the sequel.

THEOREM 2.1. Let SczSn~\^) be a closed set such that Sn~\^)\S has

exactly 2 connected components. Suppose there are (n-2)-dimensional smooth,
closed, connected manifolds M, ci S&quot;&quot;1^) such that

limp(MpS) 0.

Then there exists an absolutely area-minimizing intégral (n - l)-current X asympto-
tic to S at infinity.

Proof. The outline of the proof resembles that of Theorem 4 of [An], where
an analogous theorem was proved for the case of S a fc-manifold in Sn~l(^). We
choose O € Hn as an origin and view M, c Sn~1(j) via géodésie projection from O.

Let Xj be an intégral (n — l)-current representing a solution to the Plateau

problem with boundary M, ; thus we hâve dX] M, and

for &amp;&gt; any intégral (n - l)-current with dSf Mr The proof is based on establishing
the estimâtes

j (2.2)

on the mass of X} inside the géodésie r-ball Br centered at O.

[A] Existence of Cr

We begin with

LEMMA 2.3. Let X be an area-minimizing (n-1) current in Bn(s) with

dX=Ma connected manifold in Sn~x(s). Then supp X is connected and disconnects

Bn(s) into two components O*.

Proof. We recall that supp X is an analytic submanifold outside a closed subset

Z of Hausdorfï dimension at most n-8. The work of Hardt-Simon [HS] on
boundary regularity shows that Zflsuppd^ 0. Thus the boundary of each

component of supp X is M, and so it follows that supp X is connected. Since Z is

of high codimension, it follows that ir1(Bn(s)-Z) 0; see, e.g., [HP: Theorem

4.1b].
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Suppose Bn(s)\supp X were connectée! ; choose a regular point x e supp X and

L a transverse curve so that L H supp X x. We may join the endpoints dL in
Bn(s)\supp X and obtain an embedding /: S1 -+ Bn(s) such that /(S1)flsuppX
x. It follows that / extends to a map f:D2^&gt;Bn(s); assume w.l.o.g. that / is

transverse to supp(X-Z). Thus /~1(supp(X-Z)) is a 1-manifold with single
boundary component x, a contradiction.

To see there are at most two components of Bn(s)\supp£, let x, L be as

above and for any y €Bn(s)\suppX let ry be a shortest géodésie from y to
supp X. If py is the endpoint of ry, then p is regular and one may join p and x by a

path y in the regular set of X. By sliding 7 in the direction normal to supp X, one

may join y to one endpoint of dL by a path in Bn(s)\supp5. ¦
We apply Lemma 2.3 to the current Xt in Bn(j) and see that supp Xj séparâtes

Bn(j) into 2 components. The current X} is of multiplicity 1, so that X} represents
a boundary of least area in Bn(j); in other words, letting Bn(/)\supp£,
fljfUfl&quot;, we hâve Xx =dO^ and

vol (du; nx)&lt;vol (bknaf),

for any compact KcBn(j). Choosing K Bn(r), r&lt;j, it follows that

M(^LBr)&lt;| vol S(r), (2.4)

for ail /. This gives the upper bound Q =| vol S(r).

[B] Existence of q.

Recall that given a set TcJFfn one may define the convex hull ^(T) of T as

the smallest geodesically convex set containing T. It is not difficult to prove that if
X is a stationary p-current in Hn, then

supp X &lt;= ^(supp dX) ; (2.5)

see e.g. [An], [AS]. We note also the useful fact that for TcS&quot;&quot;1^)

1(°°) t. (2.6)

Now choose points x, y in différent components of Sn~1(&lt;»)\S and let y be the

unique géodésie asymptotic to x and y. For 7 sufficiently large, it is clear that the
intersection 7 H Sn~l(j) consists of two points x,, y, with x, —&gt; x and y^ —* y as

/-&gt;« and xi9 y, lie in distinct components of Sn~1(/)\MJ. Since, by Lemma 2.3
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again, supp JE, séparâtes Bn(j) into two components, it follows that

supp 2,07/0,

for ail / sufficiently large. Since supp^c:(^(M/) and ^(M,) converges to ^(S) as

j —&gt; oo, we see that the séquence

{supp 2, H 7} c=K,

for some compact set K c Hn. In particular, it follows that there is a p e y and
R&gt;0 such that

dist (p, supp Xj) &lt;R, for ail j.

Thus, supp Xj intersects a fixed bail of radius JR in Hn, for each j. The
existence of the lower bound cr now follows from standard monotonicity
estimâtes on the mass of stationary currents in géodésie balls, see e.g., [An], [L2].

The proof of Theorem 2.1 is now straightforward. The estimate (2.2) together
with the compaetness theorem for intégral currents show that the séquence
{JSjLB,}*»! has a weakly convergent subsequence for each fixed L Choosing such

for each î and taking the diagonal subsequence, we find there is a subsequence
{2j&gt;} of {2S} and an intégral (n - l)-current X such that

on any compact set, in the weak topology. The current X is absolutely area

minimizing, being a limit of area-minimizing currents, and is easily seen to hâve

asymptotic boundary S, using (2.5) and (2.6) again. ¦
Remark 1. We note that thèse currents X are smoothly embedded complète

submanifolds in case n&lt;7 and hâve singular set Z of Hausdorfï codimension at
least 8 in higher dimensions. As examples of boundaries S to which the theorem
applies, we mention the following.

EXAMPLE 1. In dimension 3, we may choose S to be an arbitrary Jordan

curve (not necessarily rectifiable) on S2(œ)&gt; This follows from the fact that any
Jordan curve may be approximated, in the Hausdorfï distance, by inscribed

polygons.

EXAMPLE 2. In higher dimensions, let S be the image of the equator
Sn~2e Sn-1 under a homeomorphism h of Sn~1. Then S satisfies the hypothesis of
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the theorem. In fact, for any e&gt;0, let T {x:d(x, Sn~2)&lt;e} be the e-tubular
neighborhood of the equator Sn~2. Define

f.T^U by

Then fh=f°h~1:h(T)-^&gt;M is a proper exhaustion function of h(T). We may
choose a uniform approximation to fh by a C°° function fh and, for any regular
value q, define

Thus, p(S, Mq)&lt;£, as desired.

Remark 2. It is unknown whether a resuit analogous to Theorem 2.1 holds in
higher codimension; the estimation (2.4) is no longer valid.

Remark 3. We note that a resuit analogous to Theorem 2.1 holds in complète
manifolds of curvature c2^KN&lt;c1&lt;0; the proof will appear elsewhere.

§3. Kleinian groups and invariant solutions

In this section, we will study the existence of area-minimizing hypersurfaces
invariant under a discrète group of isometries acting on Hn.

Let F be a discrète subgroup of O+(n, 1), the group of orientation-preserving
isometries of Hn. The limit set Ar of F is the set of accumulation points of an
orbit Fx,xeHn on Sn~l(°°); this turns out to be independent of the choice of
xeHn. Ar is a closed set, minimal under the conformai action of F on S&quot;&quot;1^);

we hâve

where (lr is the &apos;domain of discontinuity&apos; of F; F acts properly discontinuously on
f2r. Or may be empty, or hâve one, two or infinitely many components. We will
call F quasi-Fuchsian if {2r has exactly two components. In case F acts freely (F
is torsion free), we see that F is quasi-Fuchsian if and only if the quotient
manifold ^n
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is a &apos;convex&apos; hyperbolic manifold with two boundary components strictly con-
tained in Mn; we note that

[A manifold N is convex if any path in N is homotopic to a géodésie in N, relative
to the endpoints.] In H3, Maskit [M] has shown that if F is finitely generated and
torsion free, then F is quasi-Fuchsian if and only if F is a quasi-conformal
déformation of a Fuchsian group, i.e. a discrète subgroup of Isom(H2); in this
case, Ar is the image of a circle S1 under a quasi-conformal homeomorphism of
S2.

Remark. In dimension 3, if F is a surface group, i.e. F^tt^X) where F is a

(punctured) surface, flr has either 0,1 or 2 components; it is conjectured that the
&apos;degenerate&apos; groups with ilr having 0 or 1 component are suitable limits of
quasi-Fuchsian groups. Thus quasi-Fuchsian groups play a central rôle in dimension

3.

The main resuit of this section is the following.

THEOREM 3.1. Let F be a quasi-Fuchsian group acting on Hn. Then there

exist complète F-invariant absolutely area-minimizing (n-l)-currents Xr in Hn.

Proof. Let ^(Ar) be the convex hull of Ar and let M, be a séquence of smooth
manifolds in the interior of ^(Ar) eventually lying outside any compact set in Hn.
We may apply Theorem 2.1, since Sn~l(&amp;&gt;)\ Ar has exactly two components; let X
be a complète area-minimizing hypersurface in Hn asymptotic to Ar. We may
assume that suppJS is connected, since we may replace it by a component of
suppX Then, by Lemma 2.3, Hn\supp2 has two components ù* such that
Q*nSn~1(o°) are the two components of Sn&quot;1(00)\Ar; we note thèse latter are
F-invariant. Consider the currents gX defined by

(g2)(&lt;o) 2(g*û&gt;), for g 6 F.

Each gX is a minimizing intégral (n - l)-current; in fact gX is a boundary of least

area;

where gQ* are the components of Hn\supp(&amp;£). Consider
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It is clear that £îx is F-invariant and so it follows that dflx is also F-invariant.
If di}1 is a boundary of least area, we are donc If not, then we proceed to solve
the Plateau problem in O1 as follows. Let Bl be a séquence of smooth connected
(n — 2) manifolds in Ox C\ ^(Ar), eventually lying outside any compact set K &lt;= Hn.
Let &amp;x be a solution to the Plateau problem with boundary Br We now claim that
Sfi cz Ou for ail L To see this, one has B, c (lu so that in particular B, &lt;= gfi+, for
any geF. Since gfï+ has a boundary of least area, it follows that &amp;&gt;l &lt;= g/2+, for
any g; this gives the claim. Thus there is a séquence of boundaries of least area
{5^,} in Ql9 with {dSft} converging to Ar in the sensé of Hausdorff distance. Apply
the proof of Theorem 2.1 to {5^,}; it follows there is a convergent subsequence,
call it {#*,} again, such that

S^-»^1 weakly,

with supp^cfîx. Now Sf1 is a boundary of least area with support &apos;above&apos; ail
gX, gsF. In other words, one may define an ordering &lt; on the set of complète
minimal currents asymptotic to Ar by

where lî^nS11&quot;&quot;^00) is the 4- component of Sn~1(oo)\Ar. We thus hâve

g2&lt;Sr\ for ail g€T.

Now repeat on Sf1 the process above. If Sf1 is not F-invariant, let

«2= n g(ntr

where (fli)+ gives the positive component of Sn~1(oo)\Ar. Continuing in this
fashion, we produce a séquence of boundaries of least area Sf* such that

and also

for ail g € F, and for ail i. Each #* is a complète area-minimizing (n -1) current
asymptotic to Ar satisfying
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One may again apply the proof of Theorem 2.1 to obtain a convergent subsequ-
ence {#*&apos;}(={#*} with

Sfk&apos;-*Xr as fc~&gt;oo, weakly.

It is now clear that Xr is a complète area-minimizing intégral (n - l)-current
asymptotic to Ar. To see that Xr is F-invariant, note that Xr limk_*oo &amp;k so that
gXr limk_^o g#* ; by construction, gSfk&lt;Sfk+1 so that

for any geF. Replacing g by g&quot;1, it follows that gXr Xr, for ail g€F. ¦
We now discuss some applications to closed minimal hypersurfaces in hyperbolic

manifolds. The theory is most complète for surfaces in 3-manifolds, so we
begin with this.

Let F be an arbitrary quasi-Fuchsian group (not necessarily finitely gênerated).
The orbit space

m3=h3/f

is a 3-manifold with boundary equal to Or/F; note that M3^(ûr/F)XL where

Qf are the components of Or. Conversely, recall the simultaneous uniformization
theorem of Bers [B] which states that, given any pair of homeomorphic Riemann
surfaces X\9 X2 (possibly having punctures and branch points), there is a quasi-
Fuchsian group F such that Orir X1UX2&apos;, F is unique up to conjugation in
PSL(2, C). In case that F acts freely, M3, and its boundary /2r/F, inherit complète
hyperbolic metrics. On the other hand, there are, for example, groups F with
M3/F^S2xI topologically; clearly F does not act freely, since S2xl does not
admit any complète hyperbolic metric.

The following is a simple conséquence of Theorem 3.1.

COROLLARY 3.2. Let M3 H3/r be a quasi-Fuchsian 3-manifold. Then
M3 contains a branched minimal embedding of a Riemann surface S satisfying

In case F acts freely, S is a smoothly embedded complète stable minimal surface
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with

o -* tt^s) -&gt; tt^s) -&gt; r -&gt; o,

where S is the F-covering of S in H3.

Proof. The first statement follows from Theorem 3.1 by passing to the orbit
space H3/F; in this context, minimality means vanishing of the mean curvature

away from the branch points of S. The second statement follows similarly; it a

conséquence of [F-CS, Theorem 1] that the embedded surface S is stable when F
acts freely.

Remark 1. It is not necessarily true that n^S) 0; in §4 and §5, we will prove
the existence of smoothly embedded minimal surfaces S in certain M3 H3/F
with ir1(S)^:0; in particular, thèse surfaces are not incompressible. On the other
hand, in §4 (see Theorem 4.4), we will also show the existence of embedded
minimal surfaces S in M3 with Trt(S) tt^M3) F, for every torsion-free quasi-
Fuchsian group F.

Remark 2. In case F acts freely and represents a compact surface, F=
Schoen-Yau [SY] and Sachs-Uhlenbeck [SU] hâve obtained very strong results
on the existence of incompressible minimal surfaces in Riemannian manifolds. It
is clear however that in gênerai, the surfaces produced above are inequivalent; in
particular, the lifts of incompressible minimal surfaces in compact 3 manifolds to
H3 are not necessarily area-minimizing. Further, our constructions apply to surfaces

having cusps and branch points, as well as infinitely generated tti.
For higher dimensions, one obtains the following.

COROLLARY 3.3. Let N&quot; be a compact convex hyperbolic n-manifold with
exactly two boundary components. Then there is a closed minimal hypersurface
(intégral (n — l)-current) X satisfying

0 -» TT^SUpp 2r) ~» TT^SUpp X) -* ^(N&quot;) -» 0

where Xr is the F-lift of X to Hn, In case n=^7, X is a smoothly embedded stable

submanifold.

Proof. Theorem 3.1 gives the existence of complète area-minimizing intégral
(n - l)-currents Xr invariant under the action of F ir^iNT) on H&quot;. Passing to the
orbit spâce gives the desired current X; stability follows as in Corollary 3.2.
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Remark 3. Corollary 3.3 proves the existence of closed stable minimal
hypersurfaces X in compact hyperbolic n~manifolds Nn which are covered by a

hyperbolic manifold 7ST having two ends and compact convex hull; furthermore,
we hâve

TTxCsupp S) &quot;&gt; 1Ti(N) C TTt(N).

A similar resuit holds for N*1 of pinched négative curvature. However, the class

of manifolds satisfying the above conditions is not well understood.

§4. Minimal surfaces in hyperbolic 3-manifolds

In this section, we will work exclusively with hyperbolic 3-manifolds.
Almgren-Simon in [AS] hâve proved the existence of embedded minimal dises in
Riemannian 3-manifolds provided the boundary is constrained to lie on a convex
set. More precisely, given a C2 Jordan curve 7 c: dC, for C a convex set, consider
the space Mo of smooth embeddings

f:D2-*M3 suchthat /|S* Y.

They show that the area functional achieves a minimum on Mo giving the
existence of an embedded minimal dise fo(D2) in M3 with boundary 7. The work
of Meeks-Yau [MY] actually shows that fo(D2) realizes the minimum area over
ail branched immersions D2-+M3; however, we shall not be using their techniques

hère.
We begin by using the resuit and method of proof of Almgren-Simon to

construct complète embedded minimal dises in H3.

THEOREM 4.1. Let y be a Jordan curve on S2(&lt;*&gt;). Then there exists a

complète embedded minimal surface D in H3 of the topological type of the dise,

asymptotic to 7. Further, D minimizes area in the category of embedded dises,

Proof. Let yt &lt;=¦ S2(i) be a séquence of C2-Jordan curves in H3 whose limit is y,
in the sensé of Hausdorff distance (see §1, Example 1). Then the work of [AS]
gives existence of smoothly embedded minimal dises D, with dDt 7,. We apply
the proof of Theorem 2.1 to {D,} (in place of {Sj} there). The estimate

M(DtLBr)&lt;| vol S(r), (4.2)

will follow easily from the following lemma.
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LEMMA 4.2. Let D2 be a minimally embedded dise with dD2c:S2(r). Then
D2HB3(s) is a disjoint union of dises, for almost ail s^r.

Proof. Let j:D2-+H3 be the inclusion and let s be a regular value of
d°j: D2 —&gt; R, where d is the distance function from 0. Then /~1(S2(s)) is a disjoint
collection of circles {Sa} in D2. Consider /^(BWXB^XJciD2: this is a compact
set K in D2 with boundary equal to dD2 U U Sa. It follows easily from the convex
hull property (2.5) that K is connected; thus none of the curves Sa are nested and

so the complément /~1(B(s)) is a union of dises. ¦
Returning to the proof of Theorem 4.1, we now hâve by Lemma 4.2 that

DtLBr is a finite collection of dises. The area-minimizing property of D, among
embedded dises then gives (4.2) immediately. We may now copy the proof of
Theorem 2.1 for {D,} and produce a stationary intégral 2-current D such that a

subsequence converges

D%-±D weakly on compact sets.

One sees that D is a complète stationary intégral 2-current asymptotic to 7 and
area minimizing among comparision dises in the following sensé: if 7 ci supp D is

a smooth Jordan curve wtih dT=y, where T is a stationary 2-current and

supp Te supp D, then

M(T)&lt;vol(V),

where V is any embedded dise in H3, dV= 7.

Our aim is to prove that D is in fact a smoothly embedded dise. Thus, consider

jc€supp D. The slices d(DLBx(s)) are closed rectifiable 1-currents, for almost ail

e &gt;0. Similarly, by means of Sard&apos;s theorem, the restriction Dt HBx(e) is a union
of smoothly embedded submanifolds with smooth Jordan curves as boundary, for
almost ail e &gt;0. By Lemma 4.2, each component of Dt HBx(e) is in fact a smooth
embedded dise.

We claim there is a ô&gt;0, with perhaps ô«e, such that at most four
components of DtnBx(e) intersect Bx(8), for ail i. To see this, let CJ,/

1,2,..., Kt dénote the components of D, HBx(e) intersecting Bx(8); by a simple
area comparison, we hâve

lM(C0&lt;MO(Bx(e))).
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Further, by the local monotonicity of stationary currents (see [An], [L2D, it
follows that

M(C;)^l-vol(B2(e-ô)), for each i,/.

Thus we find

Kt •volB2(e-S)&lt;M(a(Bx(e)))«4ire2,

for e sufficiently small. Since volB2(e-S)»ir(e-S)2, we see that

Kx ^ 4, for any i.

Thus the limiting current DLBX(8) is the limit of regular currents DtLBx(8)
having at most four components, each a smoothly embedded dise. By relabelling
and passing to a subsequence, we may assume the séquence of components

i converges weakly to a current W

The regularity of the current D follows from the methods of Almgren-Simon. In
fact, let Tx be the (varifold) tangent cône to D at x: it is known that Tx either has

support contained in a plane or is locally a union of half-discs with common
diameter L (see [AS, Corollary 2]). Let Tx dénote the varifold tangent cônes to
W1 at x; we then hâve

For fixed /, we choose a séquence rk-»o° so that the expansions Nk^i
converge to the varifold tangent

Mrk (Cl) -&gt; Tx weakly, as k -* 00;

hère ^ dénotes géodésie dilation of the ambient space H3 centered at xk, xk -&gt; x
as k -» 00. Now the interior regularity results, Theorems 2 and 3 of [AS], applied
to the séquence {Nk}, show that Tx is a plane (with multiplicity 1), for each /.
Since the components Ck for fixed k are disjoint, it follows that the tangent planes
Tx are identical. We apply the basic regularity theorem of Allard [Al, §8] to
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(D, Tx) and find that D is a regular varifold in a neighborhood of x:

for some integer p^4, where S is an analytic, embedded minimal surface in
B(x9 8&apos;). Clearly, p is independent of x and we now see that D is a regularly
embedded minimal surface in H3, asymptotic to y.

The Allard regularity resuit also shows that the convergence DX-*D is

smooth. Since for almost ail r, D, HB(r) is a disjoint union of dises, it follows that
D H B(r) is as well; we thus find that D is a complète embedded dise. ¦

COROLLARY 4.3. LetF be a quasi-Fuchsian group acting on H3. Then there

is a complète smoothly embedded F-invariant minimal dise D in H3. As above, D
minimizes area among embedded dises.

Proof. Let Ar be the limitset of F on S2(&lt;*&gt;); since F is quasi-Fuchsian, Ar is a

Jordan curve. By Theorem 4.1, there exists a complète embedded minimal dise D
asymptotic to Ar. We now use the proof of Theorem 3.1 to construct a F-
invariant minimal dise. If D is not T-invariant define gD as in Theorem 3.1 by

(gD)(a&gt;)

Then each gD is a smoothly embedded minimal dise; let

where gf2+ is the component of Hn\supp (gD) containing the positive compo-
nent of Sn~1(&lt;x&gt;)\Ar in its closure. We see that /2X and dùx are F-invariant
currents; if dûx is a smoothly embedded dise, we are done; if not, choose extrême
C2 Jordan curves yx in {ixCi^iAp) eventually lying outside any compact set in
H3. Let &amp;&gt;x be an Almgren-Simon solution with boundary yt: thus Sfx is a smoothly
embedded minimal dise with boundary 7,, area-minimizing among embedded
dises with the same boundary. We see as before that Sft &lt;= g/2+, for ail geF, so

that ïfx c/2i, for ail i. Now repeat the process carried out in Theorem 3.1, using
the regularity results of Theorem 4.1. In fact, we see that {Sfx} subconverges to a

stationary intégral 2-current SP1; by the proof of Theorem 4.1, 5^ is a smooth
embedded dise, asymptotic to Ar. One thus obtains a séquence {Sf1} by répétition
of the above argument. It follows that {#*} will subconverge to a F-invariant
stationary intégral 2-current D; the fact that D is a complète smoothly embedded

minimizmg dise follows from Theorem 4.1. ¦
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Remark 1. In connection with Remark 1 of §3, Corollary 4.3 produces
complète embedded incompressible minimal surfaces X in quasi-Fuchsian 3-
manifolds M3 H3/F, F^it^X). For example, there are complète minimal
embeddings of a fc-fold punctured S2 in certain quasi-Fuchsian 3-manifolds, for
any fc &gt;3. As far as the author knows, thèse give the first non-trivial examples of
non-compact complète minimal surfaces of finite volume.

The complète minimal dises constructed in Theorem 4.1 and Corollary 4.3
need not be absolutely area-minimizing. In case they are not, one may construct
surfaces in H3 of higher genus. To begin, we recall the results of Almgren-Simon
[AS] in the compact case. Let y be an extrême C2-Jordan curve in H3. Let ^(7)
be the space of connected, oriented embedded C2-surfaces M&lt;^H3 with bound-

ary 7, with genus M=g. Let

ag (7) inf {area (M) :

inf {area (M) : MeMh(y) : h&lt;g}.

Then it is proved in [AS] that if ag(7)&lt;ag-i(7), there is a surface

with area (M) ag(y).
For complète surfaces in H3, we then prove:

THEOREM 4.4. Let Xg be a complète embedded minimal surface of genus &lt;g

in H3 asymptotic to y and area-minimizing among embedded surfaces of genus
&lt;g. If 2% is not absolutely area-minimizing, then there exists a complète embedded

minimal surface Xg&gt; in H3, of genus &lt;g&apos;, for some finite g&apos;&gt;g, asymptotic to y.

Further, Xg&gt; is area-minimizing among comparison surfaces of genus h&lt;g&apos;.

Proof. As in the proof of Theorem 4.1, let yt be a séquence of extrême
C2-Jordan curves on Xg, with 7, —? 7 as i -&gt; 00. By hypothesis, there is an i0 and
g&apos;&gt;g such that

Since we may assume that Xg is an annulus outside of 7^, it is clear that
ag&apos;(7i)&lt;«g(7i)? for ail i^i0- By [AS, Theorem 8], there exists smoothly embedded

surfaces S,, ail of genus g&apos;, satisfying dSt yt and area (S,) 0^(7,). Consider
the séquence of intégral 2-currents {SJ. The proof of Theorem 2.1 applies and

gives, after passage to a subsequence, a weak limit

where X^ is a complète stationary intégral 2-current asymptotic to 7. The

regularity arguments of Theorem 4.1 apply hère and prove that Xg&apos; is a smoothly
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embedded submanifold. Since St -» 2%&gt; in the C2-topology and St has genus g&apos;, it
follows genus £g ^g&apos;. Finally, the area-minimizing properties of 2^ follow from
those of {St}.

Remark 2. Of course, the surfaces 2% and 2g&gt; constructed above are geometri-
cally distinct, since they hâve distinct area-minimizing properties.

Remark 3. The proof above does not show that genus 2%&gt; g&apos;, or even genus
J£g &gt; genus 2g, although it is likely that one can find surfaces with thèse properties.

In order to show that such a &apos;hierarchy&apos; of complète minimal surfaces actually
occurs, we use the following Proposition.

PROPOSITION 4.5. There exist Jordan curves y on S2(o6) such that any
absolutely area-minimizing surface 2 asymptotic to y has genus g^g0, for any
prescribed go^0.

Proof. The proof is a simple modification of work in [AS]; the case go= 1 is

given below. Let y0 t&gt;e the curve consisting of two concentric circles of radii rl9 r2

centered at the origin in R2, viewed as infinity in the upper half space model of
H3. It is not difficult to see that for \r2 ^ rx ^ r2, any area-minimizing surface 20
asymptotic to 7 does not intersect the line lx {x y 0}. To justify this, we note
that any area-minimizing surface asymptotic to y0 is invariant under rotation
about lx\ if 2q intersects lu it follows 20 is the union of two totally géodésie
hyperplanes asymptotic to y0. Now simple area-comparision with an annulus
spanning y0 shows that 20 cannot be area-minimizing, given the bounds on ru r2

above.
Let ye be the oriented Jordan curve obtained by joining the circles of 70 by

line segments of Euclidean séparation e, and let 2e be an area-minimizing surface

asymptotic to ye (see Figure 1). As e —» 0, 2e converges to 20 in the weak

topology on varifolds.
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Let l2 be the ray consisting of the négative x-axis; we assume yefM2=0.
Choose a bail B such that B is tangent to the plane {z 0} at a point on l2 but
B n Xo 0. It follows from the area-minimizing property and the convergence
Xe -*X0 that for ail e sufficiently small, BnXe 0. Thus there is a loop a in
H3-Xe such that cr does not bound in H3~Xe. It follows that Xe is not a dise for
e sufficiently small. ¦

Remark 4. We note that the curves y satisfying the above Proposition are
stable under small perturbations; thus, if yc=S2(°°) has only absolutely area-
minimizing solutions of genus &gt;g0, then any Jordan curve y&apos; sufficiently close to 7
in the Euclidean flat topology (or Hausdorff distance) also has only least area
solutions of genus &gt;g0. One proves this by contradiction: if {7,}^ S2(o°) converge
to 7 in the flat topology, then after passing to a subsequence, any least area
solutions X, asymptotic to 7, will converge smoothly to a least area solution X
asymptotic to 7; thus for i sufficiently large, genus £,&gt; genus X^g0.

§5. Non-uniqueness, finfteness, and non-finheness

In this section, we will continue the study of minimal surfaces in hyperbolic
3-manifolds, using the results of §4 in particular. We begin by using Proposition
4.5 to show that complète area-minimizing surfaces of infinité genus arise

naturally in H3.

THEOREM 5.1. There exist torsion -free quasi -Fuchsian groups Fg such that any
complète absolutely area-minimizing Fg-invariant surface in H3 has infinité genus.

Proof. Let 7 be a curve as in Proposition 4.5, given explicitly as in Figure 2.

Then there is a band B around 7, given as in Figure 2 also, with the following
property: if X is any area-minimizing surface asymptotic to a Jordan curve y&apos; &lt;= B,
then genus £&gt;1. This follows by using the arguments of Proposition 4.5.

Now inscribe successively, within the band B, N Euclidean circles C, so that Ct

intersects C;+1 at an angle of tt/2 and Q H Cl+k 0, for ail fc &gt; 2. It is not difficult
to see that this can be done for any N&gt;N0 30, for example.

Let F be the Kleinian group acting on H3 generated by reflections through
hyperplanes asymptotic to Q and let Fq^F&apos; be the subgroup of orientation

preserving mappings. It is well known that Aro is a Jordan curve lying inside the
circles C, (see [B]): in particular Aro&lt;^B and Fo is quasi-Fuchsian. We now claim
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Figure 2

that Fo has a torsion-free surface subgroup F of index 2 such that

F — TTiC^g), Xg a surface of genus g, where g=?N.

To see this, we note that M3 H3/r0 is a 3-orbifold in the sensé of Thurston [T];
topologically M3^S2xI where S2 has 2N elliptic points (branch points) with
group Z2 determined by the circle intersections at infinity in H3. In fact, the action
of F&apos; on S2(o°) has a dise with 2N corner angles of tt/2 on the boundary as

fundamental domain; passing to Fo, its fundamental domain is two copies of this
dise glued together along the boundary to give the desired S2. Now such orbifolds
hâve a surface Xg of genus g Nas 2-fold orbifold covers. In fact, embed Xg in
R3 in such a way that the z-axis L passes through ail the &quot;holes&quot; of Xg and X% C\L
consists of 2N+2 points; assume that Xg is invariant under rotation by 180° in the
z-axis. Under this Z2 action on Xg, the quotient space XJZ2 is easily seen to be an
S2 with 2N elliptic points with group 22-

The quasi-Fuchsian group F has limit set Ar=Aro, since F is normal in Fo

([T:8.1.3]). Applying Theorem 3.1, we may construct complète, F-invariant
area-minimizing surfaces É in H3; it is clear that such surfaces hâve genus either
0 or oo. Since Ë is asymptotic to Ar&lt;^B9 X cannot hâve genus 0. ¦

Remark 1. Define the Bers isomorphism
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by associating to any pair of points in the Teichmûller space of a surface of genus
g the associated quasi-Fuchsian group. Then we hâve shown that for any g &gt; 30,

e.g., there are quasi-Fuchsian groups Fg having Fg-invariant area-minimizing
surfaces of infinité genus. In the orbit space M3 H3/Fg, thèse surfaces descend to
compact embeded stable minimal surfaces Xè of genus g&gt;g\ clearly, thèse
surfaces are not incompressible. Further examination of the proof shows that for
any g, there is a lower bound N(g) on the number of quasi-Fuchisan groups of
genus g having such surfaces: we hâve N(g) —&gt; oo as g —» oo. In the other direction,
fixing the genus g, if one takes a séquence in T(ig)xT(5g) tending to &quot;infinity&quot;

in both factors (but not diagonally), it seems likely that again the number of
area-minimizing surfaces of infinité genus becomes unbounded; see the discussion
in [17] and [T, §9].

Let ^ be the class of quasi-Fuchsian groups such that any F-invariant
area-minimizing surface is of infinité genus, &lt;$g the subset of Fe^ such that
tt^U^/F) /n-1(Xg). Thus the above Remark shows that the cardinality of ^ is

unbounded in g.

We may use thèse surfaces to construct infinitely many geometrically distinct
complète minimal surfaces asymptotic to a given boundary.

THEOREM 5.2. Let Ar be the limit circle of a quasi-Fuchsian group Fe^ê.
Then there exist infinitely many complète, smoothly embedded minimal surfaces
asymptotic to Ar; furthermore, there is a finite bound on the maximal normal
distance between thèse surfaces.

Proof. By Theorem 4.1, we know there is a complète F-invariant embedded
minimal dise Xo. By définition of Ar, Xo is not absolutely area-minimizing; thus
we may choose extrême Jordan curves yt on Xo and embedded minimal surfaces
Xt of fixed genus g1 &gt;0 with dXx yr By the techniques of Theorems 4.1 and 4.4,
{Xl} will subconverge to a smoothly embedded surface J£gl of genus &lt;gj. If Xgl

happens to be area-minimizing, the translates h • (Xgl), for heF give an infinité
family of distinct (but isometric) minimal surfaces asymptotic to Ar. If Xgl is not
area-minimizing, we may repeat the process on Xgl: in either case we obtain an
infinité family of distinct surfaces.

To verify the second statement, note that ail surfaces are contained in the
convex hull *(Ar): note also that the diameter of

dr sup {dist (x, a(«(Ar))} &lt; oo;
xedmAr))

in particular, there is an upper bound to the distances of ail minimal surfaces

asymptotic to Ar. ¦
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Note, One expects that Xgl constructed above is not area-minimizing; this
would then give an infinité séquence of isometrically distinct surfaces.

Next we prove a non-uniqueness resuit for incompressible minimal surfaces in
a given homotopy class in hyperbolic 3-manifolds.

THEOREM 5.3. Let F be a quasi-Fuchsian group in %, so 7T1(Xg) F. Then
in the homotopy class of the inclusion

there are at least two geometrically distinct compact stable embedded minimal
surfaces of genus g.

Proof. Let 2m be a F-invariant area-minimizing surface of infinité genus in H3
and let ù* be the F-invariant components of H3\Xaa&apos;. we will construct F-
invariant stably embedded minimal dises in (l*. It suffices to work in O+: let 7, be

a séquence of smooth extrême Jordan curves in O+C\c€(Ar) converging to Ar as

i -» 00. It is well known one may solve the Plateau problem for minimal dises in
fl+, see e.g. [MY]. By the work of [AS] or [MY], any solution S* is an embedded
minimal dise, area-minimizing among embedded minimal dises in O+. Letting
i -* 00, the techniques of Theorem 4.1 show that {S,} subconverges to a complète
embedded minimal dise D+ in !3+ asymptotic to Ar. If D+ is not F-invariant, we

may use the methods of Corollary 4.4 to produce a F-invariant minimal dise, call

it again D+ in /}+. (In fact there are at least two such in /2+ if D+ was not
F-invariant to begin with.) The quotient surfaces D*/F9 D~/F are then stable
minimal surfaces embedded in M3, inducing an isomorphism on ir^ ¦

Remark 2. This resuit contrasts with the resuit that harmonie maps f:M~*N
are unique in their homotopy class, provided KN&lt;0 and N is compact. Thurston
has shown that there are infinitely many (isometric) minimal surfaces in M3
H3/F, where F is a &quot;doubly degenerate group&quot;, i.e. F TTiCSg), where Xg —&gt; N3 —&gt;

S1 is a smooth fibration over S1, N3 having a hyperbolic structure. In this case, F
is a suitable &apos;limit&apos; of quasi-Fuchsian groups: see [T§9].

The following theorem shows that least area incompressible surfaces
constructed by Schoen-Yau [SY] are not necessarily area-minimizing in their homol-

ogy class.

THEOREM 5.4. Let Xg ^M3 be a least area incompressible surface in M3,
where M3 H3IF, irfêj^r. Then if Fe% there exists F&apos;e«gS with F&apos;&lt;F of
finite index such that the lift
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covering i is a least area incompressible embedding, but [X^]eH2(M&apos;,Z) is not of
least area in its homology claass.

Proof. Since &lt;2g c-&gt; M3 is incompressible, the lift X% c-» H3 is a complète
(embedded) dise, asymptotic to Ar. Since Fe^, Xg is not absolutely area
minimizing. Let D be a domain in X% such that D is not area-minimizing w.r.t.
dD. Now choose F&apos;&lt;ïr such that D is contained in a fundamental domain of F&apos;;

this is possible since F is residually finite [H]. Let D&apos; Xg HT&apos; and let S&apos; be an
area minimizing surface in H3 with dS&apos; dD&apos;; clearly D&apos; and S&apos; are homologous in
H3. It follows that D&apos;ir X%&gt; and S &apos;/F&apos; are homologous in M&apos; H3/F&apos; and since

area (S&apos;) &lt;area (D&apos;), area (S;/F)&lt; area C£g). On the other hand, it is not difficult
to see that Xg is of least area in its homotopy class; see [FHS] (Lemma 3.3) for
the détails.

Finally we prove a gênerai finiteness resuit for stable minimal surfaces in
compact Riemannian 3-manifolds; this will show in particular that &quot;most&quot; hyperbolic

3-manifolds admit only finitely many stable minimal surfaces of a given
genus.

Define a surface S in N3 to be R-locally area-minimizing if for any géodésie
JR-ball B(x, R) in N3, the surface S HB(x, R) is area-minimizing with respect to
its boundary.

THEOREM 5.5. Let N3 be a compact oriented 3-manifold with an analytic
Riemannian metric. Then for any given R&gt;0, either

(1) N3 contains only finitely many compact stable, oriented, R-locally minimizing

surfaces of uniformly bounded area, or
(2) N3 fibres over S1 with fibres smooth compact minimal surfaces.

We expect the added condition of K-locally minimizing may be dropped, but
hâve not been able to do so.

Proof. The proof is based on the method of Tomi [To] on the finite solvability
of the Plateau problem in U3. We suppose (1) does not hold; let {M^ be a

séquence of JR-locally area-minimizing surfaces in N3 with area (Mi)&lt;K The

compaetness theorem for intégral currents implies that {Mj converges, after
passing to a subsequence, to an R-locally minimizing intégral 2-current M. Since

each Mt is stable, the regularity theorem of Schoen-Simon [SS] implies that M is

a smooth stable minimal surface; furthermore the fact that M is R-locally
area-minimizing implies that M and Mt may be locally graphed over the tangent
planes of M, for i sufficiently large, see e.g. [P]. Thus, in sufficiently small géodésie

balls, M and Mt are embedded dises D, Dh and the convergence Dt —&gt; D is C2 (in
fact analytic).
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Thèse results show that each M, may be graphed globally over M in the
following sensé: for any /g C2&apos;a(M), define Mf to be the graph of / over M, i.e.,

M/ {y:y=expx/(x)-E0},

where Eo is the unit normal to M in N. Thus Mx defines a unique function /, g C2&quot;

such that Mx - Mfi, where ft -» 0 as i —» &lt;» and J( Mo. Define

by

H(f) mean curvature function of Mf.

Using the fact that N, M and the normal exponential map of M in N are
analytic, it is a straightforward, but lengthy, computation to show that H is an
analytic mapping in a neighborhood of O€C2&apos;a(J).

The arguments of Tomi [To] then show that H~1(0) is an analytic 1-manifold
V in a neighborhood of M. Using the compactness theorem again, we see V is a

compact analytic 1-manifold (diffeomorphic to S1) parametrizing diffeomorphic
stable minimal surfaces Mt in N3. It now follows that the natural projection

&lt;rr:N3-+V

tt(x) t, where xeMt

gives the desired fibration.

COROLLARY 5.6. A quasi-Fuchsian 3-manifold M H3IT has only finitely
many stable, locally area-minimizing compact surfaces of a given genus.

Proof. The convex hull property shows that ail compact minimal surfaces in
M3 are contained in the convex part of M: since this latter does not fiber over S *

isometrically, it follows from the proof of Theorem 5.5 that M contains only
finitely many JR-locally area-minimizing surfaces of bounded area. Now we hâve,

for 5g a minimally immersed surface of genus g in a hyperbolic manifold that,

where K is the Gaussian curvature of 2g, xtSg) (2-2g) is the Euler characteris-
tic. Thus a bound on genus gives a bound on area, proving the corollary. ¦
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Remark 3. As noted above in Remark 2, the Corollary is false if we drop the

assumption that F is quasi-Fuchsian. On the other hand, it does hold for any
compact hyperbolic 3-manifold which does not fibre over S1 with fibres being
minimal surfaces. We conjecture that no hyperbohc 3-manifold has this property:
more generally, we conjecture that if M3 is a closed hyperbolic 3-manifold, then
there does not exist a local 1-parameter family of closed minimal surfaces in M3

A resuit of this type, together with Theorem 3.4 would provide a good basis m
understanding the moduli spaces of minimal surfaces in negatively curved 3-
manifolds.

Finally, one obtains a purely topological resuit from Theorem 5.5.

COROLLARY 5.7. Let N3 be a compact 3-manifold admitting a metric of
curvature KN &lt;c &lt;0. Then for any given g, the set of homotopy classes [Xg, N3]t of
incompressible surfaces in N3 is finite, up to conjugacy.

Proof. It follows from [SY] that in any class of [Xg, N3]t, there is an immersed
least area incompressible surface. By the estimate in Corollary 5.6, any such

surface has a bound on its area. If there was infinitely many such homotopy
classes, the proof of Theorem 5.5 implies the least area surfaces must subconverge
to a limiting surface; thus ail surfaces will eventually be homotopic. ¦

Corollary 5.7 has been proved by Thurston [T:8 8.6] by means of pleated
surfaces.
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